Skip to main content

Design and Development of a Portable Electrical Impedance Tomography System

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

Electrical impedance tomography (EIT) is a non-invasive detection technique for human tissue imaging. However, most of the current EIT systems are complex and expensive in design. In this paper, we have developed a portable and economic EIT system, which just consists of five parts, including a data acquisition card (DAQ), a power module, a signal generator, a voltage-controlled current source, and a multiplexer module. The fast Fourier transform is used to extract the amplitude of the voltage signals collected by the DAQ. The Tikhonov regularization algorithm is adopted to reconstruct the image of conductivity distribution. Experiments on a practical phantom were designed and conducted to validate the performance of the system. The results showed that the developed system has an average signal-to-noise ratio of 65 dB for measurement channels and a high imaging signal accuracy of 0.99. The conductivity distribution in the phantom was successfully reconstructed by the developed EIT system.

This work was supported by the National Natural Science Foundation of China (U1913208, 61873135) and the Chinese fundamental research funds for the central universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
Â¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, A., Boyle, A.: Electrical impedance tomography: tissue properties to image measures. IEEE Trans. Biomed. Eng. 64(11), 2494–2504 (2017)

    Article  Google Scholar 

  2. Association, J.S.: Medical electrical equipment - part 1: general requirements for basic safety and essential performance. Japanese J. Radiol. Technol. 56(11), 1332–1333 (2005)

    Google Scholar 

  3. Brandstatter, B.: Jacobian calculation for electrical impedance tomography based on the reciprocity principle. IEEE Trans. Magn. 39(3), 1309–1312 (2003)

    Article  Google Scholar 

  4. Chitturi, V., Farrukh, N.: Spatial resolution in electrical impedance tomography: a topical review. J. Electr. Bioimpedance 8(1), 66–78 (2017)

    Article  Google Scholar 

  5. Djajaputra, D.: Electrical impedance tomography: methods, history and applications. Med. Phys. 32(8), 2731 (2005)

    Google Scholar 

  6. Fan, W.R., Wang, H.X.: Maximum entropy regularization method for electrical impedance tomography combined with a normalized sensitivity map. Flow Meas. Instrum. 21(3), 277–283 (2010)

    Article  Google Scholar 

  7. Gomez-Laberge, C., Arnold, J.H., Wolf, G.K.: A unified approach for eit imaging of regional overdistension and atelectasis in acute lung injury. IEEE Trans. Med. Imaging 31(3), 834–842 (2012)

    Article  Google Scholar 

  8. Shi, X., et al.: High-precision electrical impedance tomography data acquisition system for brain imaging. IEEE Sens. J. 18(14), 5974–5984 (2018)

    Article  Google Scholar 

  9. Shi, Y., Zhang, X., Rao, Z., Wang, M., Soleimani, M.: Reduction of staircase effect with total generalized variation regularization for electrical impedance tomography. IEEE Sens. J. 19(21), 9850–9858 (2019)

    Google Scholar 

  10. Tan, C., Liu, S., Jia, J., Dong, F.: A wideband electrical impedance tomography system based on sensitive bioimpedance spectrum bandwidth. IEEE Trans. Instr. Measurement, 1–11 (2019)

    Google Scholar 

  11. Vauhkonen, M., Vadasz, D.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17(2), 285–293 (1998)

    Article  Google Scholar 

  12. Wi, H., Sohal, H., Mcewan, A.L., Woo, E.J., Oh, T.I.: Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans. Biomed. Circuits Syst. 8(1), 119–128 (2014)

    Article  Google Scholar 

  13. Wilson, A.J., Milnes, P., Waterworth, A.R., Smallwood, R.H., Brown, B.H.: Mk3.5: a modular, multi-frequency successor to the mk3a eis/eit system. Physiol. Measurement 22(1), 49–54 (2001)

    Google Scholar 

  14. Wu, Y., Jiang, D., Bardill, A., de Gelidi, S., Bayford, R., Demosthenous, A.: A high frame rate wearable eit system using active electrode asics for lung respiration and heart rate monitoring. IEEE Trans. Circuits Syst. I Regul. Pap. 65(11), 3810–3820 (2018)

    Article  Google Scholar 

  15. Yerworth, R.J., Bayford, R.H., Cusick, G., Conway, M., Holder, D.S.: Design and performance of the uclh mark 1b 64 channel electrical impedance tomography (eit) system, optimized for imaging brain function. Physiol. Meas. 23(1), 149–158 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianda Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Lu, J., Zhang, S., Yu, N., Han, J. (2021). Design and Development of a Portable Electrical Impedance Tomography System. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics