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Abstract Food preferences are the first factor driving food
choice and thus nutrition. They involve numerous different
senses such as taste and olfaction as well as various other
factors such as personal experiences and hedonistic aspects.
Although it is clear that several of these have a genetic basis,
up to now studies have focused mostly on the effects of
polymorphisms of taste receptor genes. Therefore, we have
carried out one of the first large scale (4611 individuals)
GWAS on food likings assessed for 20 specific food likings
belonging to 4 different categories (vegetables, fatty, dairy
and bitter). A two-step meta-analysis using three different
isolated populations from Italy for the discovery step and
two populations from The Netherlands and Central Asia
for replication, revealed 15 independent genome-wide sig-
nificant loci (p<5×10−8) for 12 different foods. None of the
identified genes coded for either taste or olfactory receptors

suggesting that genetics impacts in determining food likings
in a much broader way than simple differences in taste per-
ception. These results represent a further step in uncovering
the genes that underlie liking of common foods that in the
end will greatly help understanding the genetics of human
nutrition in general.

Keywords Food preferences . Food consumption . Food
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1 Introduction

Diet and nutrition play a key role as risk factors for several
chronic diseases such as diabetes, obesity, dyslipidemia and
cardiovascular diseases [1]. It is well known that dietary
choices differ among individuals and are influenced by phys-
iologic, social, psychological and, most likely, genetic factors
[2]. In the last two decades Genome-Wide Association Studies
(GWAS) have led to the discovery of many genetic variants
associated with chronic diseases. However, to date few studies
have focused on the effect of human genetic differences on
eating behavior and nutrient intake, and ultimately their im-
pact on health outcomes. Recently, Tanaka and collaborators
reported association of variants in the FTO gene with higher
carbohydrate and lower fat consumption, independent of
BMI, supporting the role of genetic variants on macronutrient
consumption in humans [3].

A limitation of most studies is that they measure diet by
using food-frequency or dietary records questionnaires. These
classical intake measures all suffer from reporting biases and
attenuation effects that can lead to inaccurate conclusions
about diet-disease relationships [4].

In a developed society where food is readily available, food
preferences are the first factor influencing food choice [5]. For
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this reason, it has been proposed that food hedonics may be
better predictors of health outcomes than food consumption,
and thus may provide a good alternative to assess dietary
intake. Recently, Duffy et al. have shown that food prefer-
ences, in particular for fat and fibers, predict adiposity and
blood pressure better than their reported consumption health
[6]. Similar results have been also obtained when looking at
blood metabolites [7] and on children [8], children [8] dem-
onstrating that preferences may be more reliable markers than
food frequency questionnaires in estimating the impact of nu-
trition on health.

Finally, evidence from genetic studies has shown that food
preferences are genetically determined, with high estimated
heritability (up to 70 %) [9, 10].

In this light, understanding the genetic factors driving food
preferences could be important for addressing how they affect
food choices and intake and thus health parameters. Several
studies have tried to link food liking to specific genetic vari-
ants, mostly looking at the effect of taste receptor genes
[10–17].

Here, we report the results of a GWAS on liking of 20
different foods belonging to 4 different categories (vegetables,
fatty, dairy and bitter) using three different isolated popula-
tions from Italy. Data have been replicated in other popula-
tions from The Netherlands and Central Asia.

2 Materials and methods

2.1 Study populations

Participants have been collected from Europe and Central
Asia, including: 381 individuals from INGI-CARL recruited
from Carlantino, a small village located in Puglia (Southern
Italy); 744 from INGI-FVG, recruited from 6 villages situated
in the Friuli-Venezia Region in Northern-Eastern Italy, and
1115 from INGI-VB, recruited from the Val Borbera Valley
in Northern-Western Italy. DNA from 1261 individuals was
collected in the Erasmus Rucphen Family (ERF) study, a
cross-sectional cohort including 3000 living descendants of
22 couples who had at least 6 children baptized in the
community church around 1850–1900. Finally, DNA sam-
ples from 335 individuals was obtained from the Silk Road
(SR) [12] cohort of ~1000 individuals from 20 communities
located along the Silk Road (Armenia, Azerbaijan, Georgia,
Uzbekistan, Tajikistan and Kazakhstan).

2.2 Assessing food liking

Liking/disliking for 20 foods were ascertained through a ques-
tionnaire administered by an operator. The foods can be con-
ceptually grouped into 4 categories: vegetables (artichokes,
broccoli, chicory, spinach, and mushrooms), fatty (bacon,

ham, lamb meat, oil or butter on bread, and pork chops), dairy
(goat cheese, blue cheese, ice cream, mozzarella, plain yogurt
and whole milk) and bitter (dark beer, dark chocolate, liver
and coffee).

Participants were asked to rate their liking for each food on
a scale ranging from 1 (dislike extremely) to 9 (like extremely)
[18] or to indicate never having tasted the particular food.
The SR population was in excepption because a 5-point
facial hedonic scale was used. This scale is commonly
used to minimize linguistic barriers or when working with
(mostly) illiterate people as was the case of the SR pop-
ulation [19]. Given the differences in the two hedonic
scales, the responses have been numerically standardized
by dividing each score by the number of scale categories
(i.e., 9 for the European populations, 5 for the SR study).
This standardization is the same as the Bsimple proportion
method^ described in Colman et al. 2007 [20] and similar
to the equations used in Preston and Colman 2000 [21]
and Dawes 2002 [22]. The standardization, while impor-
tant for interpreting regression analyses and its intercept,
would not influence the interpretation of the meta-analysis
used in the present study. In meta-analysis we are interested
only in effect sizes (betas) and since association testing is
performed within each group, this difference is of no conse-
quence. Finally, some foods (broccoli, chicory, bacon, oil or
butter on bread, blue cheese, mozzarella cheese, and dark
beer) were unknown in the Silk Road communities and con-
sequently were not assessed in this population.

2.3 Genotyping and imputation

Genotyping was carried out as previously described [15, 23,
24]. Briefly, the Italian and Silk Road samples were genotyped
with Illumina high density SNP arrays and data imputed, after
standard QC, using SHAPEIT2 [25] for the phasing step and
IMPUTE2 [26] for the imputation using the 1000 Genomes
phase I v3 reference set [26]. ERF has been genotyped on
several genotyping platforms: Illumina 318 k, 350 k, 610 k
and Affymetrics 200 k. Genotypes were pooled after
QC, phased and imputed to the 1000 Genomes phase I
v3 reference set [27] using MaCH and minimac [27].
After imputation SNPs with MAF<0.01 or IMPUTE2
Info metric<0.4 were excluded from the statistical analyses
for all populations, except for ERF for which minimac
R2<0.3 was used instead.

2.4 Association analysis

Association analysis was conducted using mixed model linear
regression where the standardized food liking of individuals
foods were the dependent variable and the SNP dosages as the
independent variable. Sex and age were used as covariates.
The kinship matrix based on all available genotyped SNPs

210 Rev Endocr Metab Disord (2016) 17:209–219



was used as the random effect. For ERF, the kinship matrix
was estimated on 14.4 k SNPs common to the various
genotyping platform used. Association analysis was conduct-
ed using the GRAMMAR+ method [28] as implemented in
the GenABEL 1.7–2 [29] R package in order to eliminate the
effect of familial relatedness from the trait. MixABEL [29]
was used for the actual association of the imputed SNPs.
SNPs that did not pass quality control for more than one pop-
ulation were discarded.

It is common practice in GWA studies to test for association
presuming the genetic variants have an additive effect on
the phenotype, however this is not necessarily true [30, 31].
Therefore, we decided to also use non-additive genetic
models, in particular dominant, recessive and over-dominant.
For the association analysis, a two-step joint replication
approach was used. Association analysis was conducted
separately for each INGI cohort and results pooled together
using the inverse-variance weighting method. Given that
no meta-analysis software support non-additive genetic
models, we developed custom R scripts. After meta-
analysis in the INGI cohorts, genomic control was used
to eliminate any residual stratification and all SNPs, with
p<1×10−5 where taken forward to the replication step
using the ERF and SR cohorts. We considered as replicat-
ed all SNPs with nominal p-value<5×10−8 at the com-
bined analysis and whose p-value was lower at the repli-
cation step compared to the discovery phase. These criteria
are very similar to those used in a similar study on food
consumption [3].

3 Results

Table 1 shows sex, age and food liking distributions for each
of the participating cohorts. In general, the ranking of the
different food groups was consistent across the different pop-
ulations, with the fatty foods being the most liked and the
bitter ones the least. Surprisingly, in all populations vegetables
are preferred over dairy products. However, after removing
the two strong-tasting cheeses (dairy w/o) the two categories
switch ranks in all studies except INGI-CARL in which
vegetables are still preferred over dairy products. All
items in the bitter foods category had low mean scores
except coffee which is among the highest ranking foods
in all populations. All single foods showed a good variance
with standard deviations ranging from 0.15 to 0.35. Variance
is maximized for those foods whose mean is close to 0.5
while it decreases for those foods which have either higher
or lower means.

Regarding the association analysis for the discovery step,
we first performed a GWAS in each separate cohort and then
pooled the results. As the first phase of the discovery step,
only the Italian populations were analyzed. From these

analyses, we subsequently selected all SNPs with nominal p-
value after genomic control < 1×10−5. These SNPs were then
used for replication in a joint meta-analysis.

Table S1 (See additional materials) lists the number of
SNPs used for each analysis, lambda (genomic control)
values, the number of SNPs brought forward for replication
and the number of independent loci. QQ-plots and complete
results for all SNP used for replication can be found in the
supplemental material.

Overall, 15 replicated loci for the 20 analyzed traits were
detected (see Table 2). Four out of the 15 discovered loci show
an additive genetic effect, six an over-dominant one, two a
dominant one, and three follow a recessive model. Two loci
show significant associations under more than one genetic
model: rs6661761, which is associated with Boil or butter on
bread^ (both additive and dominant models), and rs28849980,
associated with artichokes (both over-dominant and additive
models).

Seven loci were associated with vegetables. In particular,
three with artichokes liking: rs10050951 on chromosome 5, lo-
cated in between the ADAMTS19 and CHSY3 genes
(p=4.5×10−8), rs8034691, on chromosome 15 located within
LOC100128714 gene (p=1.9×10−8), and rs28849980 on chro-
mosome 4 close to the CCRNL4 gene (p=4.4×10−8). Two loci
were identified for broccoli, one located in a gene desert region
on chromosome 17 (rs2530184, p=4.5×10−9) and the second
one on chromosome 3 close to the RYBP gene (rs9832668,
p=4.4×10−8). Furthermore, we have observed a locus signifi-
cantly associated with chicory liking on chromosome 8, very
close to the CSMD1 gene (rs138369603, p= 2.6 × 10−9).
Finally, a locus associated with mushrooms liking close to
C9orf123 (rs6477241, p=1.6×10−8) was also detected.

In the group of Bfatty foods,^ two GWAS significant
loci were identified—one for bacon liking (rs140738262,
p= 5.9 × 10−9) and the second one, located within the
BPNT1 gene on chromosome 1, for Boil or butter on
bread^ liking (rs6661761, p=3.6×10−10).

In the category Bdairy food,^ 3 loci were identified—one on
chromosome 2, between the KCMF1 and TCF7L1 genes, as-
sociated with blue cheese liking (rs12994253, p=8.8×10−9),
one on chromosome 5, close to the IRX4 gene associated with
ice cream liking (rs2035613, p=3.9×10−8), and one on chro-
mosome 22, inside the IGL gene associated to plain yogurt
liking (rs4239891, p=3.8×10−8).

