Na,K-ATPase as a Signal Transducer
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ABSTRACT: Recent studies have indicated that Na,K-ATPase may, in addition to
being the key regulator of intracellular Na* and K* concentration, act as a sig-
nal transducer. Despite extensive research, the biological role for ouabain, a
natural ligand of Na,K-ATPase, is not well understood. We have reported that
exposure of rat proximal tubular cells (RPTC) to doses of ouabain that inhibit
the Na,K-ATPase activity by less than 50% (10 nM — 500 uM), will induce in-
tracellular [Caz+]i oscillations and that this calcium signal leads to activation
of the transcription factor NF-kB. The ouabain-induced calcium oscillations
were blocked by an inhibitor of the IP; receptors but not by phospholipase C
inhibitors nor by cellular depletion of IP3, suggesting that the calcium signal is
not due to phospholipase C—mediated IP; release. Fluorescence resonance en-
ergy transfer (FRET) studies suggested a close proximity between the Na,K-
ATPase and IP; receptor. Our findings demonstrate a novel principle for calci-
um signaling via Na,K-ATPase.
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INTRODUCTION

Several recent studies suggest that in addition to its key role as a regulator of cell
ion homeostasis, Na,K-ATPase may act as a signal transducer and activator of gene
transcription.! ™ To further elucidate this role for Na,K-ATPase, we have investigat-
ed intracellular signaling pathways activated by the ouabain/Na,K-ATPase complex.
Here we report that ouabain-bound Na,K-ATPase can induce intracellular calcium
oscillation. The majority of results presented in this review article have been pub-
lished previously by Aizman et al.> Calcium (Ca?*) is involved in the regulation of
such diverse cellular processes as gene transcription, cell adhesion, cell growth, pro-
liferation, and apoptosis.®” Intracellular Ca2* [Ca2+]i oscillation may be the most
versatile of all intracellular signals, since the cell can decode differences in the am-
plitude and frequency of these oscillations and translate them into specific cellular
responses.g’9 Low-frequency Ca®* oscillations will specifically activate the transcrip-
tion factor NF-kB by triggering proteolysis of the inhibitory subunit, IxB.!%!! NF-xB
plays an important role in regulation of cell growth, proliferation, and apoptosis.12
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METHODS

The majority of experiments were performed on primary cultures of rat proximal
tubule cells (PTC), obtained from kidneys of 20-day-old Sprague-Dawley rats.
These cells grow as clusters after 2-3 days in culture. At that time, they have a well-
preserved phenotype and display the typical morphology of epithelial cells from
proximal tubule. They have, as is typical for all renal tubule cells, a high level of
Na,K-ATPase. In addition, rat PTC are particularly well suited for Ca’* measure-
ments with Fura-2AM.!3 Rat Na,K-ATPase has a relatively low ouabain sensitivity
and full inhibition of the enzyme requires millimolar concentrations of ouabain.!#
Changes in Ca2* concentration induced by ouabain/Na,K-ATPase complex were
monitored by ratiometric fluorescent microscopy with Ca**-sensitive fluorophore,
Fura-2AM. Frequency analysis was applied to determine specificity of the Ca2* sig-
nal. To investigate the biological relevance of induced Ca®* signal, we studied acti-
vation of the Ca*-dependent transcriptional factor, NF-xB. The interaction of Na,K-
ATPase with IP5R and its role in the generation of Ca>* signals were explored by co-
immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis.
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FIGURE 1. Effect of ouabain on [Ca?*]; in primary culture of RPT cells. (a) Na,K-
ATPase activity measured as ouabain-sensitive 8'Rb* uptake (mean + S.E.). (b) (Upper panel)
Representative single cell [Ca2+]i tracings in response to indicated ouabain concentrations. At
time O (arrow), cells were exposed to ouabain concentrations ranging from 50 uM to 2 mM
and recordings were made every 30 s. Arbitrary units (a.u.) represent ratio values correspond-
ing to [Ca2+]i changes. (Lower panel) Spectral analysis of ouabain-induced [Ca2+]i oscilla-
tions. Each plot corresponds to the single cell recording above. [Ca*]; oscillation periodicity
(T) of each ouabain concentration was calculated as mean + S.E. from approximately 50 cells
from at least three separate experiments. (¢) Representative single cell [Ca®*]; tracings ob-
served in cells superfused for 3 hours at a slow rate (100 pL/min) with nanomolar ouabain.
(From Aizman ef al.! With permission from the National Academy of Sciences.)
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RESULTS AND DISCUSSION

When PTC were exposed to ouabain in doses resulting in only partial Na,K-
ATPase inhibition (10 nM-250 uM) (F1G. 1a), we observed slow, regular [Ca2+]i 0s-
cillations (F1G. 1b). This response was detected in approximately one-third of the
cells and was generally initiated in one cell at the periphery of a cell cluster and then
propagated to neighboring cells. To determine to what extent the oscillations pos-
sessed an intrinsic regularity, we performed power spectrum analysis. Power spec-
trum analysis revealed a periodicity between 5.4 £ 0.7 min for 50 mM ouabain and
4.4 £+ 0.4 min for 250 mM ouabain (FI1G. 1b). The amplitude of the oscillations for
all partially inhibitory ouabain doses was in the same range. A dose of 2 mM oua-
bain, which causes complete inhibition of rat Na,K-ATPase activity, did not cause
oscillations, but resulted in a sustained increase in [Caz+]i (F1G. 1b).

It may be argued that Ca®* oscillations were demonstrated in response to pharma-
cological doses of ouabain. /n vivo, circulating levels of ouabain rarely exceed the
picomolar-to-nanomolar range. However, it should be taken into account that oua-
bain binding to Na,K-ATPase is tight and long lasting—the “on-rate” for ouabain is
~20 times faster than the “off-rate.”! Thus, per time unit, more ouabain molecules
associate than dissociate with Na,K-ATPase. In tissue exposed to circulating blood,
the number of Na,K-ATPase molecules occupied by ouabain will approach an equi-
librium exponentially over time. In support of this, we demonstrated that when PTC
cells were superfused with solutions containing ouabain in nanomolar range for
more than an hour, Ca2* oscillations were observed in 5% of the cells, while 30%
responded at 250 UM ouabain (FIG. 1c¢). It should also be taken into account that the
numbers of ouabain molecules bound to Na,K-ATPase must exceed a threshold to
trigger a global cellular Ca>* response.

To examine whether the Ca2* oscillations were secondary to inhibition of Na,K-
ATPase activity, we studied the effect of lowering extracellular K* concentration.
Both ouabain and graded reduction of extracellular Kt evoked similar, dose-
dependent increases in intracellular Na ([Na'];), indicating that both ouabain and
low K* inhibited Na,K-ATPase activity to the same extent. However, lowering extra-
cellular K* did not trigger calcium oscillations.’

The next set of studies was performed to elucidate the molecular mechanism of
Ca2* oscillations induced by the ouabain/Na,K-ATPase complex. In cells where the
intracellular CaZ* stores of the endoplasmic reticulum were depleted by preincuba-
tion with the sarco-endoplasmic reticulum ATPase (SERCA) pump inhibitor (20 uM
cyclopiazonic acid), ouabain failed to induce CaZ* oscillations. Regulated Ca®* re-
lease from intracellular stores occurs via InsP;Rs or via ryanodine receptors (RyR).
Stimulation of RyR with a low dose of ryanodine (10 uM) did not have any effect on
[Ca2+]i. Inhibition of RyR by a higher dose of ryanodine (100 uM) did not prevent
ouabain-induced [Ca2+]i oscillations.> From this we conclude that RyR are not in-
volved in ouabain-induced Ca®* oscillations and that functioning RyR are of little,
if any, importance in RPT cells. In contrast, IP; receptor inhibition with membrane-
permeable IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) completely abol-
ished the oscillations,® indicating that Ca®* release via IP5 receptor played a major
role in CaZ* oscillation induced by ouabain. Although 2-APB is the most specific
membrane-permeable IP;R inhibitor available today, it can also affect Ca%* release—
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activated Ca2* channels (CRAC).19 InsP3Rs are, either directly or via an anchor pro-
tein, coupled to CRAC channels, the function of which is essential for the mainte-
nance of Ca?* oscillations.!”!® We conclude from these studies that release of
calcium from intracellular stores via IP5R is an essential contribution to the ouabain/
Na,K-ATPase—induced calcium oscillations.

