

Consistency in a Stream Warehouse
Lukasz Golab and Theodore Johnson

AT&T Labs – Research

180 Park Avenue, Florham Park, NJ, USA 07932

lgolab@research.att.com, johnsont@research.att.com

ABSTRACT

A stream warehouse is a Data Stream Management System
(DSMS) that stores a very long history, e.g. years or decades; or
equivalently a data warehouse that is continuously loaded. A
stream warehouse enables queries that seamlessly range from real-
time alerting and diagnostics to long-term data mining. However,
continuously loading data from many different and uncontrolled
sources into a real-time stream warehouse introduces a new
consistency problem: users want results in as timely a fashion as
possible, but “stable” results often require lengthy synchronization
delays. In this paper we develop a theory of temporal consistency
for stream warehouses that allows for multiple consistency levels.
We show how to restrict query answers to a given consistency
level and we show how warehouse maintenance can be optimized
using knowledge of the consistency levels required by
materialized views.

1. INTRODUCTION
Many real-world enterprises generate streams of information
about their operations and require real-time response for their
maintenance. Examples include financial markets,
communications networks, data center management, and vehicular
road networks. Data Stream Management Systems (DSMSs) have
been developed to provide real-time analysis and alerting of these
and other data streams, typically by processing events in-memory
and over a short time window. However, users often want to
perform longer-term analyses over large time windows on the data
streams, e.g. to determine the conditions that should raise alerts.

While it is possible to build separate systems for either real-time
or long-term data analysis, a system which provides both
capabilities is more useful. The window of data used for queries
can seamlessly range from short term to very long term, making it
difficult to decide where to divide the systems. Furthermore,
historical data can provide a context for interpreting new data [2].
A stream warehouse bridges the short-term vs. long-term gap by
loading data continuously in a streaming fashion and warehousing
them over a long time period (e.g. years). Stream warehouse
systems, such as Moirae [2], latte [22], DataDepot [11], Everest

[1], and Truviso [10], have been applied to monitoring
applications such as data centers [2], RFID [23], web complexes
[1], highway traffic [22], and wide-scale networks [14].

A DSMS normally monitors a nearly-instantaneous and ordered
data feed of, e.g., network packets [8], financial tickers or sensor
measurements. However, a stream warehouse operates on longer
time scales, and, instead of processing data from a localized
source, it receives a wide range of data feeds from disparate, far-
flung, and uncontrolled sources. For example, the Darkstar
network management system [14] (built using DataDepot)
receives more than 100 distinct data feeds, each of which collects
data from a worldwide communications network using many
different dissemination mechanisms. These distinct feeds need to
be cross-correlated and analyzed into higher level data products
for use by network analysts. In such a widely distributed and
heterogeneous environment, one can no longer assume that data
within a stream arrive in time-order (or nearly so), or that streams
are synchronized with each other. This leads to new temporal
consistency problems: we want to load new data (and propagate
changes to the materialized views maintained by the warehouse)
as quickly as possible, but “stable” results may require significant
synchronization delays. (Note that the temporal consistency
issues studied in this paper are orthogonal to transactional
consistency issues that arise from multiple data writers and/or
readers.)

Consider a network monitoring system that collects performance
measurements, such as router CPU utilization or the number of
packets forwarded, and various system logs. Suppose that an
alerting application generates an alarm whenever the CPU usage
of a router exceeds a supplied threshold. If a high-CPU-usage
record arrives, the application should not have to wait until all
temporally preceding data have arrived before taking action.
Similarly, a view containing all the routers that have generated at
least ten critical system log messages in any one-minute window
can be updated whenever the message count for a particular
router, call it r, reaches ten; we do not need to see data from other
routers, nor do we need to wait and see if any more messages
from r arrive in this window. On the other hand, suppose that we
want to maintain aggregated statistics for each time window. It
may be better to wait until all the expected measurements have
arrived before updating the statistics over the latest window, both
in terms of interpretability (aggregates computed on incomplete
data may not be accurate) and update efficiency (we want to avoid
re-computing expensive aggregates while data are still trickling
in).

These types of problems become even more challenging in
production stream warehouses that correlate a wide variety of
highly disordered and asynchronous feeds and maintain complex

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well allowing derivative works, provided that
you attribute the original work to the author(s) and CIDR 2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR ‘11)
January 9-12, 2011, Asilomar, California, USA.

114

materialized view hierarchies. Such warehouses often support
critical applications; examples from the networking domain
include real-time network troubleshooting and anomaly detection
[14]. However, without an understanding of temporal data
consistency, we may not know how to trust the answers.

