Skip to main content

Mobile Robotic Navigation System With Improved Autonomy Under Diverse Scenarios

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2020)

Abstract

Mobile robots integrate a combination of physical robotic elements for locomotion and artificial intelligence algorithms to move and explore the environment. They have the ability to react and make decisions based on the perception they receive from the environment to fulfill the assigned navigation tasks. A crucial issue in mobile robots is to address the energy consumption in the robot design strategy for prolonged autonomous operation. Therefore, the battery charge level is an input variable that is commonly monitored and evaluated at all times, in this type of robots, in order to influence the decision-making with the least user intervention, during the navigation phase. Hence, the robot is capable to complete its tasks successfully. To achieve this, a navigation approach based on a fuzzy Q-Learning architecture for decision-making in combination with a module of artificial potential fields for path planning is introduced. The exhibited behavior of a six-legged robot obtained under this approach, demonstrates the robot’s ability of moving from a starting point to a destination point, considering the need to go to the charging station or to remain static, if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arvind, C.S., Senthilnath, J.: Autonomous vehicle for obstacle detection and avoidance using reinforcement learning. In: Das, K.N., Bansal, J.C., Deep, K., Nagar, A.K., Pathipooranam, P., Naidu, R.C. (eds.) Soft Computing for Problem Solving. AISC, vol. 1048, pp. 55–66. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0035-0_5

    Chapter  Google Scholar 

  2. Zhao, Y.-X., Hao, R.-X.: Navigation and navigation algorithms. In: Yang, X.-S., Zhao, Y.-X. (eds.) Nature-Inspired Computation in Navigation and Routing Problems. STNC, pp. 19–56. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1842-3_2

    Chapter  Google Scholar 

  3. Hong, J., Tang, K., Chen, C.: Obstacle avoidance of hexapod robots using fuzzy q-learning. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6 (2017). https://doi.org/10.1109/SSCI.2017.8280907

  4. Rostami, S.M.H., Sangaiah, A.K., Wang, J., Liu, X.: Obstacle avoidance of mobile robots using modified artificial potential field algorithm. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–19 (2019). https://doi.org/10.1186/s13638-019-1396-2

    Article  Google Scholar 

  5. Huskić, G., Buck, S., Zell, A.: GeRoNa: generic robot navigation. J. Intell. Robot. Syst. 95(2), 419–442 (2018). https://doi.org/10.1007/s10846-018-0951-0

    Article  Google Scholar 

  6. Jalali, S.M.J., Hedjam, R., Khosravi, A., Heidari, A.A., Mirjalili, S., Nahavandi, S.: Autonomous robot navigation using moth-flame-based neuroevolution. In: Mirjalili, S., Faris, H., Aljarah, I. (eds.) Evolutionary Machine Learning Techniques. AIS, pp. 67–83. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9990-0_5

    Chapter  Google Scholar 

  7. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505 (1985). https://doi.org/10.1109/ROBOT.1985.1087247

  8. Kumar, A., Guha, A., Pandey, D.A.: Dynamic motion planning for autonomous wheeled robot using minimum fuzzy rule based controller with avoidance of moving obstacles. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9(1), 4192–4198 (2019). https://doi.org/10.35940/ijitee.A6114.119119

    Article  Google Scholar 

  9. López-Lozada, E.: Navegación y evasión de obstáculos con un robot móvil. Centro de Investigación en Computación IPN (2020)

    Google Scholar 

  10. Matoui, F., Boussaid, B., Metoui, B., Frej, G., Abdelkrim, M.: Path planning of a group of robots with potential field approach: decentralized architecture. IFAC-PapersOnLine 50(1), 11473–11478 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1822. https://www.sciencedirect.com/science/article/pii/S2405896317324448, 20th IFAC World Congress

    Article  Google Scholar 

  11. Pambudi, A.D., Agustinah, T., Effendi, R.: Reinforcement point and fuzzy input design of fuzzy q-learning for mobile robot navigation system. In: 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), pp. 186–191 (2019). https://doi.org/10.1109/ICAIIT.2019.8834601

  12. Park, J.W., Kwak, H.J., Kang, Y.C., Kim, D.W.: Advanced fuzzy potential field method for mobile robot obstacle avoidance. Comput. Intell. Neurosci. 2016, 1–13 (2016). https://doi.org/10.1155/2016/6047906

    Article  Google Scholar 

  13. Qian, T., Shao, C., Wang, X., Shahidehpour, M.: Deep reinforcement learning for EV charging navigation by coordinating smart grid and intelligent transportation system. IEEE Trans. Smart Grid 11(2), 1714–1723 (2020). https://doi.org/10.1109/TSG.2019.2942593

    Article  Google Scholar 

  14. Reis, D.H.D., Welfer, D., Cuadros, M.A.D.S.L., Gamarra, D.F.T.: Mobile robot navigation using an object recognition software with RGBD images and the yolo algorithm. Appl. Artif. Intell. 33(14), 1290–1305 (2019)

    Article  Google Scholar 

  15. ROBOTIS: ROBOTIS e-manual (2019). https://emanual.robotis.com/docs/en/edu/bioloid/premium/

  16. Shidujaman, M., Samani, H., Raayatpanah, M.A., Mi, H., Premachandra, C.: Towards deploying the wireless charging robots in smart environments. In: 2018 International Conference on System Science and Engineering (ICSSE), pp. 1–6 (2018). https://doi.org/10.1109/ICSSE.2018.8520063

  17. Shuhuan, W., Xueheng, H., Zhen, L., Keung, L.H., Fuchun, S., Bin, F.: NAO robot obstacle avoidance based on fuzzy q-learning. Ind. Robot: Int. J. Robot. Res. Appl. 2019 (2019). https://doi.org/10.1108/IR-01-2019-0002

  18. Singh, N.H., Devi, S.S., Thongam, K.: Modified artificial potential field approaches for mobile robot navigation in unknown environments. In: Das, K.N., Bansal, J.C., Deep, K., Nagar, A.K., Pathipooranam, P., Naidu, R.C. (eds.) Soft Computing for Problem Solving. AISC, vol. 1048, pp. 319–328. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0035-0_25

    Chapter  Google Scholar 

  19. Subbash, P., Chong, K.T.: Adaptive network fuzzy inference system based navigation controller for mobile robot. Front. Inf. Technol. Electron. Eng. 20(2), 141–151 (2019). https://doi.org/10.1631/FITEE.1700206

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the support to develop this project by the Instituto Politécnico Nacional (IPN) and Secretaría de Investigación y Posgrado (SIP-IPN) under the projects SIP20180943, SIP20190007, SIP20195835, SIP20200630, SIP20201397 and SIP20200569, also to Consejo Nacional de Ciencia y Tecnología (CONACYT-México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth López-Lozada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Lozada, E., Rubio-Espino, E., Sossa-Azuela, JH., Ponce-Ponce, V.H. (2020). Mobile Robotic Navigation System With Improved Autonomy Under Diverse Scenarios. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Computational Intelligence. MICAI 2020. Lecture Notes in Computer Science(), vol 12469. Springer, Cham. https://doi.org/10.1007/978-3-030-60887-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60887-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60886-6

  • Online ISBN: 978-3-030-60887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics