Skip to main content

T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitative techniques require long acquisition times and therefore cannot be straightforwardly translated to in utero brain developmental studies. In clinical fetal brain magnetic resonance imaging routine, 2D low-resolution T2-weighted fast spin echo sequences are used to minimize the effects of unpredictable fetal motion during acquisition. As super-resolution techniques make it possible to reconstruct a 3D high-resolution volume of the fetal brain from clinical low-resolution images, their combination with quantitative acquisition schemes could provide fast and accurate T2 measurements. In this context, the present work demonstrates the feasibility of using super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at every echo time and subsequent T2 mapping of samples whose relaxometric properties are close to those of fetal brain tissue. We demonstrate that this approach is highly repeatable, accurate and robust when using six echo times (total acquisition time under 9 minutes) as compared to gold-standard single-echo spin echo sequences (several hours for one single 2D slice).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd Almajeed, A., Adamsbaum, C., Langevin, F.: Myelin characterization of fetal brain with mono-point estimated T1-maps. Magn. Reson. Imaging 22(4), 565–572 (2004). https://doi.org/10/frdp45

    Article  Google Scholar 

  2. Bano, W., et al.: Model-based super-resolution reconstruction of T2 maps. Magn. Reson. Med. 83(3), 906–919 (2020). https://doi.org/10/gf85n4

    Article  Google Scholar 

  3. Blazejewska, A.I., et al.: 3D in utero quantification of T2* relaxation times in human fetal brain tissues for age optimized structural and functional MRI. Magn. Reson. Med. 78(3), 909–916 (2017). https://doi.org/10/gf2n9z

    Article  Google Scholar 

  4. Chen, L.W., Wang, S.T., Huang, C.C., Tu, Y.F., Tsai, Y.S.: T2 relaxometry MRI predicts cerebral palsy in preterm infants. Am. J. Neuroradiol. 39(3), 563–568 (2018). https://doi.org/10/gdcz66

    Article  Google Scholar 

  5. Deoni, S.C.: Quantitative relaxometry of the brain. Top. Magn. Reson. Imaging 21(2), 101–113 (2010). https://doi.org/10/fj3m42

    Article  Google Scholar 

  6. Dingwall, N., et al.: T2 relaxometry in the extremely-preterm brain at adolescence. Magn. Reson. Imaging 34(4), 508–514 (2016). https://doi.org/10/ggb9qn

    Article  Google Scholar 

  7. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020). https://doi.org/10/ggdnsm

    Article  Google Scholar 

  8. Gholipour, A., et al.: Fetal MRI: a technical update with educational aspirations. Concepts Magn. Reson. Part A Bridg. Educ. Res. 43(6), 237–266 (2014). https://doi.org/10/gf4bc6

    Article  Google Scholar 

  9. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010). https://doi.org/10/b2xmdp

    Article  Google Scholar 

  10. Hagmann, C.F., et al.: T2 at MR imaging is an objective quantitative measure of cerebral white matter signal intensity abnormality in preterm infants at term-equivalent age. Radiology 252(1), 209–217 (2009). https://doi.org/10/bqkd9r

    Article  Google Scholar 

  11. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015). https://doi.org/10/f3svr5

    Article  Google Scholar 

  12. Keenan, K.E., et al.: Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom. In: Proceedings of the 24th Annual Meeting of ISMRM, Singapore (2016). Program number 3290

    Google Scholar 

  13. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.: Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76(5), 1574–1581 (2016). https://doi.org/10/f9f64r

    Article  Google Scholar 

  14. Lajous, H., Ledoux, J.B., Hilbert, T., van Heeswijk, R.B., Meritxell, B.C.: Dataset T2 mapping from super-resolution-reconstructed clinical fast spin echo magnetic resonance acquisitions (2020). https://doi.org/10.5281/zenodo.3931812

  15. Leppert, I.R., et al.: T2 relaxometry of normal pediatric brain development. J. Magn. Reson. Imaging 29(2), 258–267 (2009). https://doi.org/10/c77mvm

    Article  Google Scholar 

  16. McPhee, K.C., Wilman, A.H.: Limitations of skipping echoes for exponential T2 fitting. J. Magn. Reson. Imaging 48(5), 1432–1440 (2018). https://doi.org/10/ggdj43

    Article  Google Scholar 

  17. Milford, D., Rosbach, N., Bendszus, M., Heiland, S.: Mono-exponential fitting in T2-relaxometry: relevance of offset and first echo. PLoS ONE 10, e0145255 (2015). https://doi.org/10/gfc68d

    Article  Google Scholar 

  18. Nossin-Manor, R., et al.: Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T1 imaging. NeuroImage 64, 505–516 (2013). https://doi.org/10/f4jgtg

    Article  Google Scholar 

  19. Rousseau, F., Kim, K., Studholme, C., Koob, M., Dietemann, J.-L.: On super-resolution for fetal brain MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_44

  20. Schneider, J., et al.: Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: a serial imaging study on preterm infants. Am. J. Neuroradiol. 37(1), 155–162 (2016). https://doi.org/10/f7489d

    Article  Google Scholar 

  21. Tourbier, S., Bresson, X., Hagmann, P., Meuli, R., Bach Cuadra, M.: sebastientourbier/mialsuperresolutiontoolkit: MIAL Super-Resolution Toolkit v1.0 (2019). https://doi.org/10.5281/zenodo.2598448

  22. Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.P., Meuli, R., Bach Cuadra, M.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118 (2015). https://doi.org/10/f7p5zx

  23. Travis, K.E., et al.: More than myelin: probing white matter differences in prematurity with quantitative T1 and diffusion MRI. NeuroImage Clin. 22, 101756 (2019). https://doi.org/10/ggnr3d

    Article  Google Scholar 

  24. Vasylechko, S., et al.: T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method. Magn. Reson. Med. 73(5), 1795–1802 (2015). https://doi.org/10/gf2pbh

    Article  Google Scholar 

  25. Yarnykh, V.L., Prihod’ko, I.Y., Savelov, A.A., Korostyshevskaya, A.M.: Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping. Am. J. Neuroradiol. 39(7), 1341–1348 (2018). https://doi.org/10/gdv9nf

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation through grants 141283 and 182602, the Centre d’Imagerie Biomédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV and EPFL, the Leenaards and Jeantet Foundations, and the Swiss Heart Foundation. The authors would like to thank Yasser Alemán-Gómez for his help in handling nifti images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Lajous .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 186 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lajous, H. et al. (2020). T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics