Skip to main content
Log in

Complex Envelope Second-Order Statistics in High-Altitude Platforms Communication Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High-altitude platforms are one of the most promising alternative infrastructures for realizing next generation high data rate wireless networks. This paper presents a three-dimensional (3-D) scattering model for land mobile stratospheric multipath-fading channel with its complex faded envelope. From the scattering model and the complex envelope second-order statistics are derived for a 3-D non-isotropic scattering environment. When we discuss on the second-order statistics we refer to the level crossing rate and the average fade duration, whichare two main parameters in describing the fading severity over time and are very important in assess system characteristics such as hand off, velocities of the transmitter and receiver and fading rate. Numerical calculations have been carried out to demonstrate theoretical derivations and the utility of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-D:

Three-dimensional

AAoA:

Azimuth angle of arrival

AAoD:

Azimuth angle of departure

AFD:

Average fade duration

CDF:

Cumulative distribution function

GBSB:

Geometry based single bounce

HAP:

High-altitude platform

LCR:

Level crossing rate

LoS:

Line-of-sight

MIMO:

Multiple-input multiple-output

NLoS:

Non-line-of-sight

pdf:

Probability density function

PDP:

Power delay profile

SBS:

Stratospheric base station

SISO:

Single-input single-output

TMS:

Terrestrial mobile station

References

  1. Karapantazis, S., & Pavlidou, F. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Society Surveys & Tutorials, 7(1), 2–32.

    Google Scholar 

  2. Tozer, T. C., & Grace, D. (2001). High altitude platforms for wireless communications. IEEE Electronics & Communication Engineering Journal, 13(3), 127–7.

    Article  Google Scholar 

  3. Mondin, M., Dovis, F., & Mulassano, P. (2001). On the use of HALE platforms as GSM base stations. IEEE Personal Communications, 8(2), 37–44.

    Article  Google Scholar 

  4. Ahmed, B. T., Ramon, M. C., & Ariet, L. H. (2006). On the UMTS-HSDPA in high altitude platforms (HAPs) communications. In Proceedings of the 3rd ISWCS (pp. 704–708). Valencia, Spain

  5. (1997) Preferred characteristics of systems in the fixed service using high altitude platforms operating in the bands 47.2-47.5 GHz and 47.9-49.2 GHz. Geneva, Switzerland: International Telecommunication Union, ITU-R resolution 122.

  6. (2000). Technical and operational characteristics for the fixed service using high altitude platform stations in the frequency range 18–32 GHz. Geneva, Switzerland: International Telecommunication Union, ITU-R f.[9B/Ka-HAPS].

  7. (2005). Air interface for fixed and mobile broadband wireless access systems-amendment for physical and medium access control layers for combined fixed and mobile operation in licensed band. IEEE Std. 802.16e-2005.

  8. Khazaei, A. A., & Azmi, P. (2013). A new approach of channel modeling in HAPS based networks and their system performance analysis. Wireless Personal Communications, 70, 69–84.

    Article  Google Scholar 

  9. Michailidis, E. T., & Kanatas, A. G. (2010). Three-dimensional HAP-MIMO channels: Modeling and analysis of space-time correlation. IEEE Transaction on Vehicular Technology, 59(5), 2232–2242.

    Google Scholar 

  10. Michailidis, E., Efthymoglou, G., & Kanatas, A. (2008). Spatially correlated3-D HAP-MIMO fading channels. In Proceedings of the IEEE Globecom workshop (pp. 1–7). New Orleans, LA.

  11. Zajic, A. G., Stüber, G. L., Pratt, T. G., & Nguyen, S. (2008). Envelope level crossing rate and average fade duration in mobile-to-mobile fading channels. In IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

  12. Maurer, J., Fuügen, T., & Wiesbeck, W., (2002). Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz. In Proceedings of the IEEE VTC (pp. 1274–1278). Birmingham, AL, USA.

  13. Pätzold, M., Killat, U., & Laue, F. (1998). An extended Suzuki model for land mobile satellite channels and its statistical properties. IEEE Transactions on Vehicular Technology, 47, 617–30.

    Article  Google Scholar 

  14. Yang, Y., Zong, R., Gao, X., & Cao, J. (2010). Channel modeling for high-altitude platform: A review. International symposium on intelligent signal processing and communication systems (lSPACS 2010) December 6–8, 2010.

  15. Cuevas-Ruiz, J. L., & Delgado, J. A. (2004). A statistical switched broadband channel model for HAPs links. In IEEE wireless communications and networking conference, (Vol. 1, pp. 290–294).

  16. Cuevas-Ruiz, J. L., & Delgado-Penin, J. A. (2004). Channel model based on semi-Markovian processes an approach for HAPS systems. In The 14th Int’l conference on electronics, communications and computers pp. 52–56.