Motivated by our experiences with production stream warehouses,
we present temporal consistency models for a stream warehouse
that range from very weak to very strong, and we show how they
can be tracked and used simultaneously. Given that warehouse
tables are typically partitioned by time, the key technical novelty
is to reason about and to propagate consistency information at the
granularity of partitions. Since a significant part of the value of a
stream warehouse is its ability to correlate disparate data sources
for the users, our models describe the state of the data in an
intuitive way that allows users to interpret real-time query results.
For instance, a partition that is guaranteed not to change is marked
“closed”, while one that may be updated with new data, but whose
existing data are guaranteed not to change, is marked “append-
only”. Since warehouse maintenance involves propagating
changes across view hierarchies, we also discuss disseminating
consistency level information from base tables to materialized
views and vice versa. We show that stronger consistency levels
not only provide assurances for query results, but they can also be
used to avoid unnecessary computations. Finally, we discuss
applications of our models to monitoring data stream quality.

2. BACKGROUND AND MOTIVATION
A DSMS continuously ingests data from one or more data feeds,
and processes a collection of long-running queries over these
feeds. Many sources can produce a data feed: a stream of
measurements, log files delivered from an external source, a log
of updates to a transactional store, and so on. The feed regularly
presents a package of records for ingest into the stream system.
The records in a package are stamped with the time of the
observation (or observation time interval), and also the package
itself is often timestamped. The set of timestamps in a package
are generally highly correlated with the package timestamp and
delivery time.

Data feeds are usually append-only; i.e., records that have arrived
in the past are not deleted or modified in the future. For example,
a feed of network measurements may have a schema of the form
(timestamp, router_id, avg_cpu_usage), with each record
corresponding to the average CPU usage of the router with the
given router_id recorded at the given time(stamp). We may
receive a new package every five minutes, containing new CPU
usage measurements for each router. Here, data from old
packages (old measurements) are never deleted or modified.
However, in some applications, old packages may be revised and
retransmitted.

When a package arrives in a DSMS, the conventional behavior is
to fully process the new records (modulo operator scheduling
policies [5]). Some exceptions occur: a sort operator might
reorder slightly disordered streams, and blocking operators such
as aggregation and outer join might delay some or all of their
output until a punctuation [21] indicates end-of-window.
However, these mechanisms assume that streams are mostly-
synchronized and mostly-ordered, so that buffering costs and
processing delay times are small (the discussion of punctuation

generation in [13] implicitly assumes that streams are
synchronized).

As mentioned, a stream warehouse faces more challenging
problems of disorder in its input streams. We have found the
following disorder problems within the Darkstar warehouse:

Data arrive in a smear over time

In the course of operating several DataDepot warehouses, we
noticed that any given package of data contains records with a
range of timestamps. This behavior is not unexpected since data
are gathered from world-wide network elements. We investigated
this phenomenon by examining the data arrivals of several
Darkstar tables.

We first examined arrivals for table C, which contains 5-minute
statistics about router performance – a package normally arrives
once every 5 minutes. We found that 23 percent of the packages
(covering a 10-day period) contain some data for a previous 5-
minute period, and sometimes for data up to an hour old (the
packages frequently arrive late also). In another table, T, loaded
at 1-minute intervals, every package except one contained records
for a previous time period (observed over a 7-day interval). A
third table, S (loaded at 1-minute intervals), showed the greatest
disorder: each package contained data for an average of 4.5
previous time periods. The degree of disorder changes over time,
as illustrated in Figure 1 which plots the number of time periods
with at least one record in any given package. We hypothesize
that the degree of disorder within a package is related to load on
the data delivery system.

0

2

4

6

8

10

12

0 100000 200000 300000 400000 500000 600000

N
u

m
b

er
 o

f
W

in
d

o
w

s

Time (seconds)

Number of windows per package

Figure 1. Number of time periods in one package for S

Data sources are unsynchronized

Different data feeds use different collection and delivery
mechanisms, and therefore they tend to have different degrees of
currency. We considered three feeds, the previously mentioned C
and T (containing router alerts), and a third feed WD (packet loss
and delay measurements), and sampled the lateness of the most
recent data in each of these tables. On average, T was 6 minutes
behind, C was 17 minutes behind, and WD was 47 minutes
behind. Again, we believe that the currency of these feeds changes
according to the load on their data delivery system.

Late arrivals are common

Significantly late arrivals are not common enough to readily
measure, but in our experience they occur often enough to be an

115

operational concern – corroborated by another recent study [15].
Often the problem is a temporary failure of a component in the
data delivery system. Occasionally, a portion of the source data is
discovered to be corrupt and needs re-acquisition and reloading.

Given the large data volumes and high disorder in the source
streams of a stream warehouse, conventional in-memory buffering
techniques are prohibitively expensive [10]. Compounding the
problem are complex view hierarchies. For example, Figure 2
shows a fragment of a real-time network monitoring application
which searches for misbehaving routers, involving WD and other
data (the full application has another 21 tables). The octagons are
the base tables, while boxes identify tables that are often queried.
These types of applications are too large to manage using
conventional means and too complex to be understood without
consistency assurances.

Another problem is that there can be multiple notions of
consistency that users desire. For example, some Darkstar users
(or applications) require access to router alerts (e.g., T) as soon as
possible, and need to correlate them with the most recent possible
router performance reports (e.g., C). Other users (or other
materialized views) might need stable answers to queries based on
these streams, even at the cost of a moderate synchronization
delay.

Figure 2. Data flow in an application fragment

3. SYSTEM MODEL
This work was motivated by the practical problems encountered
by users of our DataDepot stream warehouse. We phrase the
system model in DataDepot terms, but the model applies to all of
the stream warehouses we have seen (perhaps with a change of
phrasing).

A stream warehouse is characterized by streaming inputs, by a
strong emphasis on the temporal nature of the data, and by
multiple levels of materialized views. To manage a long-term
store of a data stream, the stream is split into temporal partitions
(or panes [16], windows [4][10], etc.). Each temporal partition
stores data within a contiguous time range. The collection of
temporal partitions of a stored stream comprises a complete and

non-overlapping range of the stored window of the data stream. A
feed package may contain data for multiple partitions, as shown in
Figure 1. The storage of a high-volume stream may require
additional partitioning dimensions, but we will not be concerned
with this complication in this paper.

A data warehouse maintains a collection of materialized views
computed from the raw inputs to the warehouse. Materialized
views are used to accelerate user queries by pre-computing their
answers and to simplify data access by cleaning and de-
normalizing tables. A stream warehouse typically has a large
collection of materialized views arranged as a Directed Acyclic
Graph (DAG). The DAG tracks data dependencies, e.g. that view
V is computed from streams A and B (Figure 2 shows a data flow
DAG, the reverse of a dependency DAG). A stream warehouse
also tracks temporal dependencies, e.g. that data in V from 1:00 to
1:15 are computed from data in stream A from 1:00 to 1:15 and
from data in B from 12:30 to 1:15 (as in Figure 3).

Let V be a warehouse table. We assume that V has a timestamp
field, V.ts which tends to increase over time. Further, we assume
that every table V is temporally partitioned, and that the partitions
are identified by integer values so that V(t) is the tth partition of V.
Associated with V is a strictly increasing partitioning function
ptV(t). Partition t of V contains all and only those data in V such
that

ptV(t) ≤ V.ts < ptV(t+1).

Base tables are loaded directly from a source stream (for example,
WU_RAW in Figure 2). Derived tables (materialized views) are
defined by a query over other base and derived tables (for
example, WU_R in Figure 2). We define S(V) to be the set of
source tables of V, e.g. S(WU_R) = {WU, W_METADATA}.
We assume that all derived-table-defining queries exhibit
temporal locality (e.g., they may be defined over a sliding
window).

Let S be a table in S(V). Then Dep(V(t),S) is the set of partitions
in S that supply data to V(t), and Dep(V(t)) is the set of all
partitions that supply data to V(t) regardless of the source table.
For example, suppose that in Figure 3, each partition represents 15
minutes of data, and that partition 20 corresponds to 1:00 through
1:15. Then Dep(V(20), B) = {B(20)} and Dep(V(20)) = {A(18),
A(19), A(20), B(20)}. When any of the partitions in Dep(V(20))
are updated, V(20) must also be updated (incrementally, if
possible, or by being re-computed from scratch).

Figure 3. Partition dependencies

4. CONSISTENCY MODELS
Our basic notion of temporal consistency assigns one or more
markers to each temporal partition in a table. Consistency
markers can be thought of as a generalization of punctuations,
since multiple consistency levels would be used in general.
Below, we propose two related but different notions of

17 18 19 20 21 V

18 19 20 21 17 18 19 20 21
B

17
A

116

consistency. The first, query consistency defines properties of
data in a partition that determine if those data can be used to
answer a query with a desired consistency level. The second,
update consistency, propagates table consistency requirements
and is used to optimize the processing of updates to a stream
warehouse.