We also found that calcium-free media abolished ouabain-induced Ca®* oscilla-
tions. Influx of CaZ* from the extracellular space may, at least partially, occur via L-
type voltage gated Ca2* (L-VGC) channels, which are to a limited extent expressed
in RPT cells!® Two inhibitors of L-VGC channels, nifedipine and verapamil, both
abolished the ouabain-induced Ca2* oscillations, suggesting that L-VGC channels
are involved in the generation of CaZ* oscillations. However, both these inhibitors
also exhibit significant antioxidant activity?? and there is some evidence that they
may also inhibit CRAC channels.?! Therefore, it is possible that the observed inhi-
bition of Ca®* oscillations by nifedipine and verapamil is not solely a result of their
effect on L-VGCC.

Since Na,K-ATPase is an electrogenic pump, it cannot be excluded that, even in
epithelial cells, partial inhibition of its activity by ouabain may lead to some mem-
brane depolarization and therefore may activate L-VGCC. Depolarization of cell
membrane by the depolarizing agent, 4-aminopyridine (4-AP) or high extracellular
K* however, did not cause [Ca®*]; oscillations.> Activation of L-VGCC by BayK
8644 (an L-type voltage-gated Ca>* channel agonist; Sigma) causes a slow increase
in intracellular Ca* but no oscillations. Taken together, these data show that activa-
tion of L-VGCC alone is not sufficient to trigger ouabain-induced Ca2* oscillations.

The classical way to activate IP;Rs involves increased generation of IP5, trig-
gered by ligand/G-protein coupled receptor interaction and PLC activation. Preincu-
bation of cells with a PLC inhibitor, U73122, did not prevent ouabain-induced
oscillations (unpublished observation). To test the efficiency of PLC inhibition, cells
were also exposed to bradykinin, a well-known activator of phospholipase C (PLC)
and InsP; production. Preincubation of RPT cells with a PLC inhibitor abolished
bradykinin-induced Ca?* transients. Taken together, these findings indicate that ac-
tivation of PLC and subsequent increased generation of IP5 are not required for in-
duction of Ca®* oscillations by ouabain/Na,K-ATPase complex.

A close spatial proximity between plasma membrane and endoplasmic reticulum
has been demonstrated in renal epithelial cells.?? It was therefore reasonable to hy-
pothesize that IP;R may interact with Na,K-ATPase. In ongoing studies we have
found that Na,K-ATPase co-localizes with two subtypes of IP;R (types 2 and 3). To
further investigate the spatial relationship between Na,K-ATPase and InsP3;R we are
now using FRET, which provides resolution in the nanometer scale. The study is per-
formed on COS cells, stably transfected with green fluorescent protein (GFP)-
tagged rat Na,K-ATPase catalytic ol subunit. Na,K-ATPase o-subunit fused to GFP
on the NH,-terminus (NKA-GFP) serves as a FRET donor. IP;R types 2 and 3 la-
beled with Cy3-conjugated secondary antibody serve as FRET acceptor. According
to the spectral properties, the combination of GFP and Cy3 allows detection of FRET
at a distance up to approximately 12 nm.23 So far we have observed a significant
FRET effect between Na,K-ATPase and IP;R types 2 and 3, indicating that Na,K-
ATPase and InsP3R are separated by less than ~12 nm. Preincubation of cells with
ouabain appears to enhance Na,K-ATPase/IP;R FRET efficiency.
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FIGURE 2. Effect of [Caz’f]i oscillations on ouabain-induced NF-xB activation. (a) A
cell cluster was treated with 250 uM ouabain (arrow) and individual cells were analyzed for
both [CaZ*]; and NF-kB immunofluorescence. Upper panel shows a typical nonoscillating
[Ca2+]i response (/eft) and its corresponding cellular NF-xB localization (right). Lower pan-
el shows a typical oscillating [Ca?*]; response (left) and its corresponding cellular NF-xB
localization (right). (b) Semiquantitative analysis of NF-kB immunofluorescence signal
showing translocation from cytosol to nucleus in cells exposed to 250 UM ouabain, in the
absence or presence of 50 uM nifedipine. Values are mean £+ S.E. 50—150 cells. Represen-
tative Western blot and densitometric analysis of 3—5 experiments showing changes in (c)
nuclear NF-xB protein in cells exposed to 250 UM ouabain in the presence or absence of
nifedipine. (From Aizman ef al.! With permission from the National Academy of Sciences.)
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Since both Na,K-ATPase and IP;R are anchored by cytoskeleton proteins,?*23 it