For Bbitter foods,^ we identified 3 loci, one for dark
chocolate (rs73082019, p = 4.1 × 10−8), one for coffee
(rs145671205, p= 3.1 × 10−8), and one for liver liking
(rs34088951, p=3.4×10−8). Figures 1, 2 and 3 show the
regional plots of the most significant SNP in each locus.

Finally we verified whether any of the identified SNPs
showed an effect on the other food likings. Figure 4 summa-
rizes the results from this analysis. Clearly although for most
of the identified SNPs we can detect weak association also to
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foods similar to the one for which the SNP was identified,
most of them seem to be rather specific and no significantly
additional strong signals have been detected.

4 Discussion

Here, we report the first GWAS on reported liking for individ-
ual foods conceptually grouped as vegetables, fatty foods and
bitter foods and beverages.We have successfully identified 15
new novel genetic variants that determine differences in liking
of 12 different food by using three Italian populations for
the discovery step and two additional populations from

Netherland and Central Asia to confirm our results. Given
the novelty of the topic of the present study, a detailed discus-
sion will be mainly focused on the genes for which it was
possible to hypothesize a link between its function and its role
in food hedonics.

The strongest detected association was between the A allele
of rs6661761 and lower liking Boil or butter on bread.^ This
SNP is located within the BPNT1 gene that is a magnesium-
dependent phosphomonoesterase. Although the function of
BPNT1 is still unknown, it is widely expressed in the brain
and is strongly inhibited by Lithium [32], a drug largely used
in bipolar disorder treatment. Lithium has been shown to re-
store hedonic responses to palatable foods in rats conditioned

Table 1 Descriptive statistics for each population

Age Male percentage Artichokes Broccoli Chicory Spinach

INGI-CARL 52.56 (17.26) 0.42 0.87 (0.20) 0.83 (0.24) 0.81 (0.26) 0.79 (0.25)

INGI-FVG 50.84 (15.80) 0.41 0.75 (0.25) 0.71 (0.27) 0.69 (0.28) 0.80 (0.21)

INGI-VB 53.23 (16.62) 0.37 0.77 (0.24) 0.64 (0.28) 0.60 (0.29) 0.75 (0.23)

ERF 47.4 (13.23 0.45 0.40 (0.26) 0.69 (0.21) 0.75 (0.20) 0.67 (0.24)

SR 39.12 (15.86) 0.41 0.55 (0.28) NA (NA) NA (NA) 0.72 (0.28)

Mushrooms Bacon Ham Lamb Oil or Butter on Bread Pork Chops

INGI-CARL 0.82 (0.22) 0.84 (0.22) 0.90 (0.13) 0.81 (0.26) 0.76 (0.24) 0.88 (0.17)

INGI-FVG 0.75 (0.24) 0.75 (0.22) 0.85 (0.16) 0.58 (0.31) 0.75 (0.24) 0.77 (0.21)

INGI-VB 0.77 (0.24) 0.76 (0.22) 0.83 (0.16) 0.60 (0.31) 0.80 (0.22) 0.75 (0.22)

ERF 0.50 (0.30) 0.71 (0.18) 0.74 (0.17) 0.58 (0.26) 0.71 (0.20) 0.76 (0.13)

SR 0.76 (0.28) NA (NA) 0.74 (0.29) 0.83 (0.25) NA (NA) 0.70 (0.31)

Goat Cheese Blue Cheese Ice Cream Mozzarella Plain Yogurt Whole Milk

INGI-CARL 0.65 (0.31) 0.64 (0.34) 0.85 (0.19) 0.84 (0.19) 0.58 (0.34) 0.69 (0.33)

INGI-FVG 0.58 (0.30) 0.70 (0.27) 0.87 (0.17) 0.79 (0.20) 0.66 (0.28) 0.74 (0.26)

