Skip to main content

Exploiting Internal Randomness for Privacy in Vertical Federated Learning

  • Conference paper
  • First Online:
Computer Security – ESORICS 2024 (ESORICS 2024)

Abstract

Vertical Federated Learning (VFL) is becoming a standard collaborative learning paradigm with various practical applications. Randomness is essential to enhancing privacy in VFL, but introducing too much external randomness often leads to an intolerable performance loss. Instead, as it was demonstrated for other federated learning settings, leveraging internal randomness – as provided by variational autoencoders (VAEs) –can be beneficial. However, the resulting privacy has never been quantified so far, nor has the approach been investigated for VFL.

We therefore propose a novel differential privacy (DP) estimate, denoted as distance-based empirical local differential privacy (\(\textsf{dELDP}\)). It allows us to empirically bound DP parameters of models or model components, quantifying the internal randomness with appropriate distance and sensitivity metrics. We apply \(\textsf{dELDP}\) to investigate the DP of VAEs and observe values up to \(\epsilon \approx 6.4\) and \(\delta = 2^{-32}\). Based on this, to link the \(\textsf{dELDP}\) parameters to the privacy of VAE-including VFL systems in practice, we conduct comprehensive experiments on the robustness against state-of-the-art privacy attacks. The results illustrate that the VAE system is robust against feature reconstruction attacks and outperforms other privacy-enhancing methods for VFL, especially when the adversary holds 75% of the features during label inference attacks.

Y. Sun and L. Duan—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Step 1 in Fig. 1, features of the same individual have to be aligned by the identifier. If \(\mathcal {A}\) participates in training, \(\mathcal {A}\) sees the (quasi-)identifier of every sample.

  2. 2.

    \(V(x) \in \mathbb {R} \), so \(|V(x)| = ||V(x)||_2\). The VAE parameter \(\theta \) has been trained.

  3. 3.

    We abuse the notation by letting \(\sigma _{\ell } = \sqrt{\sigma _{\ell }^{\textsf{T}}\sigma _{\ell }}\) so we have the form in the theorem.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Bai, J., Wang, W., Gomes, C.P.: Contrastively disentangled sequential variational autoencoder. In: Advances in Neural Information Processing Systems, vol. 34, pp. 10105–10118 (2021)

    Google Scholar 

  3. Bator, M.: Dataset for Sensorless Drive Diagnosis. UCI Machine Learning Repository (2015)

    Google Scholar 

  4. Bernstein, J., Wang, Y.X., Azizzadenesheli, K., Anandkumar, A.: signSGD: compressed optimisation for non-convex problems. In: International Conference on Machine Learning, pp. 560–569. PMLR (2018)

    Google Scholar 

  5. Bird, J.J., Faria, D.R., Premebida, C., Ekárt, A., Vogiatzis, G.: Look and listen: a multi-modality late fusion approach to scene classification for autonomous machines. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10380–10385. IEEE (2020)

    Google Scholar 

  6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  7. Burchard, P., Daoud, A., Dotterrer, D.: Empirical differential privacy. arXiv preprint arXiv:1910.12820 (2019)

  8. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  9. Dai, Y., et al.: Improving adversarial robustness of medical imaging systems via adding global attention noise. Comput. Biol. Med. 164, 107251 (2023)

    Article  Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Duan, Y.: Privacy without noise. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1517–1520 (2009)

    Google Scholar 

  12. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    Google Scholar 

  13. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: From local to central differential privacy via anonymity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM (2019)

    Google Scholar 

  14. Fu, C., et al.: Label inference attacks against vertical federated learning. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 1397–1414 (2022)

    Google Scholar 

  15. Geng, J., et al.: Towards general deep leakage in federated learning. arXiv preprint arXiv:2110.09074 (2021)

  16. Grining, K., Klonowski, M.: Towards extending noiseless privacy: dependent data and more practical approach. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 546–560 (2017)

    Google Scholar 

  17. Jiang, X., Zhou, X., Grossklags, J.: Comprehensive analysis of privacy leakage in vertical federated learning during prediction. Proc. Priv. Enhancing Technol. 2022(2), 263–281 (2022)

    Article  Google Scholar 

  18. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1–2), 1–210 (2021)

    Article  Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der Maaten, L.: Crypten: secure multi-party computation meets machine learning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4961–4973 (2021)

    Google Scholar 

  21. Koker, T., Mireshghallah, F., Titcombe, T., Kaissis, G.: U-noise: learnable noise masks for interpretable image segmentation. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 394–398. IEEE (2021)

    Google Scholar 

  22. Criteo dataset (2021). https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/

  23. Li, H., Lin, H., Polychroniadou, A., Tessaro, S.: LERNA: secure single-server aggregation via key-homomorphic masking. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14438, pp. 302–334. Springer, Cham (2023). https://doi.org/10.1007/978-981-99-8721-4_10

    Chapter  Google Scholar 

  24. Li, X., et al.: Opboost: a vertical federated tree boosting framework based on order-preserving desensitization. Proc. VLDB Endow. 16(2), 202–215 (2022). https://doi.org/10.14778/3565816.3565823

  25. Liu, Y., et al.: Vertical federated learning. arXiv preprint arXiv:2211.12814 (2022)

  26. Luo, X., Wu, Y., Xiao, X., Ooi, B.C.: Feature inference attack on model predictions in vertical federated learning. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 181–192. IEEE (2021)

    Google Scholar 

  27. Neumeier, M., Botsch, M., Tollkühn, A., Berberich, T.: Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 820–827. IEEE (2021)

    Google Scholar 

  28. Orekondy, T., Schiele, B., Fritz, M.: Knockoff nets: stealing functionality of black-box models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4954–4963 (2019)

    Google Scholar 

  29. Ou, W., Zeng, J., Guo, Z., Yan, W., Liu, D., Fuentes, S.: A homomorphic-encryption-based vertical federated learning scheme for rick management. Comput. Sci. Inf. Syst. 17(3), 819–834 (2020)

    Article  Google Scholar 

  30. Ranbaduge, T., Ding, M.: Differentially private vertical federated learning. arXiv preprint arXiv:2211.06782 (2022)

  31. Scheliga, D., Mäder, P., Seeland, M.: Precode-a generic model extension to prevent deep gradient leakage. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1849–1858 (2022)

    Google Scholar 

  32. Seif, M., Tandon, R., Li, M.: Wireless federated learning with local differential privacy. In: 2020 IEEE International Symposium on Information Theory (ISIT), pp. 2604–2609. IEEE (2020)

    Google Scholar 

  33. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to Bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731 (2019)

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Truex, S., Liu, L., Chow, K.H., Gursoy, M.E., Wei, W.: LDP-fed: federated learning with local differential privacy. In: Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking, pp. 61–66 (2020)

    Google Scholar 

  36. Yang, C., Wang, X., Mao, S.: Autotag: recurrent variational autoencoder for unsupervised apnea detection with RFID tags. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2018)

    Google Scholar 

  37. Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: a lightweight automl benchmark for medical image analysis. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 191–195 (2021)

    Google Scholar 

  38. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  39. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  40. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Acknowledgments

This research is funded by the European Research Center of Huawei Technologies. Asja Fischer acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. We thank anonymous reviewers for the various constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li .

Editor information

Editors and Affiliations

A Proof of Theorem 2

A Proof of Theorem 2

Here is the complete proof of the \(\textsf{dLDP}\) main theorem (Theorem 2).

Proof

We start from one-dimensional case and upgrade it to the high dimensional case. If the distance \(< \infty \), it is 1 by definition for \(x, x'\) with \(\textsf{Label} (x) = \textsf{Label} (x')\) in (8). We start from one-dimensional case and real valued \(\mu ({x}), V(x)\). Fix a label \(\ell = \textsf{Label} (x) = \textsf{Label} (x')\), The sensitivity is

$$ \varDelta _{\ell } = \max _{x, x'} (|\mu ({x}) - \mu ({x'})|) $$

We then consider the absolute value of the privacy loss for \(x, x'\):

$$\begin{aligned} \left| \ln \left( \frac{ e^{(-1/2\sigma _{1}^{2}) x^2} }{ e^{(-1/2\sigma _{2}^2) (x + \varDelta _{\ell })^2} } \right) \right| , \end{aligned}$$
(12)

where \(\sigma _{1} = ||V(x)||_2\) and \(\sigma _{2} = ||V(x')||_2\), and V() is fixed.Footnote 2

Without loss of generality, we assume \(\sigma _{1} \le \sigma _{2}\). Then we have

$$\begin{aligned} \left| \ln \left( \frac{ e^{(-1/2\sigma _1^{2}) x^2} }{ e^{(-1/2\sigma _1^2) (x + \varDelta _{\ell })^2} } \right) \right| \ge \left| \ln \left( \frac{ e^{(-1/2\sigma _1^{2}) x^2} }{ e^{(-1/2\sigma _2^2) (x + \varDelta _{\ell })^2} } \right) \right| . \end{aligned}$$
(13)

So to bound (12), we can bound the left-hand side of (13) instead, i.e., we need an \(\epsilon _1\), such that

$$\begin{aligned} \epsilon _1 \ge \left| \ln \left( \frac{ e^{(-1/2\sigma _1^{2}) x^2} }{ e^{(-1/2\sigma _1^2) (x + \varDelta _{\ell })^2} } \right) \right| = \left| \frac{1}{2\sigma _1^2} (2x\varDelta _{\ell } - \varDelta _{\ell }/2 ) \right| . \end{aligned}$$
(14)