  17. Loo, C. (1985). A statistical model for a land mobile satellite link. IEEE Trans Vehicular Technology, 34, 122–127.

    Article  Google Scholar 

  18. Bo, Z., Qinghua, R., Yunjiang, L., Zhenyong, C., & Feng, Z. (2007). Characteristic and simulation of the near space communication channel, Int’l symposium on microwave antenna, propagation and EMC technologies for wireless communications (pp. 769–773)

  19. Ulloa-Vasquez, F., & Delgado-Penin, J. A., (2002). Performance simulation in high altitude platforms (HAPs) communications systems. In Proceedings of data systems in aerospace, pp. 92–9092.

  20. Iskandar & Shimamoto, S. (2005). The channel characterization and performance evaluation of mobile communication employing stratospheric platform. IEEE/ACES Int’l conference on wireless communications and applied computational electromagnetic pp. 828–831.

  21. Iskandar & Putro, D. R. (2008). Performance evaluation of broadband WiMAX Services over high altitude platforms (HAPs) communication channel. The fourth Int’l conference on wireless and mobile, communications, pp. 55–59.

  22. Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2001). 4G communications based on high altitude stratospheric platforms: Channel modeling and performance evaluation. IEEE Global Telecommunications Conference, 1, 557–561.

    Google Scholar 

  23. Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2002). Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE Journal on Selected Areas in Communications, 20, 641–7.

    Article  Google Scholar 

  24. Liberti, J. C., & Rappaport, T. S. (1996). A geometrically based model for line-of-sight multipath radio channels. IEEE 46th Vehicular Technology Conference, Vol. 2, pp. 844–848.

  25. Cuevas-Ruiz, J. L., Aragon-Zavala, A., Medina-Acosta, G. A., & Delgado-Penin, J. A. (2009). Multipath propagation model for high altitude platform (HAP) based on circular straight cone geometry. Int’l workshop on satellite and space communications, pp. 235–239.

  26. Stüber, G. L. (2011). Principle of mobile communication (3rd ed.). Berlin: Springer Science and Business Media.

    Google Scholar 

  27. Jakes, W. C. (1994). Microwave mobile communications (2nd ed.). NJ: Wiley-IEEE Press.

    Book  Google Scholar 

  28. Salz, J., & Winters, J. H. (1994). Effect of fading correlation on adaptive arraysin digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.

    Article  Google Scholar 

  29. King, P. R., Evans, B. G., & Stavrou, S. (2005). Physical-statistical model for theland mobile-satellite channel applied to satellite/HAP MIMO. In Proceedings of the 11th Euro wireless conference Nicosia, Cyprus, Vol. 1, pp. 198–204.

  30. Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielementantenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20(3), 550–560.

    Article  Google Scholar 

  31. Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2002). Space-time model formobile radio channel withhyperbolicallydistributed scatterers. IEEE Antennas and Wireless Propagation Letters, 1, 211–214.

    Article  Google Scholar 

  32. Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2006). A geometrical-basedmicrocell mobile radio channel model. Wireless Network, 12(5), 653–664.

    Article  Google Scholar 

  33. Mahmoud, S. S., Al-Qahtani, F. S., Hussain, Z. M., & Gopalakrishnan, A. (2008). Spatial and temporal statistics for the geometricalbasedhyperbolic macrocell channel model. Digital Signal Processing, 18(2), 151–167.

    Article  Google Scholar 

  34. Vázquez-Castro, M. A., Perez-Fontan, F., & Saunders, S. R. (2002). Shadowingcorrelation assessment and modeling for satellite diversity in urbanenvironments. International Journal of Satellite Communications, 20(2), 151–166.

    Google Scholar 

  35. Saunders, S. R., & Evans, B. G. (1996). Physical model of shadowing probabilityfor land mobile satellite propagation. Electronics Letters, 32(17), 1548–1549.

    Article  Google Scholar 

  36. Tzaras, C., Evans, B. G., & Saunders, S. R. (1998). Physical-statistical analysisof land mobile-satellite channel. Electronics Letters, 34(13), 1355–1357.

    Article  Google Scholar 

  37. Proakis, J. (1989). Digital communications (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  38. Michailidis, E. T., Kanatas, A. G. (2011). Capacity analysis and simulation of 3-D space-time correlated HAP-MIMO channels. International Journal on Advances Telecommunications, 4(1 & 2).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Albagory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldowek, B.M., Michailidis, E.T., Albagory, Y.A. et al. Complex Envelope Second-Order Statistics in High-Altitude Platforms Communication Channels. Wireless Pers Commun 77, 2517–2535 (2014). https://doi.org/10.1007/s11277-014-1652-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1652-z

Keywords

Navigation