INGI-VB 0.58 (0.31) 0.76 (0.24) 0.85 (0.20) 0.74 (0.23) 0.52 (0.30) 0.73 (0.28)

ERF 0.42 (0.27) 0.37 (0.26) 0.82 (0.15) 0.49 (0.26) 0.69 (0.21) 0.65 (0.22)

SR NA (NA) NA (NA) 0.87 (0.21) NA (NA) NA (NA) 0.79 (0.27)

Dark Beer Dark Chocolate Liver Coffee

INGI-CARL 0.51 (0.32) 0.58 (0.32) 0.50 (0.32) 0.83 (0.18)

INGI-FVG 0.51 (0.29) 0.72 (0.27) 0.55 (0.32) 0.81 (0.18)

INGI-VB 0.43 (0.30) 0.76 (0.27) 0.56 (0.28) 0.82 (0.21)

ERF 0.58 (0.25) 0.68 (0.25) 0.56 (0.27) 0.75 (0.21)

SR NA (NA) 0.74 (0.29) 0.69 (0.29) 0.76 (0.28)

Fatty Vegetables Dairy Dairy w/o Bitter

INGI-CARL 0.83 0.82 0.71 0.74 0.53

INGI-FVG 0.74 0.74 0.72 0.76 0.59

INGI-VB 0.75 0.70 0.7 0.71 0.58

ERF 0.7 0.60 0.57 0.66 0.61

SR 0.76 0.68 NA NA 0.63

For each food the mean is reported, with the standard errors between parenthesis. Sex has been reported as the proportion of male subjects in each cohort.
For food groups only means have been reported. Given that for SR a 5-point scale has been used values for all cohorts have been standardized as
explained in theMaterials andMethods section. All reported values refer to the scores after standardization. As can be seen from the table, the order of the
groups is the same in all populations : Fatty, Dairy w/o, Vegetables, Dairy and Bitter. The only exception is INGI-CARL in which Vegetables are still
preferred as compared to dairy products even after removing the strong tasting cheeses from the group (Dairy w/o). For the SR population it was
impossible to establish a mean of Dairy products liking since only two items were in common with the other populations
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to anhedonic responses through the nucleus accumbens [33].
Our result potentially suggests that liking of Boil or butter on
bread^, might be linked to the reward of palatable foods
trough the nucleus accumbens. There is a linear inverse
correlation between the activation of this nucleus and
obesity related traits [34]. Thus, BPNT1 seems a good
candidate for understanding the physiology underlying
the liking of palatable foods and the activation of the
reward system. It is unclear why we detect such an
effect only on such a specific trait such as Boil or butter
on bread^, however we must consider that the range of
examined foods is limited and further studies on broader
sets of foods are needed to clarify this point.

With respect to the other fatty foods we have detected
a significant association between bacon and rs140738262
inside the CNTN5 gene. This gene is mostly expressed in
the brain and has been associated with traits ranging from
blood viscosity [35] to HDL cholesterol [36]. More inter-
estingly, rs140738262 has been associated to anorexia
nervosa in a recent GWAS [37]. Although the physiopa-
thology of anorexia nervosa is extremely complex and not
completely understood, it is clear that in patients suffering
from this disease one of the deregulated mechanisms is

the reward response linked to food. It is thus plausible
that CNTN5 gene is linked to fatty food liking through
the reward related to palatable foods. This finding is not
surprising considering the presence of a positive correla-
tion between BMI and fat liking [6] and that obese people
have been shown to have an hypo-functioning reward system
in fMRI studies [34]. Looking at the pleiotropy data in Fig. 4 it
seems that while BPNT1 is specifically linked to Boil or butter
on bread^,CNTN5 shows marginal association also with lamb
(p=5.8×10−3), pork chops (p=1.0×10−3) and goat cheese
(p=1.6×10−3) suggesting that its role is linked to strong tast-
ing fatty foods. Further studies are clearly necessary to clarify
the role of this gene in determining food liking.

