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A B S T R A C T

The concentration of estrogens in the body fluids of women is highly variable, due to the menstrual cycle,
circadian oscillations, and other physiological and pathological causes. To date, only the cyclic fluctuations of
the principal estrogens (estradiol and estrone) have been studied, with limited outcome of general significance.
Aim of the present study was to examine in detail the cyclic variability of a wide estrogens’ panel and to interpret
it by multivariate statistics.

Four estrogens (17α-estradiol, 17β-estradiol, estrone, estriol) and eleven of their metabolites (4-methox-
yestrone, 2-methoxyestrone, 16α-hydroxyestrone, 4-hydroxyestrone, 2-hydroxyestrone, 4-methoxyestradiol, 2-
methoxyestradiol, 4-hydroxyestradiol, 2-hydroxyestradiol, estriol, 16-epiestriol, and 17-epiestriol) were de-
termined in urine by a gas chromatography – mass spectrometry method, which was developed by design of
experiments and fully validated according to ISO 17025 requirements. Then, urine samples collected every
morning for a complete menstrual cycle from 9 female volunteers aged 24–35 years (1 parous) were analysed.

The resulting three-dimensional data (subjects× days× estrogens) were interpreted using several statistical
tools. Parallel Factor Analysis compared the estrogen profiles in order to explore the cyclic and inter-individual
variability of each analyte. Principal Component Analysis (PCA) provided clear separation of the sampling days
along the cycle, allowing discrimination among the luteal, ovulation, and follicular phases. The scores obtained
from PCA were used to build a Linear Discriminant Analysis classification model which enhanced the recognition
of the three cycle’s phases, yielding an overall classification non-error rate equal to 90%. These statistical models
may find prospective application in fertility studies and the investigation of endocrinology disorders and other
hormone-dependent diseases.

1. Introduction

Estrogens play a variety of crucial roles in the menstrual cycle and
throughout the entire life of women. The menstrual cycle is the cyclic
orderly sloughing of the uterine lining, in response to the interactions of
hormones produced by the hypothalamus, pituitary and ovaries [1].
The duration of a complete menstrual cycle spans from 21 to 35 days,
with an average of 28 days. The menstrual cycle is usually divided into
the follicular and the luteal phases. The follicular phase begins from the
first day of menses until ovulation, which typically occurs around the
14th day. After ovulation, the luteal phase starts and lasts 14 further
days, on average [1–4]. Lifestyle factors, such as smoking, physical
activity and alcohol consumption may affect the phases of the men-
strual cycle [5]. Abnormally high and low values of body mass index

(BMI) are frequently associated to menstrual dysfunctions, due to the
correlation of the estrogens metabolism with the nutrition and dietary
composition and the role of adipose tissue in aromatase conversion [6].
The natural rhythmic fluctuations of the estrogens that control the
menstrual cycle influence the fertility [7–11] and various physical and
psychological conditions [3,12–15].

An important methodological issue with the study of estrogens data
is how to align the cycles of the different women to allow comparisons
[9]. In the Nurses’ Health Study II, this issue was overcome by sampling
all the women during their luteal phase [16]. The main problem for this
approach is the difficult recognition of the menstrual phase in women
with irregular periods. To date, only the variation of estrone or estradiol
levels were evaluated across complete menstrual cycles, possibly be-
cause these are the main estrogens circulating in the human body,
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together with estriol [17]. A comprehensive evaluation of an extended
estrogenic profile was previously proposed with the purposes of de-
tecting any possible correlations between estrogens and breast cancer
risk: the urinary estrogenic profile of 15 free and conjugated estrogens
was collected from a large cohort of pre-menopausal women and ret-
rospectively interpreted, on the basis of their clinical history [16] Ex-
tended estrogenic profiles were also correlated with terminal duct
lobular unit involution, a marker of increased breast cancer risk [18]. In
parallel studies on post-menopausal women, the determination of blood
estrogens and metabolites revealed a lower risk of breast cancer for the
subjects with high levels of the hydroxylated 2-pathway metabolites
[19,20].

The estrogen determinations most frequently reported in the lit-
erature are conducted on either urine or oral fluid, using radio-
immunoassay (RIA), enzyme immunoassay (EIA), or enzyme-linked
immunosorbent assay (ELISA) [22]. While these immunoassay methods
provide high throughput, efficiency, ease of use, fast turnaround time
and low cost, they frequently do not have the necessary specificity and
sensitivity to accurately measure low estrogen concentrations, due to
cross-reactivity with structurally similar substances [21,22]. This limits
the chance of estrogen profiling during the follicular and late luteal
phases, when their concentration level is particularly low. In contrast,
the hyphenation of chromatographic and mass spectrometric (MS)
techniques provides the simultaneous dosage of both parent estrogens
and their metabolites ensuring at the same time extremely low detec-
tion limits [21–23]. Liquid chromatography (LC) and gas chromato-
graphy (GC) coupled with MS are consistently used in multi-analyte
profiling, with LC-MS increasingly favored for its straightforward ap-
plicability, even if GC-MS has traditionally dominated the analysis of
estrogens and other endogenous steroids for years. Actually, GC-MS
provides broad steroids profiles after a single derivatization step,
achieving high specificity, good sensitivity, and limited matrix effects
[23]. In general, the advantage of high-resolution separation is in-
creasingly valued in targeted and untargeted metabolomics to obtain
complete urinary endogenous steroid profiles that include estrogens,
androgens, corticoids, and progesterone [24–26]. Multi-residual GC-MS
methods for the detection of wide estrogen profiles have occasionally
been developed in the past [27–30], even if the laborious sample pre-
paration steps somehow contributed to the progressive decline of GC-
MS procedures in favor of LC-MS.

In the present study, 15 estrogens were monitored in nine women
along one menstrual period using an optimized and fully validated GC-
MS method. The collected data were used to build a preliminary mul-
tivariate model shaping the menstrual cycle, which may represent a
valuable tool in the study of fertility issues, as well as in the screening
and evaluation of various pathological conditions, including en-
docrinology disorders and hormone-dependent cancers.

2. Material and methods

2.1. Chemicals and reagents

4-methoxyestrone, 4-methoxyestradiol, 2-methoxyestrone, 16α-hy-
droxyestrone, 2-methoxyestradiol, 2-hydroxyestradiol, 4-hydro-
xyestrone, 4-hydroxyestradiol, 17-epiestriol and 16-epiestriol were
purchased from Toronto Research Chemical Inc. (Toronto, ON,
Canada). 17α-estradiol, 17β-estradiol, hexane, methanol, ethyl acetate,
ascorbic acid, ammonium iodide, tert-butyl methyl ether (TBME), di-
thioerythritol and N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA), β-glucuronidase/arylsulfatase (from Helix pomatia) mixture,
were provided by Sigma-Aldrich (Milan, Italy). Estrone, 2-hydro-
xyestrone, estrone 3-(β-D-glucuronide) sodium salt, estriol, estrone-d4
and 17β-estradiol-d4 were supplied by LGC Promochem SRL (Milan,
Italy). β-glucuronidase from Escherichia coli was purchased from Roche
Life Science (Indianapolis, IN, USA). Ultra-pure water was obtained
from a Milli-Q® UF-Plus apparatus (Millipore, Bedford, MA, USA). C-18

endcapped Solid-Phase Extraction (SPE) cartridges were provided by
UCT Technologies (Bristol, PA, USA) and estrone 3-sulfate sodium salt
was supplied by Steraloids Inc. (Newport, RI, USA).

All stock standard solutions were prepared in methanol at 1mg/mL
and stored at –20 °C until use. Working solutions containing a mixture
of all analytes were prepared at the final concentrations of 20 µg/mL
and 1 µg/mL by appropriate dilution with methanol. Estrone-d4 and
17β-estradiol-d4 were used as isotopically labelled internal standards
for quantitation and were added from separate methanol working so-
lutions at the final concentrations of 100 µg/mL and 50 µg/mL, re-
spectively.

2.2. Sample preparation

The sample preparation conditions were optimized after design of
experiments [31], described elsewhere [32]. The urine sample (6mL)
was fortified with both 17β-estradiol-d4 and estrone-d4 internal stan-
dard solutions at the final concentrations of 50 ng/mL and 25 ng/mL.
After that, the pH was checked and, if necessary, some drops of HCl
were added to attain a final pH of 5.5. 2 mL acetate buffer 1.1M (pH
5.5) and 50 µL ascorbic acid 1M were added, too. Ascorbic acid was
necessary to protect the labile catechol groups and prevent their de-
gradation [27,29]. A deconjugation step, useful to transform the glu-
curonide and sulphate conjugated estrogens [2,17,33] into the free
form, was executed by adding 20 µL of β-glucuronidase/arylsulfatase
mixture to the urine samples, which were then incubated at 37 °C
overnight. The next morning, 100 µL β-glucuronidase from Escherichia
Coli was added, together with 50 µL of ascorbic acid solution and the
final enzymatic deconjugation of the remaining glucuronide estrogens
was carried out for 1 h at 58 °C. Once the hydrolysis was completed, the
mixture was cooled to room temperature and 2mL of 0.1M carbonate
buffer (pH 9) with some drops of NaOH 1M were added, to obtain a
final pH > 9. Liquid-liquid extraction (LLE) was performed by adding
5mL of ethyl acetate and hexane (2:3 v/v) mixture to the sample, which
was subsequently shaken in a vortex multimixer (Tecnovetro, Monza,
Italy) for 5min and subjected to centrifugation (model Megafuge 1.0
Heraeus; ASHI, Milan, Italy) at 4000 rpm for 5min. The extraction
process was repeated twice, and the two combined organic phases were
transferred into a vial and evaporated to dryness under a gentle stream
of nitrogen at 40 °C using a Techne Sample Concentrator (Barloworld
Scientific, Stone, UK). The dried residue was reconstituted and deri-
vatized for 1 h at 70 °C by adding 50 µL of MSTFA/NH4I/dithioery-
thritol (1.000:2:4 v/w/w) solution. A 2 µL aliquot was injected into the
GC/MS system in the splitless mode.

2.3. GC-MS analysis

All analyses were conducted on an Agilent 6890 N Network GC
System interfaced to a 5975 inert XL Mass Selective Detector (Agilent
Technologies, Milan, Italy). The GC was equipped with a J&W Scientific
HP-1 17.0 m×200 µm (i.d.)× 0.11 µm (f.t.) capillary column. The
helium gas carrier was employed at a constant pressure of 23.25 psi and
1.1 mL/min initial flow. The GC oven temperature was initially set at
200 °C, held for 2min, then was raised to 225 °C with an 8 °C/min ramp.
Then, the temperature was increased to 234 °C with a 3 °C/min heating
rate, held for 3min and raised again to 245 °C with a 3 °C/min ramp.
The final oven temperature of 315 °C was reached with a 40 °C/min
heating rate and held for 3min. The total run time was 19.54min. The
GC injector and transfer line were maintained at the temperature of
280 °C. Trimethylsilyl derivatives of the analytes were ionized by
electron ionization (EI) at 70 eV. Data were acquired in the selected ion
monitoring (SIM) mode at a dwell time of 20ms [32,34].

2.4. Method validation

The analytical method was validated according to the Eurachem
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criteria and recommendations [35]: linearity range, selectivity, speci-
ficity, limit of detection (LOD), limit of quantitation (LOQ), intra-assay
precision and accuracy, repeatability, matrix effect, extraction re-
covery, and carry-over were determined. A pool of urines collected
from healthy male volunteers (laboratory personnel), was negativized
by solid-phase extraction using a C-18 end-capped cartridge previously
conditioned with 2-propanol and ultra-pure water. The absence of any
detectable trace of estrogens was verified. The resulting sample was
used as blank urine and spiked with the standard solutions within the
validation procedure. Full details about the validation of the analytical
method are reported in a dedicated publication [32].

2.4.1. Linearity, LOD, LOQ
The calibration was performed by internal standardization using the

least squares regression method from five replicate analyses for each
data-point at six concentration levels in the range 1–50 ng/mL.
Linearity was evaluated by lack-of-fit test, analysis of variance
(ANOVA) test, Mandel's test, and relative standard deviation (RSD) of
the slope, according to the approach described by Desharnais et al.
[36]. Moreover, the residual plots and the deviation from back-calcu-
lated concentrations were examined. When heteroscedastic distribution
of data-points was observed, a weighting factor of x−1 or x−2 was
employed, depending on the rate of the variance increase with the
concentration (linear or quadratic).

LOD and LOQ were estimated for all the target analytes using the
Hubaux-Vos’ algorithm at a significant level of 95% [37] from the 30
data-points collected to build the calibration lines. To confirm the
correct estimation further, the calculated LOD and LOQ values were
experimentally verified with blank samples spiked at concentrations
close to the detectable and quantifiable values, respectively. In the
operational practice, LOQ values were assumed at the lower level of the
calibration curves.

2.4.2. Repeatability and accuracy
The retention time repeatability was verified on the chromato-

graphic peak of the target analytes recorded in the 30 overall analyses
used to build the five calibration curves (see above). Deviations below
1% from calibrators and controls were considered satisfactory. The
repeatability of the relative ion abundance was evaluated on the se-
lected ion chromatograms for each target analyte. The variations were
considered acceptable within ± 20%, with respect to the controls.

For all analytes, intra-day repeatability and accuracy were eval-
uated on 10 blank urine samples spiked with all the target analytes at
three concentration levels (1.0 ng/mL, 5.0 ng/mL and 25 ng/mL).
Precision and accuracy were estimated from the percent variation
coefficient (CV%) and percent bias (bias%), respectively. Precision was
considered satisfactory when the CV% values were below 15% for the
low calibration level and below 10% for the other levels. Satisfactory
accuracy was achieved when the experimentally determined average
concentration lied within ± 10% from the expected value.

2.4.3. Matrix effect, extraction recovery, enzyme performance, carry-over
The matrix effect was evaluated at the three concentration levels

defined above by comparing the experimental results obtained from
blank urine samples (mean value from five replicates) and blank
deionized water solution both spiked after the extraction step at the
same concentration. The matrix effect for each target analyte was ex-
pressed as the percentage ratio between the two measured concentra-
tions. Extraction recovery was calculated at the same concentration
levels by comparing the experimental results from blank urine samples
spiked respectively before and after the extraction step (5 replicates
each) and expressed as the percentage ratio between the two data.

The efficiency of β-glucuronidase and arylsulfatase to achieve ex-
haustive hydrolysis of the conjugated metabolites was tested at three
concentration levels (1.0 ng/mL, 5.0 ng/mL and 25 ng/mL) by mea-
suring the percentage ratio between the recovered concentration of

estrone glucuronide (and sulfate) spiked into a blank sample and that of
free estrone spiked to another blank sample at the same molar con-
centration. All the analyses were performed in duplicate.

The carry-over effect was evaluated by injecting in alternate se-
quence five blank urine samples spiked with all the analytes at the
highest concentration and five blank deionized water solutions.
Moreover, the carry-over effect was considered negligible if the S/N
ratio was lower than 3 at the analytes’ retention time for each mon-
itored ion chromatogram obtained from the latter solutions.

2.5. Real urine sample collection

First morning urine samples were collected every day during a
complete menstrual cycle (28 days) from 9 female volunteers aged
24–35 years, average 27.6 y ± 3.4 (1 parous). The 252 total samples
were maintained at –20 °C and randomly analysed once the monthly
collection was completed. All the women were healthy. None of them
was taking any pharmaceutical drug or combined oral contraceptive
pills in the period of sample collection. For all urine samples, the
analytical determinations were normalized against their creatinine
concentration to compensate for the physiological urinary dilution
[2,4]. Creatinine was determined by the alkaline picrate photometric
method using the dedicated kit on Architect C800 instrumentation
(Abbott srl, Rome). In order to follow privacy regulations, an anon-
ymous code was attributed to each participant subject who, anyway,
voluntarily donated samples to the present project.

2.6. Chemometrics

Multivariate data analysis was carried out using Matlab® (The
MathWorks, MA, USA) version 9.0.0 with PCA Toolbox version 1.2
[38], N-way Toolbox version 2.10 [39] and Classification Toolbox
version 5.0 [40].

Data were arranged into a three-dimensional array (3-way), labelled
as X, with dimensions (I× J× K) chosen as follows: (I) 9 subjects
(representing the female volunteers), (J) 28 days (representing the
menstrual cycle duration), (K) 15 variables (representing the studied
estrogens). To analyse the three-dimensional data, a Parallel Factor
Analysis (PARAFAC) model [41–43] was applied. The Alternating Least
Squares (ALS) algorithm basically decomposes the X 3-way array into
three two-dimensional matrices , namely A (I× L), B (J× L) and C
(K× L), where the former variables (I, J, K) are expressed as a function
of a new multivariate parameter (L) representing the loadings [41–43].
The B and C matrices show the natural fluctuation of each estrogen
concentration throughout the 28-day menstrual cycle.

In order to separate the different phases of the menstrual cycle (i.e.,
follicular phase, ovulation and luteal phase), the Principal Component
Analysis (PCA) [44] was carried out, as an exploratory method for
multivariate data analysis. Since PCA works on two dimensional data
matrices, the 3-way matrix X was unfolded in a J× IK matrix (i.e.,
28× 135), after autoscaling. The PCA model was built employ-
ingfollowing a venetian blinds cross-validation procedure, with a
number of data splits equals to 5. The optimal number of principal
components (PCs) was chosen from the predicted residual sums of
squares (PRESS), root mean squared error of cross-validation (RMSECV)
and the scree plot. Further parameters, including eigenvalues, percen-
tage variance captured by each PC (Var%) and percentage cumulative
variance captured by the model (CumVar%) were also evaluated [44].

Lastly, a linear discriminant analysis (LDA) model was built to
verify the classification power of the multivariate estrogenic profile
with respect to the phase of the menstrual cycle (e.g., luteal phase,
ovulation and follicular phase). The variables used to build the LDA
model were the first 10 PCs scores, obtained as linear combinations of
the original estrogen concentrations. This approach has the advantage
of removing noise from the dataset and improving the classification
performances. The data multi-normality was verified and again a cross-
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validation procedure was performed by applying the venetian blinds
design technique with 5 data splits. The classification criterion based on
the Bayes’ rule assigned each sampled day to the category showing the
highest probability [40].

3. Results and discussion

3.1. Method optimization and validation

The DoE optimization of sample preparation [32] was aimed to
achieve simpler and faster extraction conditions than those used in
previous studies [27–30]. The best combination of drying temperature
(found at 40 °C) and extraction solvent was found with the ethyl
acetate+ hexane (2:3 v/v) mixture as it corresponded to higher re-
solution and intensity of the chromatographic peaks with respect to
TBME [32].

Optimal chromatographic separation among the estrogens of similar
chemical structure (for example, 2-methoxyestrone and 16α-hydro-
xyestrone) was obtained by using a slow increase of the oven tem-
perature (3 °C/min) between 225 °C and 245 °C interrupted by a hold
time at 234 °C for 3min. Nevertheless, the full chromatographic run
was completed in less than 20min and the retention times of the target
analytes lied between 6.58min (17α-estradiol) and 10.50min (16-
epiestriol).

3.1.1. Linearity, LOD, LOQ
Full validation data are reported elsewhere [32]. The linearity of the

calibration curves was tested in the concentration range of 1.0–50 ng/
mL for all the analytes. Lack of fit’s, ANOVA, RSD slope and Back-cal-
culation tests proved to yield calculated results below the respective
critical values for all the target analytes. Among the target analytes,
only 17α-estradiol, 4-hydroxyestradiol and 2-methoxyestradiol were
characterized by a quadratic calibration model. Most of the estrogens’
models used an x−2 weighting correction, except 17α-estradiol, 2-
methoxyestradiol, estrone, 4-methoxyestrone and estriol. From the re-
sidual plots, the calibration linearity was confirmed by the presence of
random residuals patterns along the concentration ranges for all the
analytes.

LOD values ranged between 0.2 ng/mL and 0.4 ng/mL. The LOQ
values, estimated below 1.0 ng/mL for all target analytes, were verified
experimentally. The first point (1.0 ng/mL) of each calibration range
was successfully tested for precision and accuracy, as reported below,
and was subsequently used as operational LOQ.

3.1.2. Repeatability and accuracy
Ion abundance and retention time repeatability proved experimen-

tally appropriate. Intra-assay precision and accuracy satisfied the target
criteria, as the CV% are lower than 15% for all the analytes at all tested
concentration levels, while the percent bias (bias%) lied between
−8.2% (2-hydroxyestrone) and +12% (2-hydroxyestradiol) at 1.0 ng/
mL, −11% (4-hydroxyestradiol) and+6.8% (4-hydroxyestrone) at
5.0 ng/mL and −6.2% (17α-estradiol) and +5.6% (2-hydro-
xyestradiol) at 25 ng/mL [32].

3.1.3. Matrix effect, extraction recovery, enzyme performance, carry-over
The matrix effect values ranged from −12% for 4-methoxyestrone

to +15% for 16α-hydroxyestrone at low level, from −9.2% for 4-hy-
droxyestrone to +12% for 17-epiestriol at medium level and from
−5.6% for 2-hydroxyestradiol to +6.3% for 16α-hydroxyestrone at
high level. These scattered values are close to the experimental bias and
do not evidence any significant matrix effect. The average recovery
efficiency was 99%, with minima and maxima ranging from 89% for 4-
hydroxyestrone to 108% for 4-hydroxyestradiol and 17-epiestriol at
1.0 ng/mL; from 87% for 17α-estradiol to 107% for 4-hydroxyestrone
at 5.0 ng/mL; from 94% for 17α-estradiol to 110% for 2-hydro-
xyestradiol at 25 ng/mL. Again, the extraction recovery was virtually

complete at all concentration levels allowing a correct estimation of the
target analytes’ concentration.

The percent hydrolysis achieved by both β-glucuronidase and ar-
ylsulfatase on estrone glucuronide and estrone sulfate at all con-
centration levels was close to 100%, supporting the claim that the de-
conjugation efficiency on phase II metabolites could be considered
complete. No carry-over effect was observed.

3.2. PARAFAC model

The PARAFAC approach is commonly employed in environmental
data analysis, when repeated chronological monitoring of sampling
sites yields three-dimensional data structures. The same statistical tool
is suitable for our chronological monitoring of estrogen profiles
[39,41–43]. A PARAFAC model was built to extract the concentration
profile for each estrogen along the 28-day menstrual cycle, by
smoothing the large individual variability of estrogenic profiles, that
proved significant for the 9 investigated women. Due to the different
duration of the menstrual cycles, spanning between 28 and 30 days, the
ovulation peak occurred at different days, from the 13th to the 17th
day, in agreement with the literature [17,45–47]. To comply with this
source of variability, the extreme sampling days were removed from the
series collected from the women with a menstrual cycle longer than
28 days. Actually, the extreme days (i.e. the first and the last of the
menstrual cycle) exhibited comparable results with the subsequent and
preceding samples, respectively. The final PARAFAC processing al-
lowed the equalize each menstrual cycle within a unique scale so as to
evaluate and compare the natural variation of the estrogenic levels. The
number of significant factors for the PARAFAC model was two, that
explain a CumVar% of 86.98%, relative to Var%=75.17% and Var
%=10.81% for factor 1 and factor 2, respectively.

All the extrapolated estrogenic profiles are reported in Fig. 1 and
exhibit several remarkable features. In particular, 17β-estradiol (2a)
and estrone (2b) show two peaks, the first occurring close to the ovu-
lation with a time-shift of 3–4 days between the two hormones, while
the second smoother peak appears in the period around the 20th-25th
day of the cycle. These profiles are comparable to those reported in the
literature [7–9,12,48]. In contrast, no peak is observed for 17α-estra-
diol (2a) in the central part of the cycle and only a faint increase of its
level is detectable in the luteal phase of the cycle. The lack of corre-
lation between 17α- and 17β-estradiol profiles may explain the scarce
specificity of the immunoassays methods used for their quantification.

Several metabolite profiles are characterized by the occurrence of a
single concentration peak around the ovulation, namely 2-hydro-
xyestradiol (1c), 4-hydroxyestradiol (1c), and 2-methoxyestrone (1f) at
the 15th day, but 4-hydroxyestrone (1e) and 2-hydroxyestrone (1e)
together with estrone (1b) at the 17th day. Surprisingly, 2-methox-
yestrone shows a chronological correlation with hydroxyestradiol iso-
mers instead of hydroxyestrone isomers, as it would be expected. On the
other hand, 4-methoxyestrone (1f) show a sharp peak in the follicular
phase of the cycle, that is not observed for the isomer 2-methox-
yestrone. The different behaviour observed for 2- and 4-methox-
yestrone isomers contrasts with those recorded for the analogous hy-
droxyestrone (1e) and hydroxyestradiol (1c) isomers. All these
observations add details on the complex regulating system of the es-
trogen biochemistry active during the ovulation phase which can not be
explained by straightforward and progressive metabolic pathways [14].

4-methoxyestradiol (1d), 16-epiestriol, and 17-epiestriol (1 g) dis-
play a profile in which the concentration increases around the ovulation
and remains quite stable for the subsequent 10 days, whereas 2-meth-
oxyestradiol (1d) shows a constant decrease along the cycle.

Barrett et al. [7] and Venners et al. [9] determined the urinary
concentration of estrone alongside the entire menstrual cycle by im-
munoassay: the resulting profiles showed the same pattern that we
observed in the PARAFAC profile, even if the analytical methods were
different. A comparable profile was also observed by Baird et al. [8]
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Fig. 1. Concentration profile (normalized for the creatinine value) of the target analytes along the 28-day menstrual cycle achieved by applying PARAFAC approach:
(a) 17α-estradiol and 17β-estradiol, (b) estrone and estriol, (c) 2-hydroxyestradiol and 4-hydroxyestradiol, (d) 2-methoxyestradiol and 4-methoxyestradiol, (e) 2-
hydroxyestrone and 4-hydroxyestrone, (f) 2-methoxyestrone and 4-methoxyestrone, (g) 16α-hydroxyestrone and 16-epiestriol, and (h) 17-epiestriol.
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who used a radio-immunoassay method. Likewise, the profiles of 17α-
and 17β-estradiol that we observed substantially overlaps the ones re-
ported by Roney et al. [12] and Barrett et al. [48], although in these
studies the concentrations were measured by immunoassay in the oral
fluid. Basically, two peaks are observed, the first one just before the
ovulation and the second during the luteal phase. Noteworthy, the first
peak has not been observed in our study for 17α-estradiol.

The correspondence of our data with literature profiles and the
agreement between oral fluid and urine data, and between GC-MS and
immunoassay methods represent further confirmation of the reliability
of the present approach to gain general information about the relative
concentration of the circulating hormones. The multi-residual GC-MS
method proposed in this study proved to represent a fast, cheap,
practical, and reliable analytical tool for the monitoring of an extended
estrogenic profile in young women (24–35 years), overcoming the lack
of specificity typical of immunoassay methods.

3.3. PCA results and LDA model

Principal component analysis (PCA) was performed on the complete
28×135 data matrix with the purpose of discovering any underlying
structure in the data The optimal number of principal components (PC)
to be considered was two representing a CumVar% of 28.22% and a
RMSECV% of 16.13%. The limited percentage of total variance ex-
plained by PC1+PC2 (only 28.22%) is coherent with the large varia-
bility of the data. In practice, the new PC variables, as linear combi-
nation of the old ones (concentration of estrogens), emphasize the
information content present in the data while reducing the contribution
of their random fluctuation. The scores plot of PC1 (Var% 14.91%) vs
PC2 (Var% 13.31%) is reported in Fig. 2A and shows the occurrence of
three broad clusters corresponding to the three phases of the menstrual
cycle: follicular, ovulation, and luteal. The follicular and ovulation
phase data are separated along PC2, while the ovulation and luteal
phase data along PC1.

By plotting PC1 and PC2 as a function of the menstrual cycle day in
two separate diagrams (Fig. 2B, C), the phase transitions become visible
and the starting point of both the ovulation and luteal phase can be
clearly identified.

A preliminary LDA model was built using the information extracted
by the PCA scores. While the PARAFAC technique demonstrated that
the original data were affected by large internal variability which
prevented the construction of a reliable and stable classification model
based on them, the PC scores are free from correlation and noisy pat-
tern. Therefore, the PCA scores were used instead of the original es-
trogen data to build the LDA model.

The multi-normality of the PC scores was successfully checked
(Fig. 3A) and then a cross-validating procedure was applied to the
28×10 matrix (10 PCs were considered). A cross-validated non-error
rate of 90% was achieved, together with an accuracy equal of 93%, as is
shown in the confusion matrix reported in Table 1. Only two data-
points were misclassified, namely the 17th day, which was classified in
class 3 (luteal phase) instead of class 2 (ovulation), and the 18th day,
which was classified in class 1 (follicular phase) instead of class 3. The
misclassification of the 17th and 18th days was not surprising since
both data-points belong to the transition period from the ovulation to
the luteal phase and correspond to a sudden drop of the estrone, 2- and
4-hydroxyestrone concentrations (Fig. 1b, e). The accurate classifica-
tion of all days belonging to the transition from the follicular to the
ovulation phase is explained by the smoother concentration increment
observed for 17β-estradiol, 2- and 4-hydroyestradiol from the 11th to
the 15th day of the cycle (Fig. 1a, 1c).

The scores plot reported in Fig. 3B shows the good partition of the
days in three well-defined classes corresponding to the follicular phase,
the ovulation and the luteal phase. The loadings plot, representing the
PC variables in the space of the LDA canonical variables (Fig. 3C), in-
dicates the correspondence between class discrimination and PCs. In

particular, PC2 is high during the ovulation and low during the folli-
cular and luteal phases. Hence, it is able to identify the ovulation period
from the other phases of the cycle. On the other hand, the luteal phase
is characterized by elevated values of PC1 (and PC7), which is low in
the follicular phase and especially low during the ovulation, dis-
tinguished also by a high value of PC8.

Studies that use the menstrual cycle phase as a proxy for directly
measured ovarian hormone levels typically fail to capture their inherent
variability. The lack of reliable methods to divide the menstrual cycle

Fig. 2. Results provided by the PCA model: (a) Score plot relevant to PC1
(Var.= 14.91%) vs PC2 (Var.= 13.31%) showing the occurrence of three
different clusters corresponding to the three phases of the menstrual cycle, i.e.
follicular phase (blue dots), ovulation (red dots) and luteal phase (green dots).
(b) PC1 vs menstrual cycle day, representing the transition from the follicular
phase to the ovulation phase. (c) PC2 vs menstrual cycle day, representing the
transition from the ovulation phase to the luteal phase.
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into its component phases was proved, as divergent outcomes may be
produced by using different methods [3,10]. The application of the
present multivariate statistical model to GC-MS data is expected to
overcome this limit and allow a correct definition of the phases of the
menstrual cycle, an important issue in the study of fertility. For ex-
ample, Barrett et al. [7] who determined the concentration of urinary
estrone alongside a complete menstrual cycle established the difference

in ovarian function between nulliparous and parous women. In general,
the menstrual cycle features represent important indicators of the re-
productive health and endocrine function. For example, Small et al.
[11] found a connection between the menstrual cycle variability and
the likelihood of pregnancy, Venners et al. [9] discovered that higher
estrogen concentrations were associated with the occurrence of clinical
pregnancy, and Baird et al. [8] studied the hormonal pattern most
appropriate for pre-implantation. All the areas of interest linked to re-
production could benefit from a multivariate interpretation of a wide
estrogen profile, such as the one proposed in the present study, which
may find application also in the investigation of a variety of physical
and psychological disorders.

4. Conclusions

In the present study, a GC-MS method is proposed for the simulta-
neous detection of 15 estrogens in the urine of a group of young
women, that involves easy sample pretreatment, overcoming some of
the limitations of previously published GC-MS protocols [28,29]. The
reliability of the procedure was validated following a rigorous protocol
and good performances were obtained, particularly in terms of efficient
extraction recovery and adequate sensitivity, making the GC-MS ap-
proach competitive with the more demanding LC-MS/MS technique. In
case that the concentration of one specific estrogen has to be de-
termined with high accuracy, the method can be further improved by
using a dedicated isotopically-labelled homolog as the internal stan-
dard.

Despite the large variability of the experimental data, the use of
multivariate statistics on urine sample sequences collected from nine
women – in particular the application of the PARAFAC approach –
proved capable to extract the typical concentration profile for each
analyte along the menstrual cycle, including estriol and the eleven
metabolites not previously investigated in women. As a matter of fact,
most of the existing literature only reports the variations of estrone and
estradiol concentrations across the complete menstrual cycle, whereas
in the present case a generalized picture for a broad urinary estrogen
panel along the whole menstrual period has been described for the first
time.

The advantages of using multivariate data analysis was made evi-
dent by the application of PCA, which yielded an easier visualization
and efficient partition of the data into three groups, corresponding to
the three phases of the menstrual cycle, namely the follicular phase,
ovulation, and the luteal phase, together with the transitions between
the phases.

The preliminary LDA model built on the PCA scores produced a
reliable classification of each day along the cycle series, with a sa-
tisfactory cross-validated non-error rate of 90%. Therefore, the multi-
variate comparison of the estrogen profile collected from a single urine
sample with the proposed model is likely to provide a trustworthy
classification of this sample in terms of phase of the menstrual cycle
(follicular, ovulation, luteal). Possible applications of the model include
the detection of the fertile days along the cycle, the screening of pa-
thological conditions, and the identification of particular stressing or
psychological conditions of the investigated subjects. Further refine-
ment of the present classification model is underway, as its full

Fig. 3. Results achieved by building the LDA model. (a) Multinormality test
graph. (b) Score Plot relevant to the first two latent variables, showing the
partition of the data in three well-defined classes: follicular phase (blue dots),
ovulation (red dots) and luteal phase (green dots). (c) Loading Plot relevant to
the first two latent variables, showing the PCs that mainly characterize the
three classes of samples.

Table 1
Confusion matrix provided by the LDA model. The rows represent the real
classes, while the columns represent the predicted ones; the correctly classified
samples are reported on the diagonal. Overall non-error rate is reported, too.

Confusion matrix Follicular phase Ovulation Luteal phase

Follicular Phase 12 0 0
Ovulation 0 4 0
Luteal phase 1 0 10
Non-error rate 90%
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validation will require a much larger training and test sets than the one
used in this proof-of-concept contribution based the on the recruitment
of nine volunteers.
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