was reasonable to expect that perturbation of the actin cytoskeleton network may in-
fluence the physical and/or functional Na,K-ATPase/IP3R interaction. In fact, actin
cytoskeleton hyperpolymerization or depolymerization by jasplakinolide (JP) or cy-
tochalasin D (CytD), respectively,2® abolished ouabain-induced Ca2* oscillations.

We suggested a model for Ca2* signaling triggered by ouabain/Na,K-ATPase
complex. According to this model Na,K-ATPase and IP;R interact with each other
and this interaction requires an intact actin cytoskeleton. Ouabain, via allosteric
changes in Na,K-ATPase, enhances the Na,K-ATPase/IP;R interaction and triggers
the frequency of the CaZ* oscillations. Perturbations in actin cytoskeleton disrupt
Na,K-ATPase/IP;R interaction and thereby abolish Ca2* oscillations. Ouabain-
induced Ca2* oscillations also require several permissive factors, such as Ca2* influx
via voltage-gated Ca?* channels and/or CRAC channels.

The involvement of signaling cascades initiated by ouabain/Na,K-ATPase com-
plex in the regulation of cell growth, proliferation and apoptosis have been previous-
ly suggested by several groups.*?7-28 NF-xB is involved in the transcriptional
regulation of many genes related to growth, differentiation, and apoptosis.'? Addi-
tionally, NF-kB activation has been shown to be sensitive to and preferentially acti-
vated by slow Ca2* oscillations.!? This prompted us to study the effect of ouabain-
induced Ca®* oscillations on the activity of the transcription factor NF-kB. In un-
stimulated cells, NF-xB is predominantly located in the cytoplasm in association
with inhibitory peptide IxB. Upon activation, NF-kB translocates to the nucleus.!?
The ratio between NF-KB immunosignal from the nucleus and from the cytosol has
been semiquantitatively estimated (F1G. 2b). NF-kB nuclear staining was increased
in cells that responded to ouabain with typical [Ca2+]i oscillations (FIG. 2a). In cells
where no effect of ouabain on [Ca?*]; was detected, we did not observe any signifi-
cant effect on the nuclear NF-kB immunosignals.> Subcellular fractionation and im-
munoblot studies the confirmed cytosolic—nuclear redistribution of NF-xB signals in
all cells exposed to ouabain doses sufficient to trigger calcium oscillations (FI1G. 2¢).
Interestingly, cells exposed to an ouabain concentration (2 mM) that caused a sus-
tained increase in [Ca2+]i exhibited a lesser degree of NF-kB activation.>

SUMMARY

We have demonstrated a novel role for Na,K-ATPase as a signal transducer in-
volved in transcriptional regulation in mammalian cells. Taking into account the
ubiquitous expression of Na,K-ATPase, it will be important to identify the cell-
specific effects of this signaling. It will also be important to explore how the function
of Na,K-ATPase as the key regulator of intracellular Na* and K* homeostasis may
interrelate to its function as a signal transducer.
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