Another significant association for dairy foods was found
between ice cream and the IRX4 gene. Mutations in this gene,
mostly expressed in the heart, have been correlated to cardio-
myopathy [38, 39]. Nevertheless, IRX4 and IRX3 belong to
the same gene family, which is responsible for the association
between the non-coding FTO variants and obesity [40]. IRX3
elicits its effect on obesity in the thalamus [40] by modulating
the relationship between food reinforcement and energy in-
take [41]. This same brain area is activated with palatable
foods, especially high sugar ones [42] as is the case with ice

Table 2 The most significant SNP for each identified locus

Locus SNP Trait Chr Pos Mb Coded/Other
Allele

First step p Combined p Dir Beta Model

Bitter

FIBIN rs145671205 Coffee 11 27.0 C/T 1.15x10-6 3.13x10-8 ——— –0.056 Overdominant

DFNA5 rs73082019 Dark Chocolate 7 24.8 G/A 8.38x10-6 4.09x10-8 +++++ 0.063 Dominant

RNU6-66 rs34088951 Liver 19 46.8 T/C 4.21x10-6 3.41x10-8 +++?+ 0.188 Recessive

Dairy

KCMF1-TCF7L1 rs12994253 Blue Cheese 2 85.3 A/G 1.84x10-6 8.81x10-9 —— –0.078 Overdominant

IRX4 rs2035613 Ice Cream 5 2.0 T/C 6.54x10-7 3.92x10-8 ——— –0.038 Dominant

IGL rs4239891 Plain Yogurt 22 22.5 A/G 2.79x10-7 3.81x10-8 ++++ 0.054 Overdominant

Fatty

CNTN5 rs140738262 Bacon 11 99.3 L/S 1.94x10-6 5.93x10-9 —— –0.042 Overdominant

BPNT1 rs6661761 Oil or butter on
bread

1 220.3 A/G 3.10x10-6 3.62x10-10 —— –0.062 Additive

Vegetables

CCRN4L rs28849980 Artichokes 4 139.9 G/A 5.66x10-6 4.40x10-8 ——— –0.052 Overdominant

ADAMTS19-CHSY3 rs10050951 Artichokes 5 129.2 G/T 1.21x10-6 4.54x10-8 +++++ 0.031 Additive

LOC100128714 rs8034691 Artichokes 15 26.2 C/A 2.39x10-8 1.93x10-8 +++?+ 0.040 Additive

NA rs2530184 Broccoli 17 51.4 C/A 1.76x10-6 4.50x10-9 —— –0.048 Additive

RYBP rs9832668 Broccoli 3 72.4 A/G 7.37x10-7 4.36x10-8 –?- –0.127 Recessive

CSMD1 rs138369603 Chicory 8 2.7 C/T 3.20x10-6 2.56x10-9 ++++ 0.084 Overdominant

C9orf123 rs6477241 Mushrooms 9 7.8 G/C 2.31x10-7 1.57x10-8 +++++ 0.062 Recessive

The BLocus^ column shows the gene closest to the most significant SNP; the BSNP^ column shows the name polymorphism; BTrait^ lists the associated
food liking; BChr Bthe chromosome number; BPos Mb^ the position of the SNP expressed in mega-basepairs. For indel alleles, we have used L for the
long allele and S for the shorter allele. BDir^ indicates direction of the effect in the different populations in the following order: INGI-CARL, INGI-FVG,
INGI-VB, ERF and SR. The question mark indicates missing data
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cream. Thus, IRX4 could have a similar role linking this gene
to the reward aspects of food as well.

For vegetables, an interesting association was detected be-
tween the CSMD1 gene and chicory liking. This gene has
been previously associated in large GWAS studies to schizo-
phrenia [43] and to metabolic syndrome [44]. Rose et al. have

also shown that variants from this gene lead to differential
activation in the cuneus [45], which in turn, has been de-
scribed as being differentially activated in women suffering
from bulimia nervosa in response to food stimuli, suggesting a
role of this area in the food related reward system [46]. These
data indirectly suggest that CSMD1 might also regulate the

Fig. 1 Regional association plots of the identified loci. On the y-axis –
log10 of p-values are shown, with the genomics position on the x-axis.
Colors represent the linkage disequilibrium (LD) with the most

significantly associated SNP in the locus and shape represents the SNP
class. The analysed trait with the corresponding genetic model is reported
in the title of each plot
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reward response to food by regulating the activation of the
cuneus.

For all the other genes identified we were not able to find
enough data to explain a link with food liking. This was main-
ly due to the current poor knowledge on their roles and func-
tions. However, this being the first GWAS on common food

likings such lack of data on candidate genes/loci was to be
expected. Finally, none of the identified genes code for either
taste or olfactory receptors. This observation is consistent with
the fact that although some polymorphisms of taste and olfac-
tory receptors genes have been shown to explain differences in
specific compound perception which in some cases translate

Fig. 2 Regional association plots of the identified loci. On the y-axis –
log10 of p-values are shown, with the genomics position on the x-axis.
Colors represent the linkage disequilibrium (LD) with the most

significantly associated SNP in the locus and shape represents the SNP
class. The analyzed trait with the corresponding genetic model is reported
in the title of each plot
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in differences in real food liking [12, 15, 17] or consumption
[10, 13, 14, 16], in most cases the proportion of explained
variance is relatively small and thus undetectable on a
genome-wide study of this size.

Many of the identified loci do not follow the usually used
additive genetic inheritance model. Although it is very well

known that miss-specifying the correct genetic model in as-
sociation studies leads to loss of power [31] other
models are rarely tested. In our case we would have
been able to identify only 4 out of the 15 loci, and
none of the non-additive model ones would have given
significant associations under an additive model. This

Fig. 3 Regional association plots of the identified loci. On the y-axis –
log10 of p-values are shown, with the genomic position on the x-axis.
Colors represent the linkage disequilibrium (LD) with the most

significantly associated SNP in the locus and shape represents the SNP
class. The analyzed trait with the corresponding genetic model is reported
in the title of each plot
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observation suggests that the non-additive models should be
tested in all GWAS studies.

Many loci (6 out of 15) were identified as following an
Bover-dominant^ model, in which a heterozygote expresses
a different phenotype from the two homozygotes. This partic-
ular genetic model is rarely tested but it has been described in
human genetics for schizophrenia [47] and cervical cancer
[48]. Moreover, one should consider that the power to detect
an association using an additive model is very low, when the
true model is over-dominant. Consequently, it is unclear if the
heterozygous effect is limited to food liking or if it extends
also to other quantitative traits. Reanalysis of existing data is
needed to clarify this issue.

The present study clearly shows some limitations. First of
all the sample size, despite being the largest one ever used for
such a study, is relatively small when considering genome-
wide association studies and independent replication will be
needed to confirm the present results. Another limitation is
that we have considered a relatively small range of foods
due to the difference in the items used to assess likings in very
different populations. Future studies will need to use more
standardized questionnaires and look also at food groups in-
stead of specific items.

Despite its limitations the present study represent a very
important step in understanding the biology determining food
liking beyond mere taste. These knowledge will help in cre-
ating new products and drugs to help people comply to health-
ier diet. Moreover it could lead to the design of personalized
dietary interventions for people suffering from food related
diseases, helping increase the efficacy of the treatments.

In conclusion, our results represent one of the first success-
ful attempts at uncovering the genetic factors underlying food

liking. Several of the identified genes are good candidates for
linking food hedonics to actual consumption. This study
opens new perspectives in understanding the relationship be-
tween genes and food hedonics, and ultimately their impact on
health.
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