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Immunoglobulin light chain (IgLC) is a component of antibodies, but its free form is observed in the circulation,
which originates from 10 to 40% excess synthesis over heavy chain in B cells. Complete antibodies function as a
defined tetramer structure unit, H2L2; thus, separation of heavy and light chains results in considerable or complete
loss of antigen-binding ability. Free IgLC has been considered as an inconsequential spillover during antibody
assembly because, unlike heavy chain, neither effector functions such as complement activation nor specific-
receptor binding has been identified in IgLCs. Free IgLC in sera and cerebrospinal fluids increases in inflammatory
diseases such as autoimmune diseases and infections, presumably as a result of B-cell activation. Thismay be just a
concomitant event during elevated disease activity, but recent findings suggest that free IgLC is involved in a wide
range of immunological phenomena as a signaling effector or an anti-inflammatory molecule. These effects are
likely to be intrinsic to IgLC. In this review, we attempt to give a comprehensive view about the biological roles of
free IgLC together with the gene expression, secretion, antigen-binding ability, and its metabolic characteristics.
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1. Introduction

Immunoglobulin (Ig), or antibody, is composed of two identical
heavy chain polypeptides and two identical light chain polypeptides
(approximately 22 kDa). In mammalian immune systems, there are
two distinct immunologic types of light chains, κ and λ [1] (Fig. 1). The
complete Igmolecule (IgG, IgA, IgM, IgD, and IgE) contains only one type
of light chain. The ratio of κ to λ light chains secreted as intact Igs differs
among species; for example, the two are almost equal in humans, while
κ-type is dominant in mice. The C-terminal half of light chain is the
constant region (CL), and the N-terminal half is the variable region (VL),
in which the amino acid sequence is quite heterogenic as a result of V–J
recombination and somatic mutations in Igl genes [2].

Heavy and light chains are asynchronously synthesized on the
different ribosomes. Light chain is produced as 10–40% excess over
heavy chain in B cells [3–5]. Excess light chains are secreted as the free
form into the circulation (Fig. 1). The circulating level of FLC is about
1000-fold lower than that of intact Ig due to rapid clearance in the
kidney. In healthy subjects, the free form of the light chain (FLC) κ:λ
ratio is about 2:1. The Fc portion of heavy chain fulfills the effector
function of Igs, whereas the CL domain of light chain has no known
biological function [6]. Thus, FLC has been generally considered as an
inconsequential spillover during antibody production. This view has
been changing with the finding that FLC functions as an immunomod-
ulatory or anti-inflammatory molecule.

This review intends to give a comprehensive view of the biology of
light chains, especially its free form. We will discuss the biological
functions of light chains reported so far, considering their gene
expression, secretion, and antigen (Ag)-binding ability. We will also
briefly address the association of increased FLC levels with certain
diseases and the relevancy. Increased FLC in patients with plasma cell
Fig. 1. Structure and secretory-competency of immunoglobulin molecules. A, Membrane-b
domain; C, Heavy-chain antibody in camels or mice lacking light chain gene. CH1 domain is la
covalent or covalent dimer. The covalent dimerizations are shown as black junctions; F, Secre
Heavy chains with CH1 domain undergo proteasomal degradation by binding BiP. CH1 dom
proliferative disorders and its diagnostic usefulness will not be
addressed here (for reviews, see Refs. [7,8]).

2. Light chain expression

Diversity is essential to ensure that the immune system can
recognize non-experienced pathogens. To produce a diverse antibody
repertoire, antibody genes are assembled by random recombination of
Ig variable (V), diversity (D), and joining (J) gene segments for heavy
chain and V and J segments for light chain [2]. Two light chain isotypes,
κ and λ, which are encoded by different chromosomes, have been
found in all mammals studied [1]. Each locus contains V gene segments
that differ in number among species; e.g., there are approximately 140
Vκ and 3 Vλ in mice and 35 Vκ and 30 Vλ in humans.

Mature B cells exhibit only a single class light chain, either κ or λ, i.e.,
isotype exclusion. Rearrangement of the κ locus precedes that of the λ
locus. If the κ locus arrangement is productive, rearrangement of the λ
locus will be inhibited; otherwise, λ locus rearrangement will be
achieved. Although DNA recombination in the κ or λ light chain locus
occurs in a similar manner as in the Ig heavy chain locus [9], the
regulatory mechanism of Ig light chain isotype exclusion is not well
defined yet [10]. Antibody selection is initiated upon light chain gene
expression in early immature B cells [11].

3. Production and secretion of Ig light chain and free Ig light chain

3.1. Pre-B cell receptor assembly

Igh gene rearrangements occur before Igl gene rearrangements.
Rearranged μ-heavy chains undergo the “quality control” criteria test by
pairing with the invariant Ig-like surrogate light chain. The surrogate
ound immunoglobulin; B, Secretory form of immunoglobulin. No membrane binding
cking; D, FLC λ secretion as monomer or non-covalent dimer; E, FLC λ secretion as non-
tion of heavy chain lacking CH1 domain, observed in patients with heavy chain diseases.
ains in red; VH and VL domains in yellow; CLκ in light blue; CLλ in green.
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light chain composed of VpreB and λ5 [12] is selectively expressed in
progenitor and precursor B (pre-B) cells [13]. This protein associates
with a μ-heavy chain to forman Ig-likeheterodimer (pre-B cell receptor;
pre-BCR). Successful μ-heavy chain production is confirmed by
movement of the complex to the surface of the cells; otherwise, the
pre-B cells die. Once pre-BCR is expressed, pre-B cells undergo further
maturation and differentiation, and thereby the surrogate light chain
expression is turned off [13]. Pre-B cells then stop proliferating and
begin to rearrange the light chain loci.
3.2. Light chain production and B-cell receptor assembly

Heavy chain binding protein, BiP, is a chaperon that is homologous to
the 70 kDa heat-shock protein and strongly binds to the CH1 domain to
hold heavy chains until the heavy chain is matched upwith light chains
[14]. CL domain, which is the cognate partner of the CH1 domain in the
complete Ig molecule, displaces BiP and stabilizes the CH1 domain [14].
Unpaired heavy chains are retained in the endoplasmic reticulum (ER)
and eventually degraded by the proteasomes [15]. After successful Igl
rearrangement, heavy and light chains are assembled into a defined
H2L2 quaternary structure. The completely assembled antibody is
transferred to the plasma membrane to form B-cell receptor, and then
the B cells are subjected to selection by self-antigen presentation in the
environment of bone marrow and the periphery [13].
3.3. Secretion of free Ig light chains

Heavy and light chains are synthesized asynchronously and
assembled in the ER to form complete Ig in B cells at any stage of
development beyond pre-B cells [16,17]. Because of the excess
production of light chains over heavy chains and their secretion
competency, excess light chain is secreted as a free form [3–5].
Degradation of normal Igs does not supply FLC in the circulation [18].

The excess production of light chain over heavy chain maintains a
constant intracellular pool of light chains [19], which is located in the
perinuclear space [20]. This pool of light chainsmediates the release of
the relatively insoluble heavy chains from their ribosomes and
hampers the formation of toxic heavy chain aggregates [21,22].

FLCs exist in the form of monomers, non-covalent, or covalent
dimers in biological fluids: FLC κ consists of nearly equal amounts of
monomer and noncovalent dimer; FLC λ is present as covalent dimers
[23–25] (Fig. 1).
3.4. Clearance and catabolism of free Ig light chains

The kidney is the major site of FLC catabolism. Secreted FLCs
readily pass through the glomerular filtration barrier with a serum
half-life of 2–6 h [26], whereas the serum half-lives of intact Igs are
20–25 d for IgG, 6 d for IgA, 3 d for IgD, 2 d for IgE, and 5 d for IgM [27].
Most FLCs filtered are rapidly catabolized or reabsorbed by proximal
renal tubular cells [4,28,29]. Like other microproteins, FLCs are
readily endocytosed through the brush-border membranes and
degraded into oligopeptides and amino acid residues inside the
lysosomes. In that process, megalin, a 600 kDa glycoprotein receptor,
and cubilin, a peripheral membrane protein anchored to megalin, are
themajormediators of light chain entry [30–32]. The kidney can absorb
10–30 g of FLC per day [4]; therefore, only small amounts of FLCs
are observed in serum and urine under normal conditions [33,34].

In healthy subjects, the serum reference value ranges from 1.2 to
43.5 mg/L for FLC κ and from 3.8 to 55.2 mg/L for FLC λ, depending on
the assaymethod used [35–37]. Themean serumFLC κ/λ ratio is around
0.5 to 12.5. The concentrations of FLC are approximately 1000-fold
lower than those of intact Igs [38].
4. Light chain in Ig antigen-binding

4.1. Contribution of light chain to antigen–antibody interaction

The structural integrity of Ig, including the constant regions, is
necessary for Ag specificity, affinity, and plasticity [39]. As such, light
chains separated from Ag-specific polyclonal antibodies display little or
no Ag-binding activity [40,41]. On the other hand, although separated
heavy chains considerably lose Ag-binding ability, the Ag-binding
ability of heavy chain has been recovered by refolding with unrelated
light chain with affinities approaching the original antibodies [40,42].
Light chain reconstituted with nonspecific heavy chain did not recover
Ag-binding ability [43]. These observations have suggested that
heavy chain plays a rather dominant role in Ag binding. Further, anti-
bodieswithout any light chain are found in camels and sharks, implying
that light chains may not be necessary for effective Ag binding (Fig. 1).
Heavy chain antibodies in camels function at least as well as con-
ventional antibodies [44,45]. In addition, it is possible to obtain the
desired VH domains that possess specific Ag-binding activity from
diverse libraries of VH genes [46].

4.2. Autoantibodies

Light chain appears to play a relatively important role in modulat-
ing antibody specificity [47–49]. The majority (55 to 75%) of all anti-
bodies expressed by early immature B cells display self-reactivity,
including polyreactive and anti-nuclear specificities [50]. Suchnaturally-
occurring autoantibodies typically have a positively charged long heavy
chain CDR3 with a pattern favoring self-reactivity and less specificity
[51–53]. B cells with self-reactivity silence the self-reactivity of the
antibodies by receptor editing, i.e., light chain exchange [50,54,55]. Thus,
light chain can shape or skew the unfavorable antibody reactivity, and
thereby, convert dangerous self-reactive antibodies into innocuous
antibodies.

5. Biological function of free Ig light chains

5.1. FLC as a mediator of hypersensitivity-like responses in allergy

Activation of mast cells through various pathways is the central
mechanism in allergic disorders. IgE is the major mediator of the acti-
vation by crosslinking Ags to FcεRI on mast cells [56]; however, a
considerable number of patients (e.g., about 40% of adult asthmatics and
individuals allergic to cow's milk [57,58]) display allergic symptoms
without increased and/or Ag-specific IgE.

In 2002, Redegeld et al. [59] revealed that light chains separated
from monoclonal antibodies specific for trinitrophenol (TNP) or
oxazolone mediate a mast-cell-dependent hypersensitivity-like
response in mice challenged with the respective Ags. They excluded
the involvement of endogenous Igs or Fc receptors, such as FcεRI and
FcγRIII, in FLC-mediated reactions. They suggested that the reactionwas
elicited by FLC, because F991, a 9-mer polypeptide derived from the
light chain binding domain in Tamm-Horsfall glycoprotein, specifically
inhibited the FLC-mediated allergic response. However, Tamm-Horsfall
glycoprotein binds to the CDR3 region of light chain [60,61], which is
exposed on the surface of the antibody in both free and bound
light chain forms [62]. Thus, F991 is likely to bind not only FLC but also
Igs. The specificity of F991 to the ‘free’ form of light chain has not
been confirmed at the molecular level. The phenomenon by light chain
is expected to explain non-IgE allergic responses as described above
[63–66], although it is still unknown how FLCs activate mast cells to
elicit allergic responses. Possible light chain receptors have been
implicated [59], but not yet found.

Earlier works on light chains separated from Ag-specific Igs [67]
showed that they had little or no Ag-binding ability, raising a question
about the Ag-binding ability and specificity of endogenous FLC.



Table 1
Clinical relevancy to the increases of free immunoglobulin light chains and abnormal FLC κ/λ ratio in biological fluids.

Diseases Findings Major results/conclusions Year, (Ref no.)

Autoimmune diseases
SLE Serial urinary FLC measurement serves as a

valuable guide to disease management
Urinary FLC increase preceded the onset of active
disease conditions, while successful treatment was
associated with decreasing urinary FLC level

1974, [85]

Increased, decreased FLCs, and/or abnormal
FLC κ/λ ratio in urine of patients with SLE

Abnormal FLC levels and/or FLC κ/λ ratio, 12/18 (67%) 1998, [86]

Urinary FLC increase might be a marker
of B-cell stimulation

A significant rise in urinary FLCs was associated with a
subsequent clinical relapse of disease

1989, [87]

Urinary FLC levels were increased in SLE
patients in active state

Mean value of serial FLC measurements was 2.7–7.2-fold
greater in active than stable states (5/5)

2000, [88]

RA and SLE Increased FLCs in the sera of patients with
SLE and in the synovial fluid in patients with RA

Increased in the sera of 38/40 (95%) with SLE and in the
synovial fluid of 12/13 (92%) with RA

1966, [89]

A significant rise in urinary FLCs was always
associated with a subsequent clinical relapse of
the disease.

β2-microglobulin and lysozyme did not increase during
monitoring, indicating that the FLC increase was not due
to tubular dysfunction

1989, [87]

RA and primary Sjögren's
syndrome

Serum FLC levels are increased and correlated with
disease activity in RA and primary Sjögren's syndrome

Serummean FLC levels of patients with RA (n50) and
primary Sjögren's syndrome (n139) were approximately
1.5–2-fold greater than those in controls (n80)
(pb0.001–0.0001)

2006, [90]

Multiple sclerosis (MS) CSF FLC κ level was a specific marker for MS Increased CSF FLC κ in 33/39 (84%) MS; 1.4±1.21 mg/L
(Mean±SD), but no detectable CSF FLC κ in all
(except one) patients with inflammatory and
infectious diseases

1986, [91]

FLC κwas concentrated 71–120-fold in the CSF of patients
with MS compared to reference proteins

1986, [91]

CSF FLC κwas increased in MS and CSF FLC λwas
increased in infections

Higher levels of CSF FLC κ, FLC κ/λ ratio, FLC κ/Alb were
characteristics of MS; Levels of FLC κ and FLC λwere
correlated with IgG level in MS (r=0.79) and
infections (r=0.81), respectively

1987, [92]

FLC κ and FLC λ indices [(CSF FLC/serum FLC):(CSF
Alb/serum Alb)] distinguish MS from infections in
the CNS

Increased FLC κ and FLC λ indices in 86% (123/143) and
85% (86/101), respectively, with MS, 40% (30/75) and
23% (15/64), respectively, with infections

1988, [93]

FLC κwas more accurate for the diagnosis of MS
than other clinical parameters

Areas under curves with FLC κ, CSF IgG, and IgG index
were 0.91, 0.49, 0.71, respectively, by the ROC
curve analysis

1989, [94]

Increased CSF FLCs in early MS patients 19/33 (58%) patients with possible and probable MS
had increased FLC levels

1990, [95]

Ratio of urinary FLC κ to creatinine was useful for
monitoring disease activity

Increased of FLC κ/creatinine corresponded to worsening
of disease.

1991, [96]

CSF FLC κ level predicted subsequent physical deterioration Patients with CSF κ levels in the upper quartile had a higher
risk of progression

1995, [97]

FLC κ in CSF may predict disease progression
to MS in patients with isolated optic neuritis

Only elevated FLC κ in CSF observed in 5 of 8 patients was
correlated with disseminated disease among the clinical
tests tested

1986, [98]

Heart failure FLCs are increased in the sera of patients with
heart failure

The mean serum FLC κ and FLC λ concentrations of the
patients were 1.47-fold and 2.14-fold, respectively,
those of the controls

2005, [97]

FLC κ and FLC λ concentrations were correlated with
serum NT-proBNP (r=0.71 with FLC κ, r=0.90 with FLC λ)

2005, [99]

NT-proBNP decreased corresponding to decreased
FLC in serum of patients with cardiac dysfunction
in AL amyloidosis (n52)

Reduced concentration of circulating amyloidogenic precursor
(FLC) may be associated with improvement of cardiac
dysfunction

2006, [100]

Diabetes mellitus Greater excretion of FLC κ into urine in IDDM
patients with normal albumin excretion

FLC κ/albumin×10 (Mean±SEM): 10.5±4.0 in IDDM
patients with proliferative retinopathy; 32.4±7.9 in IDDM
patients without proliferative retinopathy; 1.1±0.3 in
non-IDDM patients with proteinuria

1985, [101]

Duration of IDDM is associated with excretion
of FLC κ

mg/GFR (Mean±SEM): 44±5 in long-standing IDDM;
6±1 in newly diagnosed IDDM; 2±1 in controls

1990, [102]

Higher urinary FLC κ levels in patients with NIDDM mg/GFR; 7±2 in NIDDM, 2±1 in controls (Mean±SEM) 1990, [102]
Renal failure
Renal insufficiency The concentration of FLCs was inversely

correlated with glomerular filtration rate
FLC κ vs. GFR, r=−0.88, pb0.001; FLC λ vs. GFR,
r=−0.85, pb0.001 (n29)

1976, [103]

Uremia Abnormal FLC κ/λ ratio in serum and inconsistency
of FLC κ/λ ratio with total light chain κ/λ ratio

Lower FLC κ/λ ratio in 6/8 with uremia than those
in controls

1974, [104]

Chronic renal failure and
nephropathy

Increased FLC λ and decreased FLC κ/λ ratios in urine Both FLCs increased in the urine of 13/31 (42%) patients
and increased FLC λ in 5/31 (16%)

1998, [86]

Proteinuria Both increased FLC κ and λ in urine (polyclonal increase) 45(3.8–211, range) mg/24 h of FLC κ; FLC κ/λ ratio,
1.27 (0.23–3.4, range)

1982, [105]

Hemodialysis Increased FLC λ in patients with chronic hemodialysis Serum FLC κ and FLC λ in patients on hemodialysis
were increased 4.0-fold and 1.8-fold, respectively,
over the controls

1991, [73]

Inflammation in CNS The serum polyclonal FLC levels were approximately double in
patients with chronic active sarcoidosis

Serum FLC κ and FLC λ in the patients were increased
2.4-fold and 1.7-fold, respectively, over the controls

1981, [106]

Intrathecal immunoglobulin synthesis was identified by
FLC κ and FLC κ CSF/serum

The areas under the ROC curves were 0.991 for FLC κ only
and 0.978 for FLC κ CSF/serum

2004, [107]
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Table 1 (continued)

Diseases Findings Major results/conclusions Year, (Ref no.)

HIV infection Increased FLC levels in the CSF and sera of patients with
HIV-1 infection

CSF and serum FLC levels in patients with HIV-1 infection were
approximately 10-fold and 3 to 5-fold, respectively, greater than
those in controls; These levels were also slight and
approximately 2-fold greater than those in patients with MS

1991, [108]

The presence of CSF FLCs, especially λ-type FLC, without
oligoclonal IgG or increased intrathecal IgG synthesis

CSF FLCs with restricted heterogeneity in the absence of oligoclonal
IgG (14/18) and normal intrathecal IgG synthesis (8/11)

1990, [109]

Alb, albumin; CSF, cerebrospinal fluid; FLC, free immunoglobulin light chain; GFR, glomerular filtration ratio; HIV, human immunodeficiency virus; IDDM, insulin-dependent
diabetes mellitus; NIDDM, non-insulin-dependent diabetes mellitus; NT-proBNP, N-terminal natriuretic peptide type B (NT-proBNP); RA, rheumatoid arthritis; ROC, receiver
operating characteristic; SLE, systemic lupus erythematosus; MS, multiple sclerosis.
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Redegeld et al. [59] detected a light chain portion in the sera of
immunizedmice that binds to the hapten-conjugated column, whereas
we did not detect Ag-binding activity of purified FLC fractions in
sera from patients with allergy [68]. If FLCs have Ag-binding ability
comparable to the parent antibodies, such FLC-antibodies may be
nonspecific and thus could be self-reactive or induce unnecessary
immunological responses (see Section 4). It is possible that antigen
specificity is not necessary in light chain-mediated hypersensitivity-
like responses, as observed in non-specific IgE-mediated immune
sensitization [69].

5.2. Other possible immunological roles of FLC

Neutrophils are the main cells of the first line of the non-specific
immune defense system during bacterial infections, which are still the
main cause of increased morbidity and mortality among uremic
patients [70], mainly as a result of the altered functions of neutrophils
[71]. Mechanisms of altered neutrophil function in uremia include
malnutrition, iron overload, increased intracellular calcium, dialysis
treatment, and circulating plasma proteins [70]. Neutrophils isolated
from uremic patients have disrupted carbohydrate metabolism and
reduced chemotactic activity, thereby demonstrating disturbed intra-
cellular killing ability.

In patients suffering severely impaired kidney function, serum FLC
was increased about 5-fold [72]. Interestingly, Wakasugi et al. [73]
observed an increase of FLC κ (about 2-fold) and FLC λ (about 4-fold) in
patients receiving hemodialysis. Cohen et al. [74,75] revealed that FLCs
irreversibly inhibited the chemotactic movement of neutrophils and
glucose uptake by the cells. Further, in multiple myeloma, in which
patients often display light chain monoclonal gammopathy, an
increased risk of bacterial infections as a result of decreased neutrophil
functions has been indicated [76]. This suggests that the modulatory
effect of light chain on neutrophils is associated with a bacterial
infection-prone feature of uremia and multiple myeloma.

FLC also attenuated the coordinated apoptotic cell death of
neutrophils, which was abolished by light chain antibodies [71]. This
may be associated with the chronic inflammatory status observed in
end-stage renal disease patients. Hutchison et al. [77,78] found that
removal of FLC by hemodialysis increased the rate of renal recovery in
multiple myeloma patients with severe renal failure. Matsumori et al.
[79] demonstrated that FLC greatly improved survival in viral myo-
carditis, partly via the anti-inflammatory effect. This suggests that FLC
is involved in a wide range of immunological regulatory systems.
FLC could exert this effect directly, or the hypothetical idiotypic network
of circulating FLC might be involved in such modulatory effects [80,81].

Wall et al. [82] showed that light chain binds not only B-cells but
also synthetic phospholipid membranes. Moreover, it has been
demonstrated that light chain binds mast cells. The direct inhibition
of viral replication by nonspecific light chains [82] indicates the
interaction of light chainswith humanamnion cells used as the host, or
the virus particles. These findings suggest that light chains interact
with plasma membranes to induce stimulatory effects on the cells. In
fact, the cell surface is positively charged and Igs, aswell as light chains,
are anionic. Further, light chains have been shown to stimulate
tyrosine phosphorylation [83], enhance tumor forming factor-β
secretion ofmesangial cells [84], and increase interleukin-10 secretion
in the heart [79].

6. Increased FLC and diseases

6.1. FLC in diseases

Increases of FLC κ, FLC λ, or both have been observed in various
diseases (Table 1; FLC increases in plasma cell proliferative disorders are
not included). Urinary FLC levels increase when tubular reabsorption of
FLC is impaired and/or renal FLC filtration overwhelms the kidney's
ability to catabolize [85–88,101–105]. Serum FLC levels increase when
FLC production is elevated, presumably as a result of B-cell activation in
inflammatory diseases [99,106,107], such as autoimmune diseases
[87,90,96] and infections [93,108,109].

6.2. Multiple sclerosis

Intrathecal Ig light chain synthesis is commonly observed in
inflammatory disorders, including multiple sclerosis [91–95,97,98,107].
Several studies have shown the increase of FLC κ, but not FLC λ, in the
cerebrospinal fluid (CSF) and urine of patients with multiple sclerosis,
suggesting its clinical usefulness for measurement [91,94]. On the other
hand, isoelectric focusing analysis to identifymultiple bands (oligoclonal
pattern of FLC) in CSF is more sensitive to detect Ig synthesis within the
brain and is more informative than FLC quantification [110]. Thus,
detection of the “finger pattern” by isoelectric focusing analysis is
recommended as a diagnostic method for multiple sclerosis [111]. The
advantage of quantitative assay is the ability to monitor the therapeutic
efficacy and predict prognosis [97].

6.3. Diabetes mellitus

Microalbuminuria is the primary clinical marker of early glomer-
ular damage in patients with diabetes mellitus; however, several
tubular proteins and enzymes can be detected before the onset of
microalbuminuria, indicating that tubular dysfunction precedes
glomerular damage [112]. Teppo and Groop [101] showed increased
excretion of FLC κ in the urine of patients with diabetes but not with
nondiabetic proteinuria, suggesting the specific increase of FLC κ in
diabetic patients. They also found increased FLC κ in the early stage of
diabetes when no abnormality was detected by measuring urinary
albumin and β2-microglobulin, a tubular damage marker [102]. Thus,
urinary FLC κ can be used as a marker of early diabetic nephropathy.

7. Conclusions

Light chain contributes to form Ag–antibody complex by compos-
ing the binding site. Separated light chains do not have comparable
Ag-binding ability. It is likely that light chain is initially required to
confer Igs secretory competency and allow greater antibody diversity.
Excess light chains spill over as FLCs into the circulation. In the initial
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development of the antibody system, spilled light chains might be just
inconsequential remnants.

However, such spillovers can be used as signaling molecules among
the cells. For example, degraded peptide fragments of hormone precur-
sors, such as pro-opiomelanocortin [113], proglucagon [114], and the
linker of insulin, C-peptide [115], function as signaling molecules.
Moreover, ATP filling synapse as a counterpart anion against positively
charged acetylcholine is used as a neurotransmitter. ATP spilled
over from apoptotic cells functions as a “find me” signal so that dying
cells are removed [116]. Moreover, living cells leak trace ATP that
probably forms microclimate [ATP]e in the peripheral spaces, which
may be involved in establishing the basal level of activation [117]. It is
possible to think that such fragments were initially remnants and then
receptors for them developed later, implying that FLC is utilized as a
signaling molecule after emergence into the circulation. Moreover,
B cells can enhance FLC secretion irrespective of their antibody produc-
tion rate [5], indicating the presence of an independent regulatory
system for light chain production from the antibody production rate.
To further elucidate the biological roles of FLC, identification of the
responsible mechanism or receptors is necessary.

It is still unknown how FLC mediates its biological functions.
The existence of receptors for FLCs is suggested. Another possibility is
the binding of FLC to the cell surface or the endocytosis of light chains.
Data from separate light chain analysis suggest that the requirement
of antigen-binding ability for FLCs is unlikely [69]. Indeed, in anti-
inflammatory or modulating effects of neutrophil functions by FLC,
antigenic specificity and binding ability are unnecessary. The usually
hidden region of CL domain in intact Ig might function in these effects.

The circulating level of FLC increases in association with disease
activity orwhen the clearance is disturbed. In the former, light chainmay
play a role in thepathogenesis of thediseasewhile, in the latter, increased
FLC could induce unnecessary reactions, such as toxicity to the kidney.
Whichever mechanism is used, the measurement of FLC in biological
fluids may provide a useful parameter to understand the role of FLC in
diseases and to monitor disease progression for diagnostic purposes.
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