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A B S T R A C T

Both stem cells and cancer cells are thought to be capable of unlimited proliferation. More-

over, many tumours and cancer cell lines express stem cell markers, including adenosine

triphosphate (ATP)-binding cassette transporters, by which the cells pump out specific fluo-

rescent dyes as well as anti-cancer drugs, suggesting either that cancer cells resemble stem

cells or that cancers contain stem-like cells. Using the common characteristics of brain

tumour cells and neural stem cells, several research groups have succeeded in identifying

stem-like cells (cancer stem-like cells) in brain tumours and brain cancer cell lines. The

purified cancer stem-like cells, but not the other cancer cells, self-renew and form tumours

when transplanted in vivo. Thus, cancer stem-like cells in brain tumours might be a crucial

target for anti-brain tumour therapy.

� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recent progress in stem cell research might bring us closer to

being able to regenerate cells or tissues lost by injury or ill-

ness. Stem cells are defined as cells that self-renew indefi-

nitely and also give rise to differentiated cells.1 During the

last decade, it has been revealed that almost all tissues con-

tain tissue-specific stem cells, which continuously generate

the residential differentiated cells responsible for tissue func-

tions and homeostasis.2 Neural stem cells (NSCs) in the cen-

tral nervous system (CNS), for example, self-renew and give

rise to neurones, astrocytes and oligodendrocytes throughout

life.3,4 If our own NSCs can repair the damaged brain, they

would be the best cells for therapy.

There is increasing evidence that malignant tumours, such

as leukaemias, breast cancers and brain cancers, contain the

cells that maintain the characteristics of tissue-specific stem

cells and are malignant.5–20 Malignant gliomas, for example,

contain both proliferating cells expressing stem cell markers

and differentiating cells expressing either neuronal markers
er Ltd. All rights reserved
or glial markers, raising the possibility that the tumours

may contain NSC-like cells.21–23 This idea is supported by re-

cent findings that malignant gliomas can be generated from

both NSCs and glial lineage cells,24–26 such as oligodendrocyte

precursor cells (OPCs) or astrocytes, which can behave as

NSCs in appropriate conditions.27–33

There is other evidence that malignant tumours might con-

tain cancer stem-like cells (CSCs). Although many anti-cancer

drugs have been used to eliminate cancers, some cancer cells

usually survive and the cancer recurs, indicating that the sur-

viving cells are not only resistant to such anti-cancer drugs but

are also malignant. It was shown that various ATP binding cas-

sette (ABC) transporters, such as the protein encoded by the

multi-drug resistant gene (MDR), the multi-drug resistant pro-

tein (MRP), and the breast cancer resistant protein (BCRP1),

contribute to drug resistance in cancers.34,35 Interestingly,

some of these transporters are also expressed in many kinds

of normal stem cells. BCRP1, for example, excludes the fluo-

rescent dye Hoechst 33342, identifying a side population (SP),

which is enriched for stem cells.36–38 Together, these findings
.
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suggest that cancers might contain a SP that is enriched for

cells with the characteristics of CSCs.

Using these common characteristics of NSCs and brain

cancer cells, several groups have demonstrated that such

stem-like cells, but not the other cells in brain tumours or brain

cancer cell lines, can self-renew, express well-known NSC

markers, such as Nestin, and form tumours when transplanted

in vivo,11,13–19 suggesting that malignant brain cancers contain

CSCs and that stem cells might be the primary target of tumo-

urigenesis. For effective therapy against brain tumours, it is

crucial to characterise brain CSCs and find ways to kill them.
Brain CSCs

Fig. 1 – Possible origins of brain cancer stem-like cells

(CSCs). If neural stem cells (NSCs) and glial lineage cells,

such as oligodendrocyte precursor cells (OPCs) or astrocytes,

which can behave as NSCs in appropriate conditions,

acquired oncogenic mutations, they could become brain

CSCs and form malignant brain tumours.
2. The origin of brain cancers

It has traditionally been thought that brain cancers arise

either from differentiated neural cells or from their precursor

cells that acquire oncogenic mutations. However, since NSCs

have been discovered in the adult CNS,39,40 it has been specu-

lated that NSCs might be a principal target of such mutations.

This speculation is supported by many findings. Firstly, most

malignant brain tumours, including glioblastoma multiforme

(GBM) and medulloblastoma, are immunolabelled for both

NSC markers, such as Nestin, Bmi1, and Sox2, and differenti-

ation markers, including the neuronal marker microtubule

associated protein (MAP) 2, the astrocyte marker glial fibril-

lary acidic protein (GFAP), and the oligodendrocyte marker

galactocerebroside.21–24 Secondly, whereas NSCs survive and

proliferate throughout life, differentiated neural cells do not,

suggesting that NSCs have more chance to accumulate onco-

genic mutations.5–9 Finally, using a combination of transgenic

mice and a retrovirus system, two groups have elegantly dem-

onstrated that Nestin-positive NSCs and GFAP-positive astro-

cytes formed malignant gliomas in vivo: Holland and

colleagues infected transgenic mice that express the receptor

of the avian leukosis virus (ALV) from either a nestin or a gfap

promoter, with recombinant ALVs encoding oncogenic genes,

such as platelet-derived growth factor (PDGF) receptor beta, or

activated Akt, or activated Ras, and found glioblastomas in

the brain.24,26 De Pinho and colleagues overexpressed a con-

stitutively active form of epidermal growth factor (EGF) recep-

tor in either NSCs or astrocytes from Ink4a/Arf�/� mice,

transplanted them into the brain, and found that the cells

formed high-grade gliomas.25 Taken together, these findings

suggest that these oncogenic mutations in either NSCs or

astrocytes are sufficient to cause malignant gliomas. It is of

interest that such transformed astrocytes acquire the expres-

sion of both Nestin and A2B5 (a well-known marker of rat

OPCs) and lost GFAP expression because it has been shown

that both OPCs and astrocytes can behave as multipotent

NSCs27–33 and that transformed OPCs can form malignant gli-

omas in vivo.41 Therefore OPCs might be the source of at least

some malignant gliomas (Fig. 1).
3. Preparation of brain CSCs

3.1. Purification of CSCs from brain tumours

Recently, several groups succeeded in isolating CSCs from

both medulloblastomas and glioblastomas.11,13–19 They cul-

tured dissociated tumour samples and expanded the cells in
serum-free medium containing basic fibroblast growth factor

(bFGF) and EGF. The cells formed floating aggregates (neuro-

spheres) just as NSCs do in the same conditions. These aggre-

gates self-renewed in culture and expressed NSC markers,

such as Nestin, CD133, and Notch, as well as differentiation

markers, such as MAP2, GFAP and myelin proteins. Moreover,

such aggregates formed malignant tumours when trans-

planted in vivo. Together, these findings indicated that both

medulloblastomas and glioblastomas contain cancer-initiat-

ing NSC-like cells. Using an immunopurification with anti-

CD133 antibody that recognises many kinds of stem cells,42

Derks and colleagues purified brain CSCs from human medul-

loblastomas and GBMs.14,18 They demonstrated that as few as

100 CD133-positive GBM cells can form tumours in NOD-SCID

brain, suggesting that CD133 is an excellent marker of brain

CSCs, as well as of normal stem cells (Fig. 2). Therefore, it is

of great interest to identify any specific markers expressed

in CD133-positive CSCs.

3.2. Purification of CSCs from brain tumour cell lines

Cancer cell lines might be alternative sources of CSCs. Many

cancer cell lines can be maintained indefinitely in culture

and form tumours like the original one when transplanted

in vivo. Because many such cell lines were derived from single

cancer cells, it seems likely that they do not contain any con-

taminating normal stem cells, such as haematopoietic stem

cells, bone marrow (BM)-derived mesenchymal stem cells,

or NSCs, all of which are recruited to tumours in vivo.43–47

BM-derived mesenchymal stem cells, for example, promote

angiogenesis and support tumourigenesis; when they are

eliminated in vivo, the growth of a transplanted tumour is sig-

nificantly inhibited,42 suggesting that both endogenous

(CSCs) and exogenous stem cells (normal stem cells) contrib-

ute to tumourigenesis in vivo. Moreover, brain CSCs from hu-

man GBM can form neurospheres in the presence of bFGF and



Fig. 2 – Brain cancer stem-like cells (CSCs) and tumorigenesis. Brain CSCs self-renew, produce non-CSCs (cancer cells) and

form malignant tumours. Cell aggregates containing CSCs form metastatic tumours. Anti-cancer drugs and irradiation cause

cancer cells to die by apoptosis, however CSCs survive and regenerate cancer.
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EGF, even after they have been cultured in the medium with

10% serum or in the serum-free medium without both cyto-

kines for 14 d, suggesting that CSCs in GBM can be main-

tained in normal culture conditions, in which all normal

NSCs quickly lose their multipotentiality and differentiate

into neurones and glia.19 Thus these findings make cell lines

attractive models to investigate the characteristics of CSCs.

In fact two groups have shown that many cancer cell lines

contain CSCs.16,17 Using Hoechst 33342 staining and flow

cytometry, they found that a number of established cancer

cell lines, including rat and human glioma cell lines and hu-

man neuroblastoma cell lines, all of which have been main-

tained in culture for decades, contain a small SP. They

demonstrated that the SP cells, but not the non-SP cells,

self-renewed in culture, were resistant to the anti-cancer drug

mitoxantrone, and formed tumours when transplanted

in vivo (Fig. 2). Thus, the SP in cancer cell lines contains cells

with characteristics of both stem cells and cancer cells.

4. Signalling pathways involved in the
maintenance of brain CSCs

Because both cancer cells and normal stem cells can prolifer-

ate indefinitely, both types of cells might share the mechan-

ism for self-renewal.8,48 For example, signalling pathways,

activated by PDGF, EGF, bFGF, insulin-like growth factor,

Notch, Hedgehog (Hh) and Wnt are important for the prolifer-

ation of NSCs and many cancer cells. I focus on three of these

pathways – those activated by Notch, Wnt/Frizzled (Frz) and

Hh, all of which are involved in brain tumourigenesis.

4.1. Notch signalling

Notch receptors are involved in a number of biological func-

tions, including cell proliferation, differentiation, survival

and tumourigenesis.49 There are four known mammalian

Notch receptors, Notch 1–4, and five ligands, Delta-like-ligand

(Dll) 1, 3 and 4, and Jagged1 and 2. Following the activation,
Notch is cleaved in its extracellular region by metalloproteases

and in its intracellular region by presenilins (PS), releasing the

Notch intracellular domain (NICD) from the plasma mem-

brane. The NICD then translocates into the nucleus, associates

with the CSL transcription factor CBF1/RBP-Jk, and activates a

number of target genes, including the hairy and enhancer-

of-split (Hes) genes (Fig. 3(a)). It has been shown that the inac-

tivation of Notch signalling leads to serious developmental

defects: Jagged1, Notch1, Notch2, and PS1and 2 knockout mice

are all embryonically or perinatally lethal.50–52

There is accumulating evidence that Notch activation not

only maintains the multipotentiality of NSCs but also pro-

motes their differentiation into astrocytes.53,54 Inactivation

of Hes1 or Hes5 causes both precocious neuronal differentia-

tion and the reduction of Muller glial cell production in ret-

ina.55,56 Moreover, it was shown that Notch signalling is

strongly activated in both primary human gliomas and a num-

ber of glioma cell lines.57 Depletion of Notch1, Dll1, or Jagged1

by RNAi blocks glioma proliferation in vivo and in vitro.58 To-

gether, these findings suggest that Notch signalling is involved

in gliomagenesis, as well as in normal brain development.

4.2. Wnt signalling

The Wnt family of secreted proteins co-ordinates diverse

developmental processes, including cell proliferation and fate

decisions.59–61 In mammals, there are 20 Wnt members, 10

Wnt receptors (called Frz) and 5 soluble forms of Frz, which

are natural inhibitors of Wnt signalling. Once Frz is activated,

b-catenin, which is a central player in canonical Wnt signal-

ling, accumulates in the nucleus and induces the expression

of Wnt target genes, including c-myc and cyclin D1, by

associating with LEF/TCF transcription factors (Fig. 3(b)). The

non-canonical Wnt signalling pathway activates calcium/

calmodulin dependent protein kinase and protein kinase C,

although the molecular details are still uncertain.59–61

Wnt signalling is also crucial for CNS development. Wnt1

and 3a, Frz5 and 8, and b-catenin, for example, are expressed



Fig. 3 – Notch, Wnt, Hh signalling pathways. (a) Notch, (b) Wnt/Frz, or (c) Hh/Ptc/Smo signalling pathway activates a number of

genes, which regulate cell proliferation and cell fates. The constitutive activation of the pathways leads to abnormal central

nervous system (CNS) development and brain tumourigenesis.
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in the ventricular and subventricular zones (VZ/SVZ) in the

developing brain.62–65 Inactivation of Wnt1, Wnt3a, or b-cate-

nin causes developmental brain defects.61,66,67 Moreover,

overexpression of a stabilised form of b-catenin in neural pre-

cursor cells caused a hyperplasia of lateral ventricles.65 Some

factors in the Wnt signalling pathway, including b-catenin

and axin1 (an inhibitor in the pathway), are mutated in

medulloblastomas.68,69 Thus these findings suggest that

hyper-activation of Wnt signalling may promote brain

tumourigenesis.

4.3. Hh signalling

Hh signalling is also involved in proliferation, development

and tumourigenesis.70,71 In mammals, there are three Hh

members, Sonic, Desert and Indian, all of which are secreted

proteins. When Sonic Hh (Shh), for example, binds to the

Patched1 (Ptc1) transmembrane receptor, another transmem-

brane protein, Smoothened (Smo), which is normally re-

strained by Ptc, is relieved and activates the zinc-finger

transcription factor Gli. Activated Gli accumulates in the nu-

cleus and induces the expression of target genes, including

wnt, insulin-growth factor 2 (igf2), and pdgf receptor a (Fig. 3(c)).

There are three Gli transcription factors in mammals. Gli1

and 2 function as activators of Shh signalling, whereas the

cleaved form of either Gli2 or Gli3 antagonises the Shh–Gli1/

2 signalling pathway. The Shh signalling pathway is essential

for CNS development: Shh, Ptc, Gli2 or Gli3 knockout mice die

before birth with severe defects in the brain, although Gli1

knockout mice develop normally.72–75 Conditional inactiva-

tion of Smo blocks NSC proliferation in vivo and in vitro.76 To-

gether with the finding that Glis, Ptc1 and Smo are all

expressed in the VZ/SVZ, these observations suggest that

Shh signalling may be essential for the maintenance of NSCs.

Ectopic activation of Hh signalling in CNS is likely to lead

to brain tumour formation.77,78 For example, Gli1 is highly

activated in many brain cancers,77 including medulloblas-

toma, glioblastoma and primitive neuro-ectodermal tumours,

some of which also have mutations in Ptc1.79 It was shown

that overexpression of Gli1 in the developing tadpole CNS

gives rise to brain tumours.80 Moreover, cyclopamine, which

is a specific inhibitor of Smo, blocks the growth of several pri-
mary gliomas, medulloblastomas and glioma cell lines.80,81

Taken together, these findings suggest that Hh signalling

plays an important role in brain tumourigenesis.

5. Conclusion

Although the expression of stem cell markers and the SP phe-

notype can be used to separate brain CSCs, even the smallest

populations of CSCs seem to be contaminated with non-stem

cells. Nonetheless, a combination of these methods might

greatly enrich CSCs, which are crucial targets for therapy.

Once we are able to isolate CSCs, we can study their proper-

ties and analyse their gene expression profile using DNA/oli-

gonucleotide microarrays, RT-PCR and cDNA subtraction

methods. We could identify the signalling pathways required

to maintain CSCs. We could also use the antibody array to

identify the cell-surface molecules specific for CSCs82 and

use the cells for drug screening, which may be the most effec-

tive way to discover drugs for therapy.
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