
“The Event Model” for Situation Awareness

Opher Etzion1, Fabiana Fournier2, and Barbara von Halle3

1Information Systems Department, Yezreel Valley College, Israel, opher.etzion@gmail.com
2 IBM Research – Haifa, Haifa University Campus, Haifa 3498825, Israel, fabiana@il.ibm.com

3 Sapiens International Corporation , Barbara.vonHalle@sapiens.com

Abstract

The Event Model (TEM) is a novel computation-independent model targeted at helping non-programmers
to define and manage the logic of event-driven applications. The model design is based on a collection of
building blocks that comprise a set of diagrams and normalized tables to define the event business logic
of an application, a set of principles that define the set of assertions that a correct model should satisfy,
and a glossary to express all the business concepts. The validity of the TEM model created is checked
and guaranteed through a related set of integrity principles, and automatically translated to execution
by the code generator. In this paper we concentrate on the model itself. The concepts and facilities of the
model are demonstrated through an example taken from the Cold Chain Management (CCM) domain.
Preliminary tests in the scope of transport and logistics indicate that the tables and diagrams in TEM
are well accepted and embraced by non-technical people, who stress the ease and friendly manner of
defining the event logic as the main benefit of TEM.

Keywords: Event-driven applications, model driven engineering, computational independent model,
conceptual modeling, real-time business intelligence.

1 Introduction

In this paper we present The Event Model (TEM), a novel way to model, develop, validate, maintain, and
implement event-driven applications. The Event Model follows the Model Driven Engineering approach [1, 3]
and can be classified as a CIM (Computation-Independent Model), providing independence in the physical data
representation and implementation details, omitting details that are obvious to the designer. This model can
be directly translated to an execution model (PSM-Platform-Specific Model in the Model Driven Architecture
terminology) through an intermediate generic representation (PIM-Platform-Independent Model).

TEM is based on a set of well-defined principles and building blocks, and does not require substantial
programming skills, therefore targets non-technical people. In this paper we bring a high overview of TEM
and focus on the main building blocks that constitute a TEM model, that is TEM diagrams and logic tables.
In TEM, the event derivation logic is expressed through a collection of normalized tables. These tables can be
automatically validated and transformed into code. This idea has already been successfully proven in the domain
of business rules by The Decision Model (TDM) [20]. The Decision Model groups the rules into natural logical
groups to create a structure that makes the model relatively simple to understand, communicate, and manage.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

105

We illustrate the model throughout this paper using a scenario from the Cold Chain Management (CCM)
domain. The example employed is a simplified version, yet representative, of a real-word use case in that
domain. A cold chain is defined as a temperature controlled supply chain. One of the major issues in this field
is the transportation of temperature sensitive products through thermal and refrigerated packaging methods and
the logistical planning to protect the quality of these shipments. Examples of cold chain products are fruits and
vegetables, pharmaceuticals, and technology products. The cold chain serves the function of keeping food fresh
for extended periods and eliminating doubts over the quality of the food products. Unfortunately, about 25%
of all food products transported in the cold chain are wasted each year due to breaches in integrity that cause
fluctuations in temperature and product degradation1. In our scenario, John Cool is the quality control officer
at NeverRotten Ltd. He is in charge of setting control policies for the online monitoring of the company’s cold
chain products. John’s task is to detect a potentially dangerous condition of a container before an actual product
quality disqualification takes place, thus remediation actions can be taken, saving time and money. To this end,
John wants to define two main policy rules:

• Alert me when, inside a container, the temperature is in the permitted range constantly increases for the
last 5 minutes.

• Alert me whenever a delay longer than permitted occurs.

We show how TEM can help John Cool to easily create the logic needed to monitor any delays and temperature
changes in a cold chain container to achieve the goals stated above.

2 TEM in a Nutshell

This section provides a high level view of The Event Model. We discuss its origins, design goals, building
blocks, and basic concepts.

2.1 TEM and Concept Computing

TEM follows the paradigm of concept computing [6], according to which all model artifacts are concepts. A
concept is a meaningful term within the user’s domain of discourse. The model consists of concepts and semantic
relationships among concepts. These concepts are based on the user’s cognitive terms, and are independent of
the IT terms or implementation. The vision is to strive for automatic transformation along with model-driven
engineering; this approach contrasts with the current state of practice in which the transformations between the
three levels of models are mostly done manually. The vision is to have a concept-oriented model and transform
it in a mostly automated fashion to create an execution model. Concept computing belongs to the family of
executable specifications, which has been studied in different domains [1]. While the concept computing vision
aims at simplification, the model still needs to be expressive enough to allow this automatic transformation. The
success of such a model in the event-driven domain depends on the level of simplification relative to existing
event-driven models. In the construction of TEM we employed some simplification goals, as discussed below.

2.2 TEM Simplification Goals

After observing and experiencing the relative complexity of event processing tools, we wanted to define sim-
plification goals for the design of TEM so it can used by non-IT experts. In this section we outline these
simplification goals.

1 http://people.hofstra.edu/geotrans/eng/ch5en/appl5en/ch5a5en. html

106

1. Stick to the basics by eliminating technical details. Looking at designs and implementations of event-
driven applications, we observe two types of logic: the application logic, which directly states how derived
events are generated and how the values of their attributes are assigned, and supporting logic, which
is intended to enrich events or query databases as part of the processing. In our CCM example, the
temperature range can be reported as part of an event and is either produced by the sensor or enriched
later by an external database. Alternatively, it may not be part of an event but rather a result of a query
executed during the evaluation of a pattern from either a database or a global variable store. The first
simplification design goal is to view the concept of “temperature range” as a concept that is obvious in
the designer’s terminology and thus eliminate the supporting logic of where its value resides and how it
should be fetched; we move that aspect “behind the scenes”. These details can be inferred automatically
during the code generation phase.

2. Employ top down, goal-oriented design. Many design tools require logical completeness (such as ref-
erential integrity) at all times. This requires building the model in a bottom-up fashion; namely, all the
meta-data elements must be defined (events, attributes, data elements) before using them in the logic
definition. Our second simplification design goal is to support top down design, and allow temporary
inconsistency. We allow work in the “forgive” mode [9], in which some details may be completed at a
later phase. This design goal complements the “stick to the basics” goal, by concentrating on the business
logic first, and completing the data aspects later.

3. Reduce the number of logical artifacts. In a typical event processing application, there may be multiple
logical artifacts, including event processing agents, queries, or processing elements, depending on the
programming model that specifies the derivation logic of a single derived event. This variety arises when
there are multiple ways to create a single derived event. In our CCM example there might be different
circumstances in which a delay is detected. Our design goal is to have a single logic artifact for every
derived event that accumulates all the ways to derive this event. This goal reduces the number of logical
artifacts and bounds it by the number of derived events. It also eases the verifiability of the system, since
possible logical contradictions are resolved by the semantics of this single logical artifact.

4. Use fact types as first class citizens in the model. In many of the conceptual models that are descendants
of the Entity Relationship model [12], terms are modeled as attributes that are subordinates of entities or
relationships. In some cases, it is more intuitive to view these concepts as “fact types” and make them
first class citizens of the model, so the entity or event they are associated with is secondary (and may be
a matter of implementation decisions). This requirement is again consistent with the “stick to the basics”
goal.

2.3 TEM building blocks

TEM is composed of two main building blocks that relate to the model itself and are the main focus of this paper.
These are the diagrams (Section 3) and the logical concepts (Section 4). Additional building blocks of the model
are:

• TEM Glossary: The concept dictionary used for the interpretation of a specific application.

• Integrity principles: The principles that govern the model integrity.

• Code generator: The automatic translator of a model to executable code. The code generator is able to
infer information that is not explicitly stated in the model, according to the stick to the basics principle.

107

3 TEM Diagrams

One way to simplify the model is to apply a top-down methodology that provides a high level logical view and
understanding of the system at hand.

A TEM diagram illustrates the structure of the logic by showing a situation along with the flow direction of
derivations in a top-down manner. At the top of the diagram there is a goal, which is the situation that is required
to be derived. This goal is connected with the raw and derived events that are identified as participants in the
situation derivation. This representation is done in a recursive way until raw events or facts are encountered , as
depicted in Figure 2 for our CCM example.

A TEM diagram includes nine icons that express all the relevant terms (Figure 1).

Situation

Fact

Consumer

Producer

Partition by

When?

Raw event

Detected derived event

Derived event

Figure 1: Product quality deterioration logic EDT

Each block in the diagram (a set of rectangle shapes, separated by connecting lines) represents a specific
piece of logic with a single corresponding Event Derivation Table as explained in Section 4.1. The red rectangles
in the background of each block represent the context for the block. The contexts can be collapsed or expanded.
Dotted lines specify event flows to and from the event-driven system.

Figure 2 depicts the TEM diagram for the Product quality deterioration situation in our CCM example. The
situation to be derived is a potential risk to the product quality, which requires alert notification and possible
intervention. We have one consumer of the situation (Quality control officer, who gets the system alerts) and
two producers: Sensors that emit the Sensor input; and Shipment operations system, which emits Shipment
starts and Shipment planned raw events. The Context part of the Shipment delay derived event is expanded in
the diagram to show a temporal context that is initiated when a shipment starts and ends at the shipment planned
time, incremented by a delay tolerance. The delay tolerance indicates a grace period that is calibrated according
to the specific situation. Sometimes a delay of a minute can be considered a problem, while in other cases, only
a delay of a few days from the planned time is considered a situation that requires an action. We partition the
events according to the Shipment ID domain fact type since we are looking for delays at the level of the shipment
ID. Domain Fact Types serve as abstract fact types to enable segmentation contexts.

For each situation in TEM, there is a corresponding TEM diagram. The diagrams serve as a major design
tool that provides a top down view. All blocks that describe situations or derived events require the definition of
logical concepts.

108

Shipment starts

planned time

delay tolerance
Shipment ID

Quality control officer

Temperature increase trend

temperature <Sensor input>

Product quality deterioration

Temperature increase trend

Shipment delay

Shipment delay

Shipment actual pickup Is Absent

Sensors

Shipment operations system

Figure 2: Temperature increase trend logic EDT

4 TEM Logical Concepts

Logical concepts are descriptions of concepts that are computed by the described application. The Event Model
Logic consists of two logical concept types which are represented as tables.

Event Derivation: A single logical artifact for each derived event. The derived event mentioned in the name
is associated with the table in the sense that the table specifies the conditions for generation of new instances of
this event type.

Computation logic: A logical artifact that specifies the computation of assignments of the values of fact
types (attributes) associated with a derived event. The derived fact type mentioned in the name is associated
with the table in the sense it describes the value assignment for its fact types. Note that if the value of a derived
fact type can be implicitly inferred, then the computation table for this derived fact type can be omitted.

Although the names of concepts in TEM can be determined freely by the system designer, we use some
naming conventions in the logic tables for the sake of clarity. For example, domain fact types as well as event
types start with a capital letter; fact types start with a lowercase letter. We also underline event types in condition
columns that have an Event Derivation Table of their own (hyperlinks), to stress the fact that these events are
themselves derived from another piece of logic, and enabling users to follow paths of inference by clicking these
links.

We describe TEM logic tables in more detail in the following sections.

4.1 TEM Event Derivation Tables

An Event Derivation Table (EDT) is a two-dimensional representation of logic leading to a derived event, based
on events and facts. Thus, an EDT designates the circumstances under which a derived event of interest is

109

reached. In our CCM scenario there are three EDTs shown in Table 1, Table 2, and Table 3 that correspond to
the same names in the TEM diagram.

4.1.1 Event Derivation Tables Structure

The first row in an EDT indicates its name. The EDT name is the derived event name + “Logic”, for example,
Product quality deterioration Logic in Table 1. The table consists of two parts, context and conditions, separated
by a red line. The context part consists of two logical sections. The temporal context, represented by When
expression, When start, and When end columns; and the segmentation context represented by the Partition by
column. For example, Table 2 describes a non-overlapping sliding fixed interval temporal context [10] of 5
minutes’ length and a segmentation context that partitions the events by Container ID domain.

Table 1: Product quality deterioration logic EDT

Row #
When

Expression

When

Start

When

End

Partition by

Shipment ID

1
always same is Detected

2
always same is Detected

Product quality deterioration Logic

Filter on event Pattern Filter on pattern

Temperature

increase trend

Shipment Delay

Table 2: Temperature increase trend logic EDT

1
for every 5

minutes

is

between

lower bound,

upper bound

is Increasing

Temperature increase trend Logic

Row #
When

Expression

When

Start

When End Partition by Filter on event Pattern Filter on pattern

Container ID temperature temperature

same

Shipment planned time +

Shipment actual

Table 3: Shipment delay logic EDT

1
Shipment

starts

planned time +

delay tolerance

is Absentsame

Pattern Filter on

pattern

Shipment ID Shipment actual

pickup

Filter on event

Shipment delay Logic

Row #
When

Expression

When

Start

When End Partition by

4.1.2 Event Derivation Tables Conditions

The conditions part consists of three types of conditions. The conditions are logically applied in the following
order.

110

Filter conditions are expressions evaluated against the content of a single event instance. The role of filter
conditions is to determine whether an event instance satisfies the filtering condition and should participate in the
derivation. For example, the Filter on event column in

Table 2 describes a condition on a fact type temperature, which belongs to the Sensor input event type. The
temperature value must be between predefined bounds in a certain range.

Pattern conditions are expressions on related event types’ instances such as Detected, Absent, Thresholds
over Aggregations, or Fact Type value changes [10]. The role of pattern conditions is to detect the specified rela-
tionships among event instances. For example, in Table 3, the Pattern condition describes an absence detection
of event type Shipment actual pickup, which means that no event instance of that event type is detected within
the specified context.

Filter on pattern conditions are expressions on multiple event occurrences, including comparisons, mem-
berships, and time relationships. The role of the filter on patterns conditions is to filter the pattern result based
on conditions among the different events that participates in this pattern. Following the CCM example, let us
assume the following scenario: we want to identify whether a shipment was picked up more than two hours after
the planned time. We name this derived event Significant shipment delay. In this case, the pattern is Shipment
actual pickup occurs after Shipment planned pickup. The filter on the pattern condition will be expressed as the
difference between shipment planned pickup time and the shipment actual pickup time is greater than two hours
(see Table 4).

Table 4: Example of a filter on pattern conditions

The three types of conditions are optional, meaning they can either appear or not in an EDT, however a

1
always occurs

after

Shipment

planned pickup

is greater

than

planned

time+2

Significant shipment delay Logic

Row #
When

Expres

sion

When

Start

When

End

same

Partition by Filter on

event

Pattern Filter on pattern

Shipment ID Shipment actual pickup occurrence time of

Shipment actual

pickup

The three types of conditions are optional, meaning they can either appear or not in an EDT, however a TEM
model is valid if it contains at least one condition. We also do not restrict the number of conditions per condition
type. For example in Table 2, we can add a new condition to the Pattern which specifies that in addition to
checking whether the temperature value is increasing, we also check that we have at least three Sensor input
events in the same Context.

The EDTs have disjunctive normal form (DNF) semantics. Each row in the table indicates a different set
of circumstances in which the same event can be derived; therefore, the derived event logic is the union of the
rows (logical OR relationship). On the other hand, in each row all conditions in the columns must be satisfied,
therefore the columns satisfy an AND logical relationships. For example, as described in Table 1, the Product
quality deterioration event can be derived when either a Temperature increase trend event is detected or a
Shipment delay event is detected.

TEM connection is a dependency among EDTs when the conclusion, i.e., derived event, of one EDT is
referenced in another EDT. Connections are shown in the TEM tables as underlines or hyperlinks. For example,
Temperature increase trend and Shipment delay events are underlined in Table 1 since they are conclusions of
Temperature increase trend logic and Shipment delay logic EDTs, respectively.

111

4.2 TEM Computation Tables

A derived event, like any event in TEM, is a container that contains facts (attributes) which are instances of
the fact types contained in the derived event’s event type. Part of the derivation is the assignment of values to
these facts. Some of the computed facts are mere copies of values. Thus, according to the simplification goal
of stick to the basics, their computation details may be omitted and their computation assignment is implicit.
A Computation Table is a two-dimensional representation of logic leading to a computed fact type that needs to
be explicitly specified. Let’s assume that the Shipment delay derived event type has two associated fact types:
Shipment ID and Delay message. The value of Shipment ID is computed in an obvious way, namely, by copying
the value of the specific partition argument. The Delay message has to be explicitly computed, as shown in
Table 5. Likewise, Table 6 shows the computation of the two possible alert messages associated with the Product
quality deterioration situation (see explanation below). Note that the “+” sign denotes string concatenation.

Table 5: Delay message computation table

Row #
Row in Event derivation

Table

1
"Shipment " + Shipment ID+ " pickup time is

delayed in " +delay tolerance+ "minutes " 1

delay message Computation

Table 6: Alert message computation table

Row #
Row in Event derivation

Table

1
"the temperature in container" + Container ID +

"constantly increases within the last 5 minutes"
1

2 delay message 2

alert message Computation

4.2.1 Structure of Computation Tables

The first row in a computation table indicates its name, composed of the fact type name + “Computation”. For
example, Table 6 is a computation table that describes the logic to compute the alert message fact type associated
with the Product quality deterioration event type. The second row is the headings row. The third row and on,
include the row number, the expression value of the computed fact type, and a reference to the row number in
the corresponding EDT.

Looking at Product quality deterioration EDT in Table 1, there are two cases in which the Product quality
deterioration event type can be derived. One is Shipment delay and the other is Temperature trend increase.
Each case dictates a different value to the computed fact type alert message. Table 6 contains the two possible
values that can be assigned. The first row refers to the case in which a Temperature increase trend occurred,
since the ”row in event derivation table” Shipment Delay equals 1.

There is only one case in which the Shipment delay event type can be derived as shown in Table 3. In this
case, the alert includes the delay elapsed time as computed in Table 5.

While the logic artifacts may be defined first, the glossary concepts eventually need to be completed at a
later phase, prior to the model’s validation

112

5 Related Work

In this section we briefly survey work related to TEM in several areas: event processing modeling, semantic
modeling of events, and executable specifications.

In the area of event processing modeling, Cugola and Margara provide [5] a comprehensive survey and com-
parison of models, including aspects of the functional model, processing model, deployment model, interaction
model, data model, time model, and rule model. In general, the event processing models contain “program-
ming in the large” modeling, which is typically an event flow model [10] or stream processing model [8]. The
“programming in the small” model is closely related programming models such as stream modeling [15] and
rule based modeling [2]. Some of the modeling languages employ visualization (i.e. of the event flows) [16].
Another branch of event modeling is based on logic programming. Models in this area follow Kowalski’s event
calculus model [14].

The main novelties of TEM relative to existing event models are mainly two. First, it is targeted to non-
technical people. This is enabled by applying a top-down approach that satisfies the simplification goals and
supporting the creation of a specification without providing technical and “obvious” details, such as location of
data-items. Second, TEM provides direct path to automatic implementation. This is a departure from current
event models that are closely related to the implementation scheme.

The area of semantic data models [17] deals with the semantics of data and relationships among data ele-
ments. Most models follow the entity-relationship approach (ER) and its descendent methods (EER). Fidalgo
et al., present a recent work [12] in which entities and relationships are first class citizens and attributes are sec-
ondary. Fact models [18] take business concepts as first class citizens, and data as containers for these facts. Our
model follows the fact modeling approach, which has not been investigated yet in the area of event modeling.

The idea of executable specification was introduced in the early days of software engineering, for example
by Urban et al. [19]. TEM can be considered an instance of this concept.

The Decision Model (TDM) [20] is an instance of a model that has similar goals in a different domain
(decision management). The main difference between TDM and TEM is that TDM models the inference of
computed values of facts as a function of other facts, while TEM models the logic of derivation of events in an
event-driven context-based fashion.

6 Conclusions and Future Work

This paper presents The Event Model (TEM). TEM is a novel way to develop and implement event-driven
applications. The friendly, yet rigorous, representation of the event logic enables the model to be simpler relative
to existing models and accessible to people lacking IT skills. We illustrated the main logic concepts and artifacts
of TEM using an example from the CCM domain. Experiments conducted in the scope of transport and logistics
indicate that the tables and diagrams in TEM are well accepted and embraced by non-technical people, who
stress the ease and friendly manner of defining the event logic as the main benefit of TEM. We believe that
these preliminary tests are a good indicator of TEM’s potential to open a new era for the consumption and
pervasiveness of event-driven applications. In order to prove this statement, further experimentation is required
including different domain areas and more complex scenarios.

The simplification design goals stated at the beginning of this paper have been realized as summarized in
Table 7.

There are several model extensions, which are either progress or planned:

1. Support for current missing functionality, such as spatial patterns and contexts, pattern policies, and tem-
poral correctness guards.

113

Table 7: Realization of simplification design goals

 Simplification goal Realized by

1 Stick to the basics by

eliminating technical details

The derivation and computation logic does not contain any

logic of data fetching. This is either inferred or completed at a

later phase.

Assignments of values to attributes of derived events, whose

assignment is obvious since they are copied from the context

data, can be inferred by the system and does not have to be

explicitly defined as part of the logic.

2 Employ top down, goal

oriented design

The methodology supports top down, goal-oriented design by

making the goal-oriented diagram a starting point.

The logic tables are built in “forgive” mode, enabling reference

to glossary artifacts prior to their definition.

3 Reduce the quantity of logic

artifacts

The normalization principle, according to which there is a

single EDT for each derived event, bounds the number of logic

artifacts.

4 Use fact types as first class

citizens in the model

Fact type is the fundamental basic unit in the model.

2. Support for non-functional requirements: The idea is to extend TEM to model non-functional require-
ments. Note that there have been some studies of high level modeling of non-functional requirements
[4].

3. Extend the model to tangent activities: modeling the process of instrumentation and modeling goals for
optimization based decisions.

4. Extend the model to support artifact based business state-oriented processing [13].

In addition, we are carrying out more work in model validation using constraint satisfaction techniques [7], and
in code generation for various languages.

7 Acknowledgments

Fabiana Fournier has received funding from the European Union’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 619491 (FERARI).

References
[1] Bodenstein C., Lohse F., and Zimmermann A. 2010. Executable Specifications for Model-Based Development of

Automotive Software. SMC 2010, 727-732.
[2] Bragaglia S., Chesani F., Mello P., and Sottara D. 2012. A Rule-Based Calculus and Processing of Complex Events.

RuleML 2012, 151-166.
[3] Brambilla M., Cabot J., and Wimmer M. 2012. Model Driven Software Engineering in Practice. Morgan & Claypool.
[4] Chung L and Leite C.J.P. 209. On Non-Functional Requirements in Software Engineering. Conceptual Modeling:

Foundations and Applications (2009), 363-379.

114

[5] Cugola G., and Margara A. 2012. Processing flows of information: From data stream to complex event processing.
ACM Comput. Surv. (CSUR) 44(3).

[6] Davis M. 2012. Concept Computing: Bringing Activity-Context Aware Work & Play Spaces into the mainstream.
Keynote presentation from the Association for the Advancement of Arti?cial Intelligence 2012 conference (AAAI
12). URL: http://www.slideshare.net/Mills/understanding-concept-computing

[7] Dechter R. 2003. Constraint Processing. Elsevier.
[8] Dindar N, Tatbul N., Miller R.J., Haas L.M., and Botan I. 2013. Modeling the execution semantics of stream process-

ing engines with SECRET. VLDB J. (VLDB) 22(4), 421-446.
[9] Etzion O. 1993. Flexible consistency modes for active databases applications. Inf. Syst. (IS) 18(6), 391-404.

[10] Etzion O. and Niblet P. 2010. Event processing in action. Manning.
[11] Farahbod R., Gervasi V., and Glässer U. 2014. Executable formal specifications of complex distributed systems with

Core ASM. Sci. Comput. Program. (SCP) 79, 23-38.
[12] Fidalgo R., Alves E., España S., Castro, and Pastor J.O. 2013. Metamodeling the Enhanced Entity-Relationship

Model. JIDM 4(3), 406-420.
[13] Heath F., Boaz D., Gupta M., Vaculı́n R., Sun Y., Limonad L., and Hull R. (2013) Barcelona: A Design and Runtime

Environment for Declarative Artifact-Centric BPM. ICSOC 2103, 705-709.
[14] Kowalski R.A. 1991. Logic Programing in Artificial Intelligence. IJCAI (1991), 596-604.
[15] Jacques-Silva G., Kalbarczyk Z., Gedik B., Andrade H., Wu K-L., and Iyer R.K. 2011. Modeling stream processing

applications for dependability evaluation. DSN 2011, 430-441.
[16] Marquardt N., Gross T., Sheelagh M., Carpendale T., and Greenberg S. 2010. Revealing the invisible: visualizing the

location and event flow of distributed physical devices. Tangible and Embedded Interaction, 41-48.
[17] Peckham J. and Maryanski F.J. 1988. Semantic Data Models. ACM Comput. Surv. (CSUR) 20(3), 153-189.
[18] Ross R.G. 2000. What Are Fact Models and Why Do You Need Them (Part 1). Business Rules Journal, 1(5) URL:

http://www.BRCommunity.com/a2000/b008a.html.
[19] Urban S.D., Urban J.E and Dominick W.D. 1985. Utilizing an Executable Specification Language for an Information

System. IEEE Trans. Software Eng. (TSE) 11(7), 598-605.
[20] Von Halle, B., and Goldberg L. 2010. The Decision Model. CRC Press.

115

