
Here are my Data Files. Here are my Queries.
Where are my Results?

Stratos Idreos† Ioannis Alagiannis? Ryan Johnson‡ Anastasia Ailamaki?
†CWI, Amsterdam ‡Carnegie Mellon University ?École Polytechnique Fédérale de Lausanne

ABSTRACT
Database management systems (DBMS) provide incredible
flexibility and performance when it comes to query process-
ing, scalability and accuracy. To fully exploit DBMS fea-
tures, however, the user must define a schema, load the
data, tune the system for the expected workload, and answer
several questions. Should the database use a column-store,
a row-store or some hybrid format? What indices should
be created? All these questions make for a formidable and
time-consuming hurdle, often deterring new applications or
imposing high cost to existing ones. A characteristic exam-
ple is that of scientific databases with huge data sets. The
prohibitive initialization cost and complexity still forces sci-
entists to rely on “ancient” tools for their data management
tasks, delaying scientific understanding and progress.

Users and applications collect their data in flat files, which
have traditionally been considered to be “outside” a DBMS.
A DBMS wants control: always bring all data“inside”, repli-
cate it and format it in its own “secret” way. The problem
has been recognized and current efforts extend existing sys-
tems with abilities such as reading information from flat files
and gracefully incorporating it into the processing engine.
This paper proposes a new generation of systems where the
only requirement from the user is a link to the raw data files.
Queries can then immediately be fired without preparation
steps in between. Internally and in an abstract way, the
system takes care of selectively, adaptively and incremen-
tally providing the proper environment given the queries at
hand. Only part of the data is loaded at any given time and
it is being stored and accessed in the format suitable for the
current workload.

1. INTRODUCTION
Database systems can only achieve excellent query re-

sponse times given a number of low-level designing and tun-
ing steps, which are a prerequisite for the system to start
processing queries. A significant part of the initialization
cost is due to loading the data into files or raw storage ac-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

cording to a format specified by the DBMS, and to physically
designing and tuning the data set for the expected workload,
i.e., creating the proper indices, materialized views, etc. Flat
files of raw data are considered “outside” the DBMS, within
which data is viewed and massaged in specific formats. De-
spite that the assumption of control over the data placement
and format entails design advantages for the database sys-
tem, such a restriction prevents the wide adoption of DBMS
technology to new application areas, increases the bootstrap
time of a new application and leads to systems that either
are appropriate for only one scenario or need to be perenni-
ally re-tuned.

1.1 Accessing Flat Files
Both the research community and the commercial world

recognize the problem and several crucial steps have already
been addressed. For example, many commercial and open-
source database systems already offer a functionality that
allows a database system to immediately query a flat file.
The DBMS essentially links a given table of a schema with
a flat file and, during query processing, parses data from
the flat file on-the-fly. Oracle, for instance, offers an option
to have “external tables” while MySQL enables the “CSV
engine”. As a result, data can be queried without having
to explicitly load the raw data into the DBMS. In practice,
however, flat files are still “outside” the DBMS as there is
no support for indices, materialized views or any other ad-
vanced DBMS optimization. Query processing performance
is therefore lower when compared to the the performance of
queries running on “internal” tables, so the systems mostly
offer external flat files as an alternative way for the user to
load/copy data into normal DBMS tables rather than for
query processing. Consequently, even though current flat
file functionality is a significant step forward, the problem
is still an open one as there is still a long way to go towards
systems that require zero initialization overhead.

1.2 Motivating Example
Typically, scientific databases grow on a daily basis as

the various observation instruments continuously create new
data. Thus, the optimal storage and access patterns may
change even on a daily basis purely depending on the new
data, its properties, correlations, as well as the ways that
the scientists navigate through the data and the ways their
understanding and data interpretation evolve. In such sce-
narios, no up-front physical design decision can be optimal
in light of a completely dynamic and ever-evolving access
pattern. Therefore, people often rely on Unix-based tools
or on custom solutions in order to achieve bread-and-butter

57

functionality of a DBMS.
Paying a heavy preparation cost for the unknown is pro-

hibitive if needed on a daily basis. Even simply loading the
data in the database is a significant investment and delay
for large data sets. Alternatively, one can write a quick
Awk script and immediately query any part of the data,
avoiding all hassle associated with designing schema, load-
ing data and tuning. Here follow a few example reactions
from scientists:

1. Why do I have to wait multiple hours for loading and
tuning? I am getting another Terabyte of data tomor-
row and I just want to quickly find out if the current
data is of any interest so that I go ahead and analyze
it.

2. Why should I have to load the whole data set? I just
need a small part now; I do not know if, or when, I
will need the rest.

3. How can I decide what indices to build or whether to
use column- or row-stores? I won’t understand the
data properties until after I’ve looked at it! Worse,
tomorrow could be a different story.

4. How should I know how to set-up a complex DBMS? I
am not a computer scientist. Hiring DB experts to set-
up and re-tune the system on a daily basis is extremely
expensive.

1.3 Contributions
In this paper, we argue towards a new generation of sys-

tems that provide a hybrid experience between using a Unix
tool and a DBMS; all they need as a start-up step is a pointer
to the raw data files, i.e., the flat files containing the data,
for example in CSV format. There is zero initialization over-
head as with a scripting tool but at the same time all ad-
vanced query processing capabilities and performance of a
DBMS are retained. The key idea is that data remains in
flat files. The user can edit or change a file at any time.
When queries arrive, the system will take care of bringing
the proper data from the file, and it will store it and evaluate
it in an appropriate way.

We first demonstrate the initialization overhead of DBMS
and the flexibility of using a scripting language. Then, we
demonstrate the suitability of a DBMS for data exploration,
when a quick glimpse over the data is not the only goal, i.e.,
when a user wants to repeatedly query the same data parts.
Finally, we describe our vision in detail. Various policies are
studied regarding how data can be fetched, cached, reused
and how this whole procedure can happen on-the-fly, inte-
grated with query processing in a modern DBMS. We pro-
vide a prototype implementation and evaluation over Mon-
etDB. Our results clearly show the potential and benefits of
the approach as well as the opportunity to further study and
explore this topic.

2. TO DB OR NOT TO DB?
This section provides more concrete motivation of why us-

ing DBMS can be of significant importance in new scenarios
like scientific databases, as well as of the fact that drastic
changes are needed, and ends by discussing our vision and
research challenges.

As a starting point we perform a study of how using a
DBMS compares against using Unix tools for query process-
ing. We compare the popular and powerful Awk scripting
language with a state of the art open-source column-store
DBMS, MonetDB. We use a 2.4 GHz Intel Core2 Quad CPU
equipped with one 32 KB L1 cache per core, two 4 MB L2
caches, each shared by 2 cores, and 8 GB RAM and two
500 GB 7200 rpm SATA hard disks configured as software-
RAID-0. The operating system is Fedora 12.

The set-up is as follows. The data set consists of a four-
attribute table, which has as values unique integers ran-
domly distributed in the columns. The queries are always
10% selective, and follow the template below (Q1):

select sum(a1),min(a4),max(a3),avg(a2)

Q1 from R

where a1>v1 and a1<v2 and a2>v3 and a2<v4

Figure 1 shows the results for various different input sizes
and two kinds of costs: the loading cost and the query pro-
cessing cost. For Awk there is no loading cost, while for the
DBMS, the complete loading cost has to be incurred before
we can process any data. For the query processing perfor-
mance of the DBMS, we report both hot and cold runs, as
well as evaluation over an adaptive indexing scheme. In the
next two subsections, we study these results from two per-
spectives; In the first part, we discuss clear disadvantages for
the DBMS, while in the second part we discuss clear DBMS
advantages. The third subsection then introduces our vision
for a hybrid system.

2.1 Why Not Databases
Let us first discuss the disadvantages of using a DBMS.

Loading Overhead. With the term“loading”we refer to
the procedure of copying the data from the flat files into the
DBMS. Our flat files are in CSV format. To process even a
single query in a DBMS we first have to incur the complete
loading cost. Thus, the first query response time can be seen
as the cost to load the data plus the cost to run the actual
query. Figure 1 shows that the loading cost of the DBMS
represents a significant bottleneck when it comes to large
data sizes. In other words, loading the data and evaluating
a query with the DBMS is much slower than simply firing
an Awk script. If we add the loading cost and the query
processing cost of the DBMS for the case of 1 Billion tuples,
it is 800 seconds higher than that of running an Awk script.
And of course, here we ignore the expert knowledge and time
required to set-up the DBMS (e.g., with the proper physical
design).

In addition, while the query processing performance of
Awk scales perfectly with input sizes, this is far from true for
the loading cost of the DBMS. Recall that the loading cost is
to be considered as part of the first query in a DBMS. What
actually happens is that for the smaller sizes everything fits
quite comfortably in memory and is never written to disk
during the experiment. For the input of the 1 Billion tuples
table, however, the system reaches the memory limits and
needs to write the table back to disk; exactly then, we pay
the significant cost of the loading procedure.

Not a “Quick Look” to the Data. This experiment
represents the ideal scenario for a DBMS, i.e., the query is
interested in all 4 attributes of the table. This way, even
for the case of 1 Billion tuples where loading is a significant

58

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0 10 100 1000

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Input Size (Millions of Tuples)

a) Loading/Initialization Costs

DB

0 10 100 1000

Input Size (Millions of Tuples)

b) Query Processing Costs

Awk

Cold DB
 Hot DB

Index DB

Figure 1: DB Vs. Unix tools

cost, the DBMS did not do any extra work, i.e., it did not
load any unnecessary columns.

In scenarios like scientific databases though, it is typical to
have hundreds or even thousands of columns, while a query
might be interested in only a few of those. A DBMS has
to first load all columns before it can process any queries.
It has to own and replicate the complete data set. On the
contrary, a scripting tool like Awk can provide a quick and
“painless” gateway to the data. We can explicitly identify
the data parts we are interested in, while zero preparation
or pre-processing is required. We do not need to replicate
the data and we can actually edit the data with a text editor
directly at any time and fire a query again.

The above observations make scripting languages like Awk
a much more flexible and useful tool than a DBMS for in-
specting and quickly initiating explorations over large data
sets.

2.2 Why Databases
The previous section argues that Awk is great for a quick

glimpse of the data. The DBMS is not. For repeated queries
over the same data, however, Awk lacks the smarts to im-
prove performance; this is where the DBMS shines! Here,
we discuss these DBMS benefits.

Performance Gains After Loading. Let us ignore the
loading costs and concentrate purely on the query processing
costs in Figure 1. For all sizes, we see a consistent pattern
with the DBMS being significantly faster than the pure per-
formance the optimized Awk script can provide. No matter
if we look at cold or hot queries the DBMS is much stronger.
The indexed DB curve indicates an even better performance
using an optimized physical design, where storage is adapted
to the queries via index creation (in this case selections
and tuple reconstruction are significantly improved using
database cracking [12]). Especially as the data grows, the
DBMS is one order of magnitude faster. By having the data
loaded and stored in a proper format, the DBMS does not
have to go through an expensive tokenization and parsing
procedure again and again; it only pays this cost during
loading. Consequently, even the non-indexed DBMS runs
can materialize significant benefits over Awk that always
has to go through the flat files.

Exploratory Behavior Benefits. Advanced data man-
agement scenarios like the analysis of scientific data is far
from an one query task. It typically involves a lengthy se-
quence of queries which dynamically adapts based on how
the scientist interprets the data, continuously zooming in
and out of data areas representing an exploratory behavior.
A scripting tool has a constant performance that cannot im-
prove over time. A DBMS, on the other hand, has an one-
time up-front cost and from there on performance is very
good making it a great fit for when we know we are going
to query again and again the same data parts. In addition,
indices, optimizers and advanced operator implementations
guarantee near-optimal usage and exploitation of hardware
and workload properties. A DBMS can be tuned to prop-
erly scale to hundreds of nodes or CPUs, it can be tuned to
adapt to skew of data or queries, etc. On the other hand,
scripts typically are single threaded processes without the
notion of optimization and adaptation.

Fast Evaluation of Complex Queries. Experiments
with more complex queries show even bigger benefits. For
example a join query with a few aggregations on two 108

tuples tables (1 to 1 join) takes 387 seconds on a hash join
implementation in Awk, while it takes 247 seconds if we sort
the data (using the Unix sort tool) and then implement a
merge join in Awk (a 100 lines script). On the contrary, a
cold DB run takes 39 seconds while a hot one only 5!

Declarative SQL Interface. Expressing queries in the
declarative SQL language is a major benefit of a DBMS for
flexibility and query reuse/editing. On the contrary, with
Awk one has to be an expert in scripts. In addition, work-
load knowledge is needed for optimal performance. Our
scripts “match” the techniques used in an optimized DB
plan, i.e., push down selections, perform the most selec-
tive filtering first, etc. Even though using Awk in every-
day scripting is an invaluable tool, the overhead of writing
complex scripts to match SQL expressiveness should not be
underestimated. Our experience shows that, even for an ex-
pert, it requires several hours to produce efficient scripts.
A simple 1-2 line SQL query needs several tenths or hun-
dreds of lines in a scripting language. Thus, the even harder
part becomes that of maintenance and reuse. In our inter-

59

action with scientists in EPFL, several of them admit that
they have numerous scripts that they either never attempt
to edit or they do not remember any more what they do.

We repeat the above experiments using also Perl instead
of Awk. This was two times slower than the Awk scripts.
Another heavily used tool is Matlab. It specializes in sce-
narios where heavy computation is needed. We did not try
it out in our experiments but nevertheless the argumenta-
tion remains the same as with all scripting and low level
languages. Similarly, one may actually write pure C code
which is expected to be faster for targeted queries than a
generic DBMS.

None of the methods above provides the flexibility and
scalability of a DBMS and of course they require expert tech-
nical knowledge as well as a good understanding of the data.
DBMS were built based upon this motivation; generic, ab-
stract and declarative usage of an information management
system that can actually perform very well. The users need
to care only about what they want to obtain from the system
and not about how to obtain it.

2.3 Vision & Challenges
The previous sections showed both major advantages and

disadvantages for using a DBMS. Here, we discuss our vision
towards a hybrid system that blends the best of scripting
tools and DBMSs.

2.3.1 The Vision
The ultimate goal is a system that avoids all the initial-

ization steps and hassles of a DBMS, but at the same time
it maintains and even enhances the potential performance
gains.

All you need to do to use it, is point to your data and you
can start querying immediately with SQL queries.

Without any external administration or control and with-
out any preparation steps, the system is immediately ready
to answer queries. It selectively brings data from the flat
files into the database during query processing. It adap-
tively stores these data into the proper format, adjusting its
access methods at the same time, all driven by the current
hot workload needs. Column-store, row-store and hybrid
storage and execution patterns all co-exist even for the same
or overlapping parts of the data set.

2.3.2 Challenges
The challenge is to make all this continuous and ever

evolving process as transparent as possible to the user via
lightweight adaptation actions and rapid response times.
Conceptually we strive to blend the immediate and interac-
tive feeling and simplicity of using Unix-like tools to explore
data with the flexibility, performance and scalability of us-
ing a DBMS. Some of the main research questions we have
to answer are the following.

1. When and how to load which parts of the data?

2. How to store each data part we load?

3. How to access each data part?

The first one represents a completely new problem. Up
to now in order to use a DBMS we need to completely load

My Queries

Adaptive Loading
Component

...
HDDs

Adaptive Store
Component

Adaptive
Kernel

My Results

Flat
File

Flat
File

Flat
File

My Data Flat
File

Figure 2: System Architecture

the data. There is no notion of partial, incremental and
adaptive loading.

For questions 2 and 3 the database community has done
extensive research to find the optimal storage and access
patterns for specific workloads and scenarios. Nevertheless,
there is no notion of an adaptive, ever changing, dynamic
storage and execution kernel.

2.3.3 Basic Components
The above goals open a broad research landscape, which

touches every corner of core database systems design. Load-
ing, storage and execution, they all need to adopt a self-
organizing nature, capable of adapting to the workload, re-
quiring zero or minimum human effort. The key to our re-
search path is that:

Queries become the first class citizen that define loading,
storage and execution patterns and strategies.

The components of the envisioned architecture as well as
the ways that these components interact can be seen in Fig-
ure 2.

An adaptive loading component will be responsible to al-
ways make sure that just enough data is loaded but also that
we can easily access the rest of the data if needed.

An adaptive store component will make sure that data is
stored in ways that fit the workload.

In the same philosophy, an adaptive kernel will at any
time contain multiple different execution strategies to best
suit the observed workload.

In the rest of this paper, in Sections 3 and 4, we provide an
initial study and an implementation prototype of adaptive
loading. This is the first critical component needed to realize
this vision. In addition, it probably represents the most
provocative of all challenges given that database systems
always like to fully control and manage the data in their
own format and environment as opposed to relying on flat
files. Section 5 sketches the research landscape. It discusses
in more detail the challenges and opportunities associated
with the adaptive store and the adaptive kernel concepts.
We also provide an extensive discussion of how several core
database design problems need to be rethought in this vision,
e.g., issues that have to do with updates, concurrency control
and robustness.

60

3. ADAPTIVE PARTIAL LOADING
In this section, we study adaptive loading in more detail,

providing a series of techniques as well as an implementation
in a complete system.

3.1 Adaptive Loading Techniques
The goal for adaptive loading is to avoid the expensive

and resource consuming procedure of loading the complete
data set when this is not necessary. The direction is then
to only partially load data and the questions to answer are:
when we load, how much we load every time and of course
how we load.

For this initial study we will for simplicity assume a colum-
nar layout to focus purely on the loading part. This way,
here when we refer to data loading, this happens at the
granularity of columns (or parts of it) resulting purely in an
array-based storage form underneath. Row-store formats
and hybrids, they all pose slightly different challenges waiv-
ing away some of the problems a column format poses but at
the same time adding new ones. The analysis below demon-
strates the potential of adaptive loading and indicates po-
tential benefits from further detailed studies.

3.1.1 When
Assuming dynamic and evolving scenarios without up-

front clear knowledge of what to expect, the decision is to
load dynamically and partially during query processing. This
way, we achieve the zero cost initialization property as all
loading responsibility is transferred to queries, just as it is
with scripting tools.

3.1.2 How Much
Again, assuming no workload knowledge, the decision is

to do the minimum possible investment at every time. This
way, for each query we process, we make sure we have all
necessary data in order to correctly and completely answer
it. In other words, incoming queries not only trigger loading
but also define how much we load based purely on their
needs.

One direction here is to load complete columns at a time,
having only the hot columns loaded. When a query comes,
make sure that all needed columns are there and if any are
missing, then go back to the flat file to load the needed part.

A second direction is to only partially load columns in
order to reduce the loading overhead even more. This can
be thought of as pushing selections down into the loading
phase. Loading only qualifying data ensures a minimum
possible per query overhead and a minimum possible storage
footprint. This is ideal for exploratory scenarios where the
user “walks” through the data space, periodically zooming
in and out of specific data areas. However, an extra cost
and complexity is involved in needing to maintain a table
of contents so that we know what portions of a column are
loaded. Naive strategies might have to go back to the flat
file too often.

3.1.3 How
We can identify two topics here. First, how do we fit these

techniques in the software stack of a DBMS. Second, how
do we actually access the flat files in an efficient way.

We design new adaptive loading operators which are plugged
into query plans and are responsible to bring the missing
data. These operators mimic the pure loading procedure of

a DBMS. The difference is that they can selectively bring
data from a file. Such an operator can load, on-the-fly, any
combination of columns from a flat file. We also experi-
mented with operators that load only one column at a time.
This is simpler to design but it turns out to be much more
expensive due to the need to touch the flat file multiple times
within a single query plan. For each column, we also keep
additional metadata information that indicates whether this
column is loaded or not, and if it is loaded then we maintain
the information of which parts are already loaded and where
and how they are stored. A tree structure that organizes the
data parts of each column based on values is sufficient, e.g.,
an AVL-tree or a B-tree.

The general idea is that after all optimization of the origi-
nal query plan is finished, a new optimizer module/rule takes
over to rewrite the optimized plan into a query plan that
properly contains the new loading operators. For each col-
umn that is marked as not fully loaded we potentially need
to act. For each table referenced in the plan, the optimizer
will add one adaptive load operator to bring in one go all
missing columns or parts of them based purely on which
columns or parts we miss for the current query. This way,
the system can handle in the same query plan both kinds
of tables (already loaded or not), as well as combinations of
columns and tables which have different portions loaded at
any given time.

In our current implementation and query plans, these op-
erators are plugged in as close as possible to the operators
that need the relevant data. Although this is a very reason-
able first approach, one can think of optimization scenar-
ios where the loading operators are plugged in dynamically
while the query is running, when the system realizes that it
has the resources to do some of the extra I/O and processing
necessary. In addition, here, for simplicity we assume that
the original DBMS optimizer rules are optimal for the new
kernel as well. Naturally, this may not be true (at least not
always) opening a research line that introduces specific opti-
mizer rules and plans for such adaptive systems. Taking into
account the expected costs and delays of adaptive loading
operators, with respect to the actual work that they need
to do for the current query, might lead to different decisions
early in the optimizer pipeline.

3.2 Experimental Results
Here we provide early results of our implementation in

an open-source column-store, MonetDB. We test our imple-
mentation against the normal MonetDB system and against
the MySQL CSV engine. The latter is a recent engine op-
tion of MySQL which allows to directly query flat CSV files.
It provides the flexibility of querying a flat file with SQL
but it does not provide the DBMS benefits as it resembles
a Unix-tool like Awk in that it needs to read the data again
and again for every new query, i.e., it does not load the data
in any way, optimize the layout, etc.

We implemented new adaptive loading operators and query
plans in MonetDB. These operators can be plugged in query
plans to provide on-the-fly loading of only the necessary
data. From a high level point of view the operators work
as follows. The flat file is split into multiple portions hori-
zontally. Then, multiple threads take over to tokenize each
portion. Tokenization is done in two steps for each file por-
tion. First, we identify where each row begins. Then, within
each row we find out where the relevant columns are. While

61

 1

 10

 100

 0 5 10 15 20

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

MonetDB

MySQL CSV

Partial Loads V1

Column Loads

Figure 3: Alternative Loading Operators

tokenizing a given row to identify the needed columns, once
all required columns are found the tokenization for this row
can stop., i.e., there is no need to tokenize any columns not
needed for this query. In addition, if the where clause is
pushed into the loading operator, then once a needed at-
tribute is tokenized, it is parsed and the relevant predicate,
if any, is applied on-the-fly. This allows us to abandon the
tokenization of a row as soon as a predicate fails to qualify
for this row. After all tokenization is done, then multiple
threads take over to parse the values and put the proper
values in the proper columns and in the proper order. The
process continues until all horizontal portions are read.

Figure 3 shows results on a 108 tuples table. It contains
4 attributes of unique integers and we use Q2 queries as
follows.

select sum(a1),avg(a2)

Q2 from R

where a1>v1 and a1<v2 and a2>v3 and a2<v4

Each query uses two attributes and is 10% selective. Here
we first run 10 random queries that use the first two at-
tributes of the file and then we run another 10 that use the
last two attributes.

The MonetDB curve represents the normal database be-
havior where everything is fully loaded up-front. Here, the
complete loading cost is attached to the very first query,
representing a significant delay. Every query after that is
fast as it exploits the already loaded data (no indices are
created here). The CSV engine of MySQL demonstrates a
stable performance. Having to read and analyze the com-
plete flat file for every query brings a constant response time
throughout the query sequence. The Column Loads curve
represents our new query plans in MonetDB that on-the-fly
load the needed columns missing from the current storage.
The cost of the first query is roughly half the cost of the
normal database query representing a significant gain. The
next 9 queries enjoy very good performance similar to that of
plain MonetDB. These queries also need the same attributes
as the first one, so all needed data is already there and no
extra actions are needed, leading to similar performance as
that of MonetDB. Query 11 though needs a completely dif-

ferent set of data and thus it on-the-fly needs to load the
missing columns. However, again this is much faster than a
complete load and all queries after that can exploit this to
gain good performance. Overall, both the MonetDB curve
and the Column Loads curve spent similar amount of time
in loading. However, the Column Loads curve spends this
cost only when it is needed, allowing for faster initializa-
tion of data exploration. The cost is spent only when and if
necessary, i.e., if the workload never demanded some of the
columns of the file, those would never be loaded.

Finally, the Partial Loads curve represents query plans
with loading operators that can perform filtering on-the-fly.
Only the values that qualify the where clause are loaded,
allowing the loading operators to shed extra cost by mini-
mizing the actions on non-qualifying data. Complete tuples
in the flat file can be ignored as soon as one of the predi-
cates in the where clause fails for a given tuple which allows
the adaptive operator to immediately stop any further pars-
ing and loading actions in this row. This kind of partial
adaptive loading has the side-effect of creating intermediate
results that are identical to what a selection operator over
the complete column would create. This way, the query plan
can then continue from this point on, avoiding all the where
clause operators.

For this specific experiment, Partial Loads throws away
the data immediately after every query. Thus, this rep-
resents the potential benefits of the most lightweight direc-
tion of never “really loading” anything, never paying the I/O
cost to write the data back to disk and always reading just
enough from the file by exploiting early tuple elimination
while parsing. However, given that we have to go back to the
file for every query, as MySQL does, performance remains
quite stable with no room for improvement. Multiple varia-
tions of the above are possible, shaping up an optimization
problem. In the next section, we present a variation where
Partial Loads does not throw data away and future queries
can actually reuse them if they overlap.

4. DYNAMIC FLAT FILE ADAPTATION
The previous section showed some very promising results.

Loading can be done incrementally and it can be added in
the software stack of a modern DBMS. Given though the
inherent costs of reading and analyzing flat files, these results
indicate that a significant cost is involved every time we need
to read from a file due to missing data. Here, we study this
problem and sketch a solution that goes even more beyond
the traditional loading schemes.

4.1 Split Files On-the-fly

4.1.1 I/O Overhead
Going back over and over to the full file has the inherit cost

of requiring to bring the complete file from disk, tokenize and
parse a part of it over and over again. When the complete
file needs to be loaded, it is justified to pay this cost. In our
case, though, we are incrementally loading the data and we
have to go back to the file at multiple occasions; flat files are
organized in rows but the queries ask for specific columns.
Thus, this is exactly the same problem as in the typical row-
/column-store environment where a column-store has the
advantage of selectively reading only the necessary columns
for a query, while a row-store needs to read everything no
matter what the query needs are.

62

4.1.2 Tokenization Overhead
A second problem with a monolithic flat file is that ev-

ery time we need to load a different attribute or part of it,
we need to tokenize all attributes that appear before our
target in the file. For example, if we want to locate the
5th attribute in each row of the file, we need to tokenize
the previous 4 so that we know when we reach the 5th one,
even though these attributes are not relevant for the cur-
rent query. If for a future query we need to load part of
attribute 6, then again we need to tokenize all previous 5.
Maintaining information on where each attribute starts is
prohibitive as this is different for each row; assuming fixed
length attributes is unrealistic in general. Even if we had
such knowledge, we still have the inherit cost of needing to
read the complete raw file from disk even if only a few of
the values are needed.

4.1.3 Splitting Flat Files
The direction to follow here is to try to amortize the load-

ing cost over the sequence of queries, making sure that we
do not perform the same actions over and over again. To
achieve this, we have to eliminate the need to repeatedly
read the complete file. At the same time, we want to avoid
tokenizing the same part multiple times. Both of these goals
can be achieved if we incrementally and adaptively split the
file during the loading phase such as future loading steps can
locate the needed data much easier.

For example, say we need to load column A. With the
techniques of the previous section, we have to go through
every row of the file and tokenize it until we locate column
A. Then, we parse and load this value and ignore the rest
of the row. Thus, for every row of the file, we have paid the
cost of tokenizing every attribute before A, but we have not
tokenized any attribute after A.

4.1.4 Dynamic File Partitioning
To exploit our current efforts in future queries, one direc-

tion is to on-the-fly create a few supporting structures as a
side-effect of loading. For example, here we can create one
new flat file for each attribute we tokenized and one flat file
for all attributes we did not tokenize. This way, when in fu-
ture queries we need to load any attribute which is already
tokenized, we can simply read the respective input file con-
taining only the needed values. The befit is twofold. First,
we completely avoid the overhead of reading the rest of the
input data. Second, loading the column becomes much sim-
pler since the file contains only the needed column and thus
tokenization involves only separating the values by recogniz-
ing the end of each row. Even if we need an attribute from
the non-tokenized ones, again we gain by reading and ana-
lyzing only part of the flat file and thus progressively making
the loading cost less and less as we gain more knowledge.

4.1.5 Learning
Conceptually this can be thought of as “file cracking”, i.e.,

similar to database cracking [12] that dynamically reorga-
nizes columns inside a DBMS based on queries, file cracking
dynamically reorganizes flat files to fit the workload needs
and ease future requests. The concept of cracking is to learn
as much as possible when touching data and with lightweight
actions reflect this knowledge. The same mentality can be
applied here with several research directions to study to-
wards on-the-fly maintaining a more sophisticated table of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

MonetDB: 11000 sec

MonetDB
Column Loads

Partial Loads V2
Split Files

Figure 4: Adaptive loading with file reorganization

contents over the flat files. Every time we touch a file, we
learn a bit more about its structure, e.g., the physical posi-
tion of certain rows and attributes. Solutions that provide a
more active reorganization of the flat files are also possible
in order to introduce even more knowledge. Identifying and
exploiting this knowledge in the future can bring significant
benefits.

4.2 Experimental Results
We implemented the split file functionality in our Mon-

etDB implementation of adaptive loading. During tokeniza-
tion, the already seen columns which do not qualify for the
current query are not ignored as before. Instead, pointers
to the values of each column are collected into arrays and
once all tokenization is finished, they are written in one go
in one separate file per column. The non tokenized columns
are written in a single separate file. The system then has
to update its table of contents regarding where subsequent
queries can find each column.

Figure 4 shows the results. We use a 12 column table of
1 billion tuples and Q2 queries. Every 2 queries we use 2
different attributes of the table until all attributes have been
used, running 12 queries in total. In order to emphasize
the best and the worst case for each technique, the second
query in each run is simply a rerun of the first, i.e., we run
6 different queries, and each query runs twice. The y-axis in
Figure 4 is trimmed at 3.5∗103 seconds while the first query
of MonetDB reaches 11∗103 seconds. In addition, for better
presentation the x-axis shows the first 7 queries as the rest
of the sequence maintains the same performance patterns.

The performance of MonetDB and Column Loads is sim-
ilar to our previous experiment; MonetDB loads the data
completely with the first query, while Column Loads loads
incrementally whenever missing columns are needed. With
Column Loads we load only the necessary columns every
time essentially amortizing the loading cost across the work-
load. Query 1 loads fully 2 of the columns. Then Query 2,
needs the same columns and thus it can provide a perfor-
mance similar to MonetDB as no extra actions are needed;
not all data is loaded but all necessary data is there. The
Partial Loads V2 manages to produce smaller peaks by se-

63

lectively loading only the necessary values. Unlike the ex-
periment in Section 3, here Partial Loads maintains the data
between queries providing incremental loading.

The effect of the Split Files technique is that it can pro-
duce even smaller peaks. In this case, in order to emphasize
the best and worst behavior, the very first query asks for
the two attributes that appear last in the flat file. This way,
it is the first query that does all the heavy work of split-
ting the complete file and thus demonstrates the worst first
query case. Even so, the start-up cost is roughly 4 times
smaller than that of MonetDB. In the general case, the split
file efforts will be amortized among many queries and thus
the performance of the first query will be even more attrac-
tive. If we look at what happens after the first query, then
Split Files achieves an ultimate performance similar to that
of MonetDB and thus providing all performance a modern
DB can promise. In addition, compared to Partial Loads
and Column Loads it reduces the cost of dynamically going
back to the flat file, i.e., it is 2 times faster than Partial
Loads and 5 times faster than Column Loads. The gain
comes purely by the need for less I/O and parsing effort.
Every time something is missing, Column Loads and Par-
tial Loads have to go back to the complete raw file, while
Split Files can just read the individual files containing the
minimal subset needed for the query. This time, this rep-
resents the best possible behavior given that the first query
has already done all the file splitting.

4.2.1 Summary and Research Questions
The analysis above demonstrates a clear potential. It also

raises several research questions, e.g., how much of the flat
file should we bring inside the DBMS? By bringing more
data than a query needs, we penalize single queries with
actions that might never prove useful. By bringing exactly
what a query needs, we have higher chances of needing to go
again back to the flat file, penalizing queries that represent
a shift of the workload. Splitting the file dynamically helps
but it potentially doubles the needed storage budget and
loses (or makes more complex) the ability to directly edit
the flat files via any text editor and immediately fire an
SQL query. Quantifying and modeling the various actions
is also needed to take educated actions.

5. RESEARCH LANDSCAPE
In this paper, we set a challenging goal towards fully au-

tonomous systems that consider flat files as an integral part
of their structure. The goal is to achieve a zero initialization
overhead; just point to the data and start firing SQL queries,
progressively achieving similar performance with that of a
modern DBMS.

The initial designs and experimentation shown in the pre-
vious section verify that this is indeed a feasible direction.
We clearly show that what is considered as a given fact in
modern database systems regarding complete and expensive
up-front data loading can be reconsidered.

The task of a complete study of this vision expands over
several core database topics and requires an in depth anal-
ysis. In this section, we sketch the most important of these
topics towards our vision and we provide initial ideas and
discussion for the adaptive storage module, the adaptive ker-
nel module as well as for updates, concurrency control, ro-
bust performance, etc.

5.1 Adaptive Store
The storage layout is of critical importance. In our vision,

storage is created on-the-fly as data is incrementally brought
from the flat files into the system. In fact, the storage layer
consists of two parts: (a) the flat data files and (b) the data
that the engine creates to fit the workload, the Adaptive
Store.

5.1.1 Continuous Adaptation
The adaptive store is an ever changing layer that contin-

uously adapts to the workload. The key point here is that
all this happens on-line when we actually have information
that we can exploit towards making these decisions. The
queries themselves provide this information. This way, we
can continuously create the “optimal” representation for the
query at hand.

In the adaptive store the notions of base data, index,
materialized view and projection are blurred. The adap-
tive store may contain data in any format, i.e., row-store,
column-store, as well as PAX and its variations. For exam-
ple, while loading data dynamically and partially, instead
of merely creating columns to store the data, the system
can choose the optimal format for the current query that
triggered this loading action.

Multi-format Data. In the same spirit as with the
above observations, it is not necessary that all data for a
given table follows the same format. On the contrary, dif-
ferent parts of a table may follow completely different for-
mats. Queries dictate the format of the data parts they need
and different parts of the same table may be of interest to
different queries. By letting independent queries make inde-
pendent decisions on how to store the missing relevant data
and how to exploit existing already loaded relevant data, the
system self-organizes to match the workload.

Multi-format Copies. The same part or overlapping
data parts may be replicated multiple times in multiple dif-
ferent formats in order to service different kinds of queries.

Multi-file Data. A single data instance in the adaptive
store may contain snippets from multiple raw data files, ef-
fectively providing partial denormalization as needed by the
queries.

Data Padding. Data padding is a powerful tool to fully
exploit modern hardware. For example, [15] shows that data
padding techniques can successfully be integrated with exe-
cution strategies that are aware of the padding and through
bitwise operations provide efficient database query process-
ing. A system that can exploit proper padding in an adap-
tive way and combine this with the rest of the data place-
ment and execution decisions discussed above, leads to an
optimal performance, adapting to its hardware potential.

5.1.2 Strategies
There are two extreme strategies one may implement re-

garding how to manage the adaptive store. In the first one,
we target for simplicity, i.e., for every incoming query that
is not fully covered by the data which is already loaded, we
blindly treat this query as if all the tuples it needs are miss-
ing. This means that we will fetch everything from the flat
files, including tuples that potentially are already loaded.
Then, we create a completely new view to store the newly
loaded data. In the second extreme, we always try to min-
imize the footprint of the adaptive store, i.e., for every in-
coming query we identify the missing tuples and we load

64

only those. Then, we have to update the proper structures
in the adaptive store to reflect the new information as well
as combine the existing relevant tuples such as to answer the
current query.

Naturally, the second approach is more complex than the
first but it gives more flexibility to exploit the adaptive store
and cover a bigger percentage of the active workload. The
research challenges here are in designing efficient techniques
to implement strategies like the one described above as well
as study the field between those two extremes.

5.1.3 Life-time
Multiple interesting scenarios may be studied regarding

how long we need to keep data alive. Data parts loaded via
adaptive loading and stored in any format may be thrown
away at any time. The only cost is that of having to reload
this data part if it is needed again in the future.

For example, one approach can be that the adaptive store
is purely memory resident. In this case, loaded data is never
written to disk and stay alive only as long as there is enough
memory. Once a more “useful” piece of data is needed, an
old one is thrown away. Alternative approaches may exploit
flash disks as an intermediate layer such as to minimize the
effort when data needs to be reloaded.

Designing efficient strategies and algorithms on how to
maintain data is of significant importance as it can affect
drastically run time performance.

5.2 Adaptive Execution
Proper data placement adapted to query processing can

give significant boost in performance by optimizing I/O and
cache performance. However, in a system that supports mul-
tiple data layout formats, we also need multiple processing
strategies to fully exploit the potential of the different lay-
outs.

For example, a pure column-store uses a drastically dif-
ferent execution strategy than a pure row-store in order to
benefit even more from the columnar layout. This trans-
lates to different operators and different data flows, leading
to very different implementations of the DBMS kernel as
well as the optimizer. Pure column-store operators, operate
on one or at most two columns at a time. Their advantage
is simple code, data locality and a single function call per
operator. The disadvantage is that they need to materialize
intermediate results which may prove fairly expensive when
for example we need to operate on multiple columns of a
single table. Row-store operators, on the other hand, op-
erate in a volcano style passing one tuple at a time from
one operator to the next. No materialization is needed but
numerous function calls are required.

5.2.1 Adaptive Kernel
In the same philosophy as with the adaptive store en-

visioned above, here we argue towards an adaptive kernel
where at any given time multiple different execution strate-
gies are possible to better fit the workload.

The kernel may contain any kind of operator implementa-
tions that better fit the data in the adaptive store based on
the query patterns. And should be able to create any kind
of query plan to better exploit those operators.

5.2.2 Hybrid Operators
Other than using pure row-store or column-store opera-

tors, there is also a clear space for hybrid operators. For ex-
ample, when we need to compute an aggregation over three
attributes, a new operator that in one go computes the total
aggregation would provide the best result, i.e., operating in
a column-store like fashion but with a row-store like input.

Combined with optimal hybrid storage, hybrid operators
are expected to have a significant impact on system behav-
ior as it essentially means that we always get the optimal
storage and access patterns.

5.3 Auto-tuning
The adaptive store and the adaptive kernel envisioned in

the previous sections aim in always maintaining the best
possible layout and execution mechanisms as the workload
evolves. The adaptive loading procedures keep feeding the
store and the kernel with just enough data as needed.

Several challenges arise to satisfy all these requirements.
Probably the most challenging of all is the question of how
the system reaches a good set-up as well how it adapts when
the requirements change again. Up-front materialization of
all possible storage patterns is not feasible given the nu-
merous combinations leading to storage and maintenance
problems. Similarly, up-front implementation of all possible
operators/access patterns is not possible given the numer-
ous combinations of inputs and operations to be considered.
This way, a dynamic mechanism is needed to on-the-fly cre-
ate not only the appropriate data layout but also the appro-
priate operators and plans to match the current workload.

The main challenge is to define and develop the adaptation
mechanisms and steps that transform the raw data and the
initially “ignorant” kernel into the best fit system for a given
workload. Other than the technical challenges, for this we
first need to answer the following (high level) questions:

1. What is the best execution pattern for a query set?

2. What is the best storage layout for a query set?

3. How and when we actually adapt?

5.3.1 Identifying Optimal Strategies
Questions 1 and 2 require an extensive benchmarking of

all possible hybrid storage and execution patterns to under-
stand and model the performance. Even though extensive
and important research was introduced in recent years, still
one cannot argue with certainty which storage and execu-
tion strategy is the best for a given scenario especially when
hybrids strategies and execution are thrown in the equation.
This is an open research question.

5.3.2 Adaptation Triggers
Question 3 goes deep into the new architecture character-

istics and of course hide numerous more fine-grained ques-
tions. As we discussed earlier, in order to assist the adap-
tive nature, the initial choice is to trigger adaptation based
purely on the query needs. Changes in the storage or exe-
cution layer become a side-effect of query processing. Nev-
ertheless, several issues naturally arise regarding what can
trigger and guide adaptation. One could consider multiple
queries at a time, system and hardware parameters, etc.

5.3.3 Re-organization
The adaptive store and the adaptive kernel are ever evolv-

ing structures. They continuously change their shape to fit

65

the workload but also to adapt to restrictions, e.g., stor-
age restrictions. Data in the adaptive store may be refor-
matted on-the-fly if the workload indicates towards a more
fine-tuned storage layout. Similarly, the kernel may alter its
execution strategies to follow such changes.

Furthermore, existing data and operators may be thrown
away at any time to make room for new ones based on the
workload. This may be done, either to deal with storage
restrictions, to ease updates or simply to lead to a more
lightweight and thus better performing system.

5.4 Updates and Concurrency Control
Updates and concurrency control is one of the hardest top-

ics in database design. In our proposed vision these topics
become slightly more complex due to the continuous data
reorganization. There is though a plethora of interesting
ways to resolve these issues.

Regarding updates, the issue is how to update an already
loaded table R. There are two reasons why we would like
to update such a table. The first one is that the flat file
has changed, e.g., because the user updated it via editing
with a text editor. The second one is that we might want to
extend R with more data. Recall that in our design loaded
tables are partial views of the actual data that belong in a
table. The data materialized reflect the workload needs and
it is based on design choices. For example, we have seen
techniques in this paper, where in a column-store architec-
ture we do full or partial loads. When we do full loads, this
means that the very first query that requests a column A,
will completely load column A, while with partial loads it
will only load the portion of A needed. The second choice
means that future queries needing A and not covered by
the loaded portions, will need to update the existing struc-
tures. The second scenario brings concurrency control issues
as well. Multiple queries might be asking for the same col-
umn at the same time, meaning that these queries have to
touch and update the same loaded table with data brought
from the flat file.

One easy solution to all the update and concurrency con-
trol scenarios is to treat each request independently and each
table as a completely auxiliary data structure that we are
not afraid to lose. For example, each incoming query that
is not fully covered with whatever is already loaded in the
database will be treated as if it is the first query for the data
needed. This way, it will create its own table portions but
without incurring any conflicts on the way. Similarly, every
time a flat file is updated, we can simply drop all relevant
tables that have been created with data from this file.

The advantage of the above approach is simplicity. The
research challenge here is to investigate differential methods
and proper locking strategies for updates such as to avoid
extensive data replication, share as much work as possible
between concurrent queries and to avoid extensive trips back
to the flat files.

5.5 Robust Performance
Any adaptive method may suffer from a non robust per-

formance. For example, the worst case scenario in a system
with adaptive loading is one where the data parts loaded
are never used. Say, we have a memory limit of X bytes.
Queries arrive and start creating more and more tables and
feed them with data from the flat files. Say that no query is
covered by any existing table and thus all queries have to go

back to the flat files. Then, we reach the storage limit and
we start dropping tables. Thus, all the effort of incremental
loading is wasted.

Another similar scenario is the case of incrementally load-
ing a column with partial loads where each query brings
from the flat file only the portions that it needs. Individu-
ally each query is much faster than one with full loads as we
saw in our experiments. However, in the worst case scenario
we will have to go back to the flat files as many times as the
tuples in a column. Say for a column of N tuples we receive
N queries one after the other where each query fetches only
one of the N tuples. In this case, doing a full load with
the first query is a much better approach as it avoids the
extensive I/O.

Thus, the challenge, for providing a robust performance
relates to a continuous process to monitor the system perfor-
mance and the workload trends such as we can continuously
adjust critical decisions that may significantly affect perfor-
mance, i.e., how much data to fetch from the flat files with
every query, whether to replicate tables or use a single in-
stance of each one, whether split the flat files or not, etc.

5.6 Schema Detection
Another important research topic is automatic schema dis-

covery. When the user links a collection of flat files to the
database, a schema should be defined. Ideally, this should
be done without any input from the user. Following a simple
strategy, each flat file can be mapped to a table. In the to-
kenization phase, the columns of a given row are identified,
each column becomes an attribute of the table and we ex-
amine each attribute to figure out its proper data type. This
task is performed only once during the first query execution.

Nevertheless, all schemas are not equally good; many times
integrity constraints and functional dependencies are impor-
tant. Advance techniques such as database normalization,
data de-duplication and data cleaning can be considered and
we cannot expect that the structure of the flat files reflects
a good schema for the query workload indented.

6. RELATED WORK
There have been several important milestones in the re-

search literature that brought us to this research line. In this
section, we briefly discuss related work that inspired the vi-
sion of this paper. There has been related work in multiple
aspects of database research, mainly related to external ta-
bles functionality, self-organization and hybrid storage lay-
outs.

6.1 External Tables
Flat files were always considered “outside” the DBMS en-

gine. The general guideline is that a DBMS has to load the
data completely before it can do anything fancy with it. Re-
cently, there have been a number of efforts both in industry
and in academia to partially attack this problem.

FlatSQL [16] claims the usefulness of using SQL to ex-
press queries over flat files. The main motivation is that one
can use SQL, i.e., a declarative language as opposed to a
scripting one to interact with the system. Under the covers,
FlatSQL translates SQL to Awk scripts so it can actually
query the flat files. This work was mainly motivated by
scientific applications and it shows that the motivation for
using a DBMS is not only raw performance but also several
of the features that make DBMSs friendly to the user.

66

In [22], the SciDB project presents a collection of essential
features needed for modern scientific databases with huge
data loads. The ability to query raw data by minimizing
the overhead of loading was included as one of these features
that modern DBMSs need to support so they can be useful
for scientific data analysis.

More recently, several open source and commercial database
systems include the functionality of external tables. The
idea is that the system can read directly from flat files trig-
gered by an SQL query. Nevertheless, current designs do not
support any advanced DBMS functionality. In other words,
they provide the same benefits as with FlatSQL but without
the need to call Awk. In terms of performance though, this
cannot match a normal DBMS as it needs to continuously
parse the data.

The vision provided in this paper goes multiple steps fur-
ther. By allowing not only to access flat files via SQL but
also to selectively and dynamically load part of the data
and store it in what essentially is an index-like format, we
can combine both the ease of using SQL and the superior
performance of exploiting a traditional database engine.

6.2 Self-organization
Self-organization has been studied in multiple problems of

database research. The main goal of any technique in this
front is to reduce or eliminate the need to tune the system
which in turn significantly reduces both the user input re-
quired and the time needed to reach a highly tuned system.
Typically, this means an effort to automatically select and
create indices, materialized views, etc.

Auto-tuning Tools. For example, there has been a sig-
nificant line of work in the area of auto-tuning tools, e.g.,
[1, 3, 4, 20, 23, 25]. These tools automatically select the
proper indices given a representative workload. They can
even take into account the available storage budget that we
can devote in the auxiliary structures, the cost of updates,
etc. Nowadays, these are invaluable tools when setting up a
new system. This is typically an off-line approach, i.e., it re-
quires a priori workload knowledge and enough idle time to
analyze the representative workload. More recently, there
have been efforts in adapting these tools towards a more
on-line approach [4, 20]. In this case, the system can start
with zero indices, then monitor incoming queries and per-
formance and eventually come up with a set of candidate
indices that match the running workload.

Adaptive Indexing. A second line of work is adaptive
indexing, i.e., database cracking and adaptive merging [7, 8,
9, 14, 12, 13]. With such adaptive indexing techniques, index
selection and index creation happens as a side-effect of query
processing. The user does not have to initiate any tuning
or provide a representative workload. At any given point in
time, an adaptive index is only partially optimized and par-
tially materialized such as to fit the current workload and
storage budget. As queries arrive, the index representation
adapts at the physical level to fit the workload. For example,
the basic cracking techniques can be seen as an incremental
quick sort whereas the basic adaptive merging techniques
can be seen as an incremental external sort. For example,
in the MonetDB implementation of database cracking and
adaptive merging in a column-store, each operator (a se-
lection, a join, etc.) physically reorganizes the arrays that
represent its input columns using the query predicates as an
advice of how the data should be stored.

Blink. Another recent research path is the Blink project
from IBM [15, 19, 17]. Recognizing that index selection, ex-
ploitation and tuning is a major hurdle, Blink completely re-
moves these steps. The motivation is that the system should
be usable with minimum tuning; there are no indices and
there is no optimizer. Blink combines several novel tech-
niques to deliver high performance out of the box. Some of
the core technologies include denormalization, compression
via frequency partitioning and a run-time kernel that can
operate directly on compressed data. Frequency partition-
ing allows to create multiple partitions of the data, collect-
ing similar values from each attribute in the same partition
and compressing them with fixed length codes per parti-
tion. This way, Blink achieves both high compression and
high performance, since at run time the kernel can exploit
vectorized query processing. In addition, Blink packs several
tuples into CPU registers and operates on blocks of tuples
at a time even in compressed form. The end result is high
performance with zero or minimal tuning; the user needs to
simply load the data.

Our Approach. All research effort described above, re-
lates to ours in that it tries to improve the user experience
regarding the tuning effort needed. However, our vision goes
a significant step further to introduce the self-organization
flavor all the way to the very beginning of the user experi-
ence, i.e., before even loading the data. All existing efforts
help only after the data is completely loaded. We expect
that several of these ideas will apply to our vision as well.

6.3 Storage Layout
Trying to create a hybrid store has been the subject of sev-

eral seminal papers over the years, e.g., [2, 10, 18, 11, 21, 24].
Lately, the issue has received wide recognition by the com-
mercial world as well, with big vendors and new start-ups
pushing out hybrid technologies, e.g., Oracle, Greenplum,
Vertica and Vectorwise. Previous work was mainly focused
on improving the way data is stored, bringing the I/O or
cache benefits of a column-store design to a row-store setting
but leaving the execution part as is, i.e., using N-ary process-
ing. Other work [26] also demonstrates that significant bene-
fits may come from combining the NSM and DSM execution
strategies. Building on top of a pure column-oriented stor-
age layout, it shows that it is beneficial to change between
NSM and DSM execution strategies on-the-fly. In fact, at-
tempts for hybrid designs began even earlier when vertical
partitioning was the main tool to improve performance with
respect to the I/O, e.g., [5].

More recently [6] proposes a declarative language interface
to explicitly define storage patterns and data layouts. Such
an interface would be of significant importance since it can
simultaneously simplify and model the interaction with the
lower storage level. It still requires, however, a set-up step
which assumes a good grasp of the query and data workload.
Thus, this is orthogonal to our vision here.

Contrary to the above literature, we sketch the vision of
an adaptive store that automatically feeds itself from flat
files, making sure that data fits the workload both in terms
of which data parts are loaded and also in terms of which
storage and access pattern is being used for each data set.

7. CONCLUSIONS
This paper sets a challenging vision; the user should just

give the raw data files as input and the system should be

67

immediately usable. Flat files should not be considered out-
side the DBMS anymore. Here, we sketch this research path
and provide an analysis of how a system can adaptively and
dynamically load only parts of the input data, and keep feed-
ing from flat files whenever this is necessary. Hybrid storage
and execution techniques will further enable this vision that
opens a research line towards systems where each incoming
query is treated as a guideline of how to load, how to store
and how to access data.

In addition to opening up a new line of research, we ex-
pect a significant impact by enabling wide database systems
usage across multiple domains. Scientists benefit from faster
and (more) complete data analysis thanks to shorter query
response times. At the same time, several other application
domains can benefit ranging from large corporate set-ups to
everyday personal applications. The latter should not be ig-
nored! For example, a person’s music or photo collection is
typically stored in a file hierarchy, manually organized. With
personal data growing in massive numbers and ranging over
numerous areas, e.g., music, photo, digital books, movies,
agendas, maps, etc., personal data management quickly be-
comes a horrendous task – but a single user will never go
into the trouble of putting his/her data into a DBMS due to
the initialization trouble and expert knowledge required (the
interface should also change from SQL to natural language
but this is an orthogonal issue).

Thus, the path of truly adaptive and autonomous databases
applies to a vast range of scenarios and has the potential to
have a significantly positive effect on modern life.

8. REFERENCES
[1] S. Agrawal et al. Database Tuning Advisor for

Microsoft SQL Server. In VLDB, 2004.

[2] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis.
Weaving Relations for Cache Performance. In VLDB,
2001.

[3] N. Bruno and S. Chaudhuri. Automatic Physical
Database Tuning: A Relaxation-based Approach. In
SIGMOD, 2005.

[4] N. Bruno and S. Chaudhuri. To Tune or not to Tune?
A Lightweight Physical Design Alerter. In VLDB,
2006.

[5] D. W. Cornell and P. S. Yu. An Effective Approach to
Vertical Partitioning for Physical Design of Relational
Databases. IEEE Trans. Software Eng., 16(2), 1990.

[6] P. Cudré-Mauroux, E. Wu, and S. Madden. The Case
for RodentStore: An Adaptive, Declarative Storage
System. In CIDR, 2009.

[7] G. Graefe, S. Idreos, H. Kuno, and S. Manegold.
Benchmarking adaptive indexing. In TPCTC, 2010.

[8] G. Graefe and H. Kuno. Adaptive indexing for
relational keys. In SMDB, 2010.

[9] G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In EDBT, 2010.

[10] R. A. Hankins and J. M. Patel. Data Morphing: An
Adaptive, Cache-Conscious Storage Technique. VLDB
’03.

[11] S. Harizopoulos, V. Liang, D. Abadi, and S. Madden.
Performance Tradeoffs in Read-Optimized Databases.
In VLDB, 2006.

[12] S. Idreos, M. Kersten, and S. Manegold. Database
Cracking. In CIDR, 2007.

[13] S. Idreos, M. Kersten, and S. Manegold. Updating a
Cracked Database. In SIGMOD, 2007.

[14] S. Idreos, M. Kersten, and S. Manegold.
Self-organizing Tuple-reconstruction in Column-stores.
In SIGMOD, 2009.

[15] R. Johnson, V. Raman, R. Sidle, and G. Swart.
Row-wise parallel predicate evaluation. PVLDB,
1(1):622–634, 2008.

[16] K. Lorincz, K. Redwine, and J. Tov. Grep versus
FlatSQL versus MySQL: Queries using UNIX tools vs.
a DBMS. Harvard, 2003.

[17] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M.
Lohman. Main-memory scan sharing for multi-core
cpus. PVLDB, 1(1), 2008.

[18] R. Ramamurthy, D. DeWitt, and Q. Su. A Case for
Fractured Mirrors. In VLDB, 2002.

[19] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-time
query processing. In ICDE, 2008.

[20] K. Schnaitter et al. COLT: Continuous On-Line
Database Tuning. In SIGMOD, 2006.

[21] M. Shao, J. Schindler, S. W. Schlosser, A. Ailamaki,
and G. R. Ganger. Clotho: Decoupling memory page
layout from storage organization. In VLDB, 2004.

[22] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim,
D. Maier, O. Ratzesberger, and S. B. Zdonik.
Requirements for science data bases and scidb. In
CIDR, 2009.

[23] G. Valentin et al. DB2 Advisor: An Optimizer Smart
Enough to Recommend Its Own Indexes. In ICDE,
2000.

[24] J. Zhou and K. A. Ross. A Multi-Resolution Block
Storage Model for Database Design. In IDEAS, 2003.

[25] D. C. Zilio et al. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In VLDB, 2004.

[26] M. Zukowski, N. Nes, and P. A. Boncz. DSM vs.
NSM: CPU performance tradeoffs in block-oriented
query processing. In DaMoN, 2008.

68