Thus, if we iterate over all x with \(\textsf{Label} (x) = \ell \) and let

$$ \sigma _{\ell } := \min (\{\sigma _{i}\}), \sigma _{i} = V(x_i), $$

the bound for the privacy loss w.r.t. label \( \ell \) is

$$\begin{aligned} \epsilon _{\ell } \ge \left| \ln \left( \frac{ e^{(-1/2\sigma _{\ell }^{2}) x^2} }{ e^{(-1/2\sigma _{\ell }^2) (x + \varDelta _{\ell })^2} } \right) \right| = \left| \frac{-1}{2\sigma _{\ell }^2} (2x\varDelta _{\ell } - \varDelta _{\ell }/2 ) \right| \end{aligned}$$
(15)

With a similar argument in the proof of Theorem A.1 in [12], and since |x| is identical to \(|| x ||_{2}\) if \(x \in \mathbb {R} \), then we can have the relation

$$\begin{aligned} \epsilon _{\ell } = \frac{\varDelta _{\ell }}{\sigma _{\ell }} \sqrt{2\log \frac{1.25}{\delta }}. \end{aligned}$$
(16)

By taking \(\epsilon = \max (\{\epsilon _{\ell }\})\), we can conclude that Theorem 2 is correct for one-dimensional posterior sampling in VAE.

We use a convention \(\mu _{x}:=\mu (x)\). For the high dimension case, i.e., \(\mu _{x}, x, V(x) \in \mathbb {R} ^{m}\), the sensitivity is changed to

$$ \varDelta _{\ell } = \max _{x, x'} (||\mu _{x} - \mu _{x'}||_{2}). $$

Similarly, we are interested in the privacy loss w.r.t. label \(\ell \)

$$\begin{aligned} \left| \ln \left( \frac{ e^{(-1/(2\sigma _{1}^{\textsf{T}}\sigma _1)) ||x||_2^2} }{ e^{(-1/(2\sigma _{2}^{\textsf{T}}\sigma _2)) ||(x + \mu _{x} - \mu _{x'})||_2^2} } \right) \right| , \end{aligned}$$
(17)

For \(\sigma _{1} = V(x)\) and \(\sigma _{2} = V(x')\), with \(\sigma _{1}^{\textsf{T}}\sigma _1 \le \sigma _{2}^{\textsf{T}}\sigma _2\), we can have

$$\begin{aligned} \left| \ln \left( \frac{ e^{(-1/(2\sigma _{1}^{\textsf{T}}\sigma _1)) ||x||_2^2} }{ e^{(-1/(2\sigma _{2}^{\textsf{T}}\sigma _2)) ||(x + \mu _{x} - \mu _{x'})||_2^2} } \right) \right| \ge \left| \ln \left( \frac{ e^{(-1/(2\sigma _{1}^{\textsf{T}}\sigma _1)) ||x||_2^2} }{ e^{(-1/(2\sigma _{1}^{\textsf{T}}\sigma _1)) ||(x + \mu _{x} - \mu _{x'})||_2^2} } \right) \right| . \end{aligned}$$
(18)

If we assume that \(\mu _{x}-\mu _{x'}\) with the maximum norm is aligned with x (which gives the biggest denominator), we are back to the one-dimensional case, i.e., for

$$ \sigma _{\ell } = \arg \min _{\sigma _i} (\sigma _{i}^{\textsf{T}}\sigma _{i}) , $$

the bound \(\epsilon _{\ell }\) for the privacy loss must fulfill

$$\begin{aligned} \epsilon _{\ell } \ge \left| \ln \left( \frac{ e^{(-1/(2\sigma _{\ell }^{\textsf{T}}\sigma _{\ell })) ||x||_2^2} }{ e^{(-1/(2\sigma _{\ell }^{\textsf{T}}\sigma _{\ell })) (||x||_2 + \varDelta _{\ell })^2} } \right) \right| = \left| \frac{-1}{2\sigma _{\ell }^{\textsf{T}}\sigma _{\ell }} (2||x||_2\varDelta _{\ell } - \varDelta _{\ell }/2 ) \right| . \end{aligned}$$
(19)

So we have (20) in high dimension. Theorem 2 holds.Footnote 3

$$\begin{aligned} \epsilon _{\ell } = \frac{\varDelta _{\ell }}{\sqrt{\sigma _{\ell }^{\textsf{T}}\sigma _{\ell }}} \sqrt{2\log \frac{1.25}{\delta }}. \end{aligned}$$
(20)

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y. et al. (2024). Exploiting Internal Randomness for Privacy in Vertical Federated Learning. In: Garcia-Alfaro, J., Kozik, R., Choraś, M., Katsikas, S. (eds) Computer Security – ESORICS 2024. ESORICS 2024. Lecture Notes in Computer Science, vol 14983. Springer, Cham. https://doi.org/10.1007/978-3-031-70890-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70890-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70889-3

  • Online ISBN: 978-3-031-70890-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics