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A network of disorders and disease genes linked by known disorder–
gene associations offers a platform to explore in a single graph-
theoretic framework all known phenotype and disease gene associ-
ations, indicating the common genetic origin of many diseases. Genes
associated with similar disorders show both higher likelihood of
physical interactions between their products and higher expression
profiling similarity for their transcripts, supporting the existence of
distinct disease-specific functional modules. We find that essential
human genes are likely to encode hub proteins and are expressed
widely in most tissues. This suggests that disease genes also would
play a central role in the human interactome. In contrast, we find that
the vast majority of disease genes are nonessential and show no
tendency to encode hub proteins, and their expression pattern indi-
cates that they are localized in the functional periphery of the
network. A selection-based model explains the observed difference
between essential and disease genes and also suggests that diseases
caused by somatic mutations should not be peripheral, a prediction
we confirm for cancer genes.

biological networks � complex networks � human genetics � systems
biology � diseasome

Decades-long efforts to map human disease loci, at first genet-
ically and later physically (1), followed by recent positional

cloning of many disease genes (2) and genome-wide association
studies (3), have generated an impressive list of disorder–gene
association pairs (4, 5). In addition, recent efforts to map the
protein–protein interactions in humans (6, 7), together with efforts
to curate an extensive map of human metabolism (8) and regulatory
networks offer increasingly detailed maps of the relationships
between different disease genes. Most of the successful studies
building on these new approaches have focused, however, on a
single disease, using network-based tools to gain a better under-
standing of the relationship between the genes implicated in a
selected disorder (9).

Here we take a conceptually different approach, exploring
whether human genetic disorders and the corresponding disease
genes might be related to each other at a higher level of cellular and
organismal organization. Support for the validity of this approach
is provided by examples of genetic disorders that arise from
mutations in more than a single gene (locus heterogeneity). For
example, Zellweger syndrome is caused by mutations in any of at
least 11 genes, all associated with peroxisome biogenesis (10).
Similarly, there are many examples of different mutations in the
same gene (allelic heterogeneity) giving rise to phenotypes cur-
rently classified as different disorders. For example, mutations in
TP53 have been linked to 11 clinically distinguishable cancer-
related disorders (11). Given the highly interlinked internal orga-
nization of the cell (12–17), it should be possible to improve the
single gene–single disorder approach by developing a conceptual
framework to link systematically all genetic disorders (the human
‘‘disease phenome’’) with the complete list of disease genes (the
‘‘disease genome’’), resulting in a global view of the ‘‘diseasome,’’
the combined set of all known disorder/disease gene associations.

Results
Construction of the Diseasome. We constructed a bipartite graph
consisting of two disjoint sets of nodes. One set corresponds to all

known genetic disorders, whereas the other set corresponds to all
known disease genes in the human genome (Fig. 1). A disorder and
a gene are then connected by a link if mutations in that gene are
implicated in that disorder. The list of disorders, disease genes, and
associations between them was obtained from the Online Mende-
lian Inheritance in Man (OMIM; ref. 18), a compendium of human
disease genes and phenotypes. As of December 2005, this list
contained 1,284 disorders and 1,777 disease genes. OMIM initially
focused on monogenic disorders but in recent years has expanded
to include complex traits and the associated genetic mutations that
confer susceptibility to these common disorders (18). Although this
history introduces some biases, and the disease gene record is far
from complete, OMIM represents the most complete and up-to-
date repository of all known disease genes and the disorders they
confer. We manually classified each disorder into one of 22 disorder
classes based on the physiological system affected [see supporting
information (SI) Text, SI Fig. 5, and SI Table 1 for details].

Starting from the diseasome bipartite graph we generated two
biologically relevant network projections (Fig. 1). In the ‘‘human
disease network’’ (HDN) nodes represent disorders, and two
disorders are connected to each other if they share at least one gene
in which mutations are associated with both disorders (Figs. 1 and
2a). In the ‘‘disease gene network’’ (DGN) nodes represent disease
genes, and two genes are connected if they are associated with the
same disorder (Figs. 1 and 2b). Next, we discuss the potential of
these networks to help us understand and represent in a single
framework all known disease gene and phenotype associations.

Properties of the HDN. If each human disorder tends to have a
distinct and unique genetic origin, then the HDN would be dis-
connected into many single nodes corresponding to specific disor-
ders or grouped into small clusters of a few closely related disorders.
In contrast, the obtained HDN displays many connections between
both individual disorders and disorder classes (Fig. 2a). Of 1,284
disorders, 867 have at least one link to other disorders, and 516
disorders form a giant component, suggesting that the genetic
origins of most diseases, to some extent, are shared with other
diseases. The number of genes associated with a disorder, s, has a
broad distribution (see SI Fig. 6a), indicating that most disorders
relate to a few disease genes, whereas a handful of phenotypes, such
as deafness (s � 41), leukemia (s � 37), and colon cancer (s � 34),
relate to dozens of genes (Fig. 2a). The degree (k) distribution of
HDN (SI Fig. 6b) indicates that most disorders are linked to only

Author contributions: D.V., B.C., M.V., and A.-L.B. designed research; K.-I.G. and M.E.C.
performed research; K.-I.G. and M.E.C. analyzed data; and K.-I.G., M.E.C., D.V., M.V., and
A.-L.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviations: DGN, disease gene network; HDN, human disease network; GO, Gene
Ontology; OMIM, Online Mendelian Inheritance in Man; PCC, Pearson correlation coeffi-
cient.

**To whom correspondence may be addressed. E-mail: alb@nd.edu or marc�vidal@
dfci.harvard.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0701361104/DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0701361104 PNAS � May 22, 2007 � vol. 104 � no. 21 � 8685–8690

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S



a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k � 50 other disorders) or breast cancer (k � 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 � 16,
significantly larger than 516 (P � 10�4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 � 20 genes,
significantly larger than 903 (P � 10�4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there
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are 812 links between disorders of the same class, an 8-fold
enrichment with respect to 107 � 10 links obtained between the
same set of nodes in the randomized networks. This local functional
clustering accounts for the small size of the giant components
observed in the actual networks.

Disease-Associated Genes Identify Distinct Functional Modules. For
several disorders known to arise from mutations in any one of a few
distinct genes, the corresponding protein products have been shown
to participate in the same cellular pathway, molecular complex, or
functional module (21, 22). For example, Fanconi anemia arises
from mutations in a set of genes encoding proteins involved in DNA
repair, many of them forming a single heteromeric complex (23).
Yet, the extent to which most disorders and disorder classes
correspond to distinct functional modules in the cellular network
has remained largely unclear. If genes linked by disorder associa-
tions encode proteins that interact in functionally distinguishable
modules, then the proteins within such disease modules should
more likely interact with one another than with other proteins. To
test this hypothesis, we overlaid the DGN on a network of physical
protein–protein interactions derived from high-quality systematic
interactome mapping (6, 7) and literature curation (6). We found
that 290 interactions overlap between the two networks, a 10-fold
increase relative to random expectation (P � 10�6; Fig. 3a).

Genes associated with the same disorder share common cellular
and functional characteristics, as annotated in the Gene Ontology
(GO) (24). If the HDN shows modular organization, then a group
of genes associated with the same common disorder should share
similar cellular and functional characteristics, as annotated in GO.
To investigate the validity of this hypothesis, we measured the GO
homogeneity of each disorder (see SI Text) separately for each
branch of GO, biological process, molecular function, and cellular

component, finding significant elevation of GO homogeneity with
respect to random controls in all three branches (SI Fig. 8).

Disease genes encoding proteins that interact within common
functional modules should tend to be expressed in the same tissue.
To measure this, we introduced the tissue-homogeneity coefficient
of a disorder, defined as the maximum fraction of genes among
those belonging to a common disorder that are expressed in a
specific tissue in a microarray data set obtained for 10,594 genes
across 36 healthy tissues (25). We found that 68% of disorders
exhibited almost perfect tissue-homogeneity (Fig. 3b), compared
with 51% expected by chance (P � 10�5).

Finally, disease genes that participate in a common functional
module should also show high expression profiling correlation (26).
The distribution of Pearson correlation coefficients (PCCs) for the
coexpression profiles of pairs of genes associated with the same
disorder was shifted toward higher values compared with that of a
random control (Fig. 3c; P � 10�6, �2 test). Similarly, the average
PCC over all pairs of genes within a given disorder shows a
significant shift from the random reference (Fig. 3d), with a small
but clearly distinguishable peak in the distribution around PCC �
0.75. This peak corresponds to �33 disorders with average PCC �
0.6 for which all genes are highly coexpressed in most tissues,
including Heinz body anemia (PCC � 0.935), Bethlem myopathy
(PCC � 0.835), and spherocytosis (PCC � 0.656).

In summary, genes that contribute to a common disorder (i) show
an increased tendency for their products to interact with each other
through protein–protein interactions, (ii) have a tendency to be
expressed together in specific tissues, (iii) tend to display high
coexpression levels, (iv) exhibit synchronized expression as a group,
and (v) tend to share GO terms. Together, these findings support
the hypothesis of a global functional relatedness for disease genes
and their products and offer a network-based model for the
diseasome. Cellular networks are modular, consisting of groups of
highly interconnected proteins responsible for specific cellular
functions (21, 22). A disorder then represents the perturbation or
breakdown of a specific functional module caused by variation in
one or more of the components producing recognizable develop-
mental and/or physiological abnormalities.

This model offers a network-based explanation for the emer-
gence of complex or polygenic disorders: a phenotype often cor-
relates with the inability of a particular functional module to carry
out its basic functions. For extended modules, many different
combinations of perturbed genes could incapacitate the module, as
a result of which mutations in different genes will appear to lead to
the same phenotype. This correlation between disease and func-
tional modules can also inform our understanding of cellular
networks by helping us to identify which genes are involved in the
same cellular function or network module (21, 22).

Centrality and Peripherality. An early indication of the connection
between the structure of a cellular network and its functional
properties was the finding that in Saccharomyces cerevisiae highly
connected proteins or ‘‘hubs’’ are more likely encoded by essential
genes (15, 16). This prompted a number of recent studies (27, 28)
to formulate the hypothesis that human disease genes should also
have a tendency to encode hubs. Yet, previous measurements
found only a weak correlation between disease genes and hubs (29),
resulting in an important mystery: what is the role, if any, of the
cellular network in human diseases? Are disease genes more likely
to encode hubs in the cellular network?

Our initial analysis appears to support the hypothesis that disease
genes, given their impact on the organism, display a tendency to
encode hubs in the interactome (27, 28), finding that disease related
proteins have a 32% larger number of interactions (6, 7) with other
proteins (average degree) than the nondisease proteins (see SI Fig
9) and that high-degree proteins are more likely to be encoded by
genes associated with diseases than proteins with few interactions
(P � 1.6 � 10�17; Fig. 4a). Next, we show, however, that despite this
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apparent correlation, the relationship between diseases and hubs
hides deep differences between various disease genes.

When exploring whether disease genes encode hubs, we, and
authors of other earlier studies (27–29), ignored the fact that some
human genes are essential in early development and functional
changes in these contribute to the high rate of first-trimester
spontaneous abortions, which might be as much as 20% of recog-
nized pregnancies. One strategy to explore the impact of this in
utero essential segment of human disease is to consider human

orthologs of mouse genes that result in embryonic or postnatal
lethality when disrupted by homologous recombination (Mouse
Genome Informatics; www.informatics.jax.org). All together, we
find 1,267 such mouse lethal orthologs of human genes, of which 398
are associated with human diseases, representing 22% of all known
human disease genes. This allows us to distinguish between two
classes of human genes: 1,267 ‘‘essential genes’’ and 1,379 ‘‘nones-
sential disease genes,’’ the latter obtained by removing from the full
list of 1,777 OMIM disease genes the 398 that are also essential (Fig.
4b). Next, we show that these two classes of genes play quite
different roles in the human interactome.

First, we find that essential proteins show a tendency to be
associated with hubs (P � 1.3 � 10�17; Fig. 4c), displaying a much
stronger trend than the one observed for all disease proteins (Fig.
4a). This raises an important question: Could the observed corre-
lation between disease genes and hubs (Fig. 4a) be the sole
consequence of the fact that a small fraction (22%) of disease genes
is also essential? To address this question we measured the degree
dependence of the nonessential disease proteins (Fig. 4d). Surpris-
ingly, the correlation between hubs and disease proteins entirely
disappears. Thus, the vast majority of disease genes (78%), those
that are nonessential, do not show a tendency to encode hubs,
indicating that the observed weak correlations between hubs and
disease genes (Fig. 4a) was entirely due to the few essential genes
within the disease gene class.

To carry on its basic functions, the cell needs to maintain the
coordinated activity of important functional modules, driving in a
relatively synchronized manner the expression patterns of the most
important genes. Therefore, one expects that the expression pattern
of both essential and disease genes will be synchronized with a
significant number of other genes. To test this, we determined the
average gene coexpression coefficient ���i � �jPCCij between an
essential (or nonessential disease) gene i and all other genes in the
cell, calculating the PCCij values from healthy human tissue mi-
croarray measurements (25). Confirming our expectation, for es-
sential genes we find that genes that display high average coexpres-
sion ��� with all other genes are more likely to be essential than those
that show small or negative ��� (P � 1.7 � 10�4; Fig. 4e). Surpris-
ingly, however, nonessential disease genes show the opposite effect,
being associated with genes whose expression pattern is anticorre-
lated or not-correlated with other genes, and underrepresented
among the genes that are highly synchronized (��� � 0.2) (P � 2.6 �
10�8; Fig. 4f). Thus, the expression pattern of nonessential disease
genes appears to be decoupled from the overall expression pattern
of all other genes, whereas essential genes have a tendency to be
coupled to the rest of the cell.

Finally, we asked whether housekeeping genes, expressed in all
tissues, have a tendency to encode disease genes. We find that the
more tissues in which a gene is expressed, the higher the likelihood
that it will be essential (P � 2.8 � 10�16; Fig. 4g). The opposite is
true for nonessential disease genes: they have a tendency to be
expressed in a few tissues (P � 1.4 � 10�6; Fig. 4h). Similarly, we
found that only 9.9% of housekeeping genes correspond to disease
genes, compared with 13.5% of nonhousekeeping genes, a signif-
icant 36% difference (P � 3.6 � 10�6). In contrast, 59.8% of
housekeeping genes annotated with mouse phenotype were essen-
tial, compared with 40.5% for nonhousekeeping genes (P � 10�4).

These results support the somewhat unexpected conclusion that
nonessential disease genes are not associated with hubs (27, 28),
show smaller correlation in their expression pattern with the rest of
the genes in the cell than expected from random, and have a
tendency to be expressed in only a few tissues. Therefore, contrary
to earlier hypotheses and our expectations, the vast majority of
nonessential disease genes occupy functionally peripheral and
topologically neutral positions in the cellular network. In stark
contrast, essential genes are likely to encode hubs, show highly
synchronized expression with the rest of the genes, and are ex-
pressed in most tissues, being overrepresented among housekeep-
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Fig. 4. Functional characteristics of disease andessential genes. (a) The fraction
of disease genes among thosewhose protein products that interactwith k other
proteins. (b) Venn diagram showing the relationship between the human genes
studied in this work. (c) The fraction of genes with lethal mouse phenotypes
(essential genes) among thosewithmousephenotypes that interactwith kother
proteins. (d) The same as in a, but only for nonessential disease genes, i.e.,
excluding 398 proteins with lethal mouse phenotypes. (e and f ) The fraction of
essential genes (e) and nonessential disease genes (f) among those whose aver-
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nonessential disease genes (h) among those whose transcript is expressed in nT

tissues. Gray horizontal lines in a and c–h indicate the global average. Error bars
represent standard errors. Note that for some data points the error bars are
smaller than the symbol size, and thus are not visible. In a, c, and d gray symbols
are the linearly binned data points, whereas color corresponds to the statistically
moreuniform log-binneddata. Fordetails of the significanceanalysis, see SI Text.

Goh et al. PNAS � May 22, 2007 � vol. 104 � no. 21 � 8689

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S



ing genes. Thus, essential genes are topologically and functionally
central.

This unexpected peripherality of most disease genes can be best
explained by using an evolutionary argument. Mutations in topo-
logically central, widely expressed genes are more likely to result in
severe impairment of normal developmental and/or physiological
function, leading to lethality in utero or early extrauterine life and
to eventual deletion from the population. Only mutations compat-
ible with survival into the reproductive years are likely to be
maintained in a population. Therefore, disease-related mutations in
the functionally and topologically peripheral regions of the cell give
a higher chance of viability.

Disease genes whose mutations are somatic should not be subject
to the selective pressure discussed above. Instead, somatic muta-
tions that lead to severe disease phenotypes should more likely
affect the functional center. To test the predictive power of this
selection-based argument, we studied separately the properties of
somatic cancer genes (Cancer Genome Census; www.sanger.ac.uk/
genetics/CGP/Census) and found that they (i) are more likely to
encode hubs, (ii) show higher coexpression with the rest of the
genes in the cell, and (iii) are more represented among housekeep-
ing genes (SI Fig. 10). The observed functional and topological
centrality of somatic cancer genes fits well with our current under-
standing that many cancer genes play critical roles in cellular
development and growth (11).

Discussion
Throughout history, clinicians and medical researchers have fo-
cused on a few disorder(s) sharing commonalities in etiology or
pathology. Recent progress in genetics and genomics has led to an
appreciation of the effects of gene mutations in virtually all
disorders and provides the opportunity to study human diseases all
at once rather than one at a time (4, 30). This unique approach
offers the possibility of discerning general patterns and principles of
human disease not readily apparent from the study of individual
disorders.

An important tool in this quest is the HDN that represents a
genome-wide roadmap for future studies on disease associations.
The accompanying detailed diseasome map (SI Fig. 13), showing all
disorders and the genes associated with different disorders, offers
a rapid visual reference of the genetic links between disorders and
disease genes, a valuable global perspective for physicians, genetic
counselors, and biomedical researchers alike.

To test whether the conclusions obtained in this work are robust
to the incompleteness of the OMIM coverage, we expanded our
study to include not only genes with identified mutations linked to
the specific disease phenotype, but also those that satisfy the less
stringent criterion that the phenotype has not been mapped to a
specific locus (18). This expansion increased the number of disease-
associated genes from 1,777 to 2,765, but also introduced noise in
the data, because the link between many of the newly added genes
and diseases is less stringent. Yet, the overall organization of the
expanded diseasome map remains largely unaltered (SI Fig. 11),
and none of the trends uncovered in Fig. 4 are affected by this
extension (SI Fig. 12), supporting the robustness of our findings to
further expansion of the OMIM database. Thus, although the maps
shown in Fig. 2 and SI Fig. 13 will inevitably undergo local changes
with the discovery of new disease genes, this will not change the
overall organization and layout of the HDN significantly, because
the HDN reflects the underlying cellular network-based relation-
ship between genes and functional modules.
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