4.1 Query Consistency
Our definition of query consistency starts at the base tables. For
the purposes of this discussion, we use a minimal set of three
levels of consistency, but many more are desirable in practice.
We choose this particular set of three levels because they are
natural and they form a simple hierarchy, but they also illustrate
some interesting aspects of query consistency. However, an
actual implementation of a warehouse would likely use a more
refined set of consistency levels, as we will discuss in Section 5.

Let B be a base table and let B(d) be one of its partitions. Then:

• Open(B(d)) if data exist or might exist in B(d).

• Closed(B(d)) if we do not expect any more updates to B(d)
according to a supplied definition of expectation; e.g., that
data can be at most 15 minutes late.

• Complete(B(d)) if Closed(B(d)) and all expected data have
arrived (i.e., no data are permanently lost).

The notions of Open and Closed consistency are the natural
minimal and maximal definitions. Complete consistency is
stronger, and it is motivated by DataDepot user requirements:
only perform analysis on complete data partitions because
otherwise one may get misleading results (however, Closed
partitions are often acceptable to users). Of course, the vagaries
of the raw data sources may make it difficult to precisely establish
when a partition has achieved one of these levels of consistency;
this is similar to the problem of generating punctuations.
However, several types of inference are possible:

• If there is at least one record in a partition, we mark it as
Open. However, a partition might have Open consistency
even though it is empty: no data might ever be generated for
it. We might mark an empty base table partition as Open if
we can infer that some data could have arrived, e.g. if a
temporally later partition is non-empty.

• We might know that exactly five packages provide data for a
partition and that packages rarely arrive more than one hour
late. If so, we can mark a partition as both Closed and
Complete if all five packages have arrived. If only four have
arrived, but an hour has passed since the expected arrival time
of the fifth one, we would only mark the partition as Closed.
If the fifth package never arrives, this partition never becomes
Complete.

The consistency of a partition of a derived table is determined by
the consistency of its source partitions. Each level of consistency
has its own inference rules, and inference is performed for each
consistency level separately. The most basic inference rule is as
follows: for consistency level C, infer C(V(t)) if C(S(d)) for each
S(d) in Dep(V(t)). However, by analyzing the query that defines a
materialized view we can sometimes create a more accurate
inference rule.

Let us consider an example set of inference rules using our set of
three consistency levels. Let V be a derived table and let V(t) be
one of its partitions.

Query Consistency Inference

• Let RQD(V), a subset of S(V), be the non-empty set of tables
referenced by “required” range variables, i.e., those used for
inner-join or intersection.

• If RQD(V) is non-empty, then Open(V(t)) if for each S in
RQD(V), there is a S(d) in Dep(V(t),S) such that
Open(S(d)).

• If RQD(V) is empty, then Open(V(t)) if there is a S(d) in
Dep(V(t)) such that Open(S(d)).

• Closed(V(t)) if Closed(S(d)) for each S(d) in Dep(V(t)).

• Complete(V(t)) if Complete(S(d)) for each S(d) in Dep(V(t)).

The Closed and Complete consistency levels use the basic
inference rule, but by analyzing the query that defines
materialized view V we can avoid labeling a partition V(t) as
Open when no data can be in it. Section 5 contains additional
examples of query-dependent consistency inference rules.

The inference that a partition of a derived table has a particular
consistency level is computed top-down (from source to
dependent tables). Normally, this inference would be performed
at view maintenance time by comparing source with destination
consistency metadata. This maintenance can be performed
globally, as with, e.g., Oracle [9], or piecemeal, as with
DataDepot [11]. Note that the consistency of a partition can
change even though the partition does not need to be updated,
e.g., due to a base table partition becoming Closed as well as
Open.

For example, consider table V computed by an inner join of A and
B as shown in Figure 4. In this figure, we represent Open,
Closed, and Complete consistency markers by O, Cl, and CM,
respectively, and we omit an O marker if a Cl marker exists.
Partition 1 of V can be inferred to have Closed consistency, since
both sources are Closed, but not Complete consistency; however
partition 2 can be inferred to be Complete. Partition 3 is Open
because both A and B can contribute an Open (or Closed)
partition. Partition 4 cannot even be inferred to be Open.

Figure 4. Query consistency inference

Query consistency markers ensure the consistency of query
results. In Darkstar applications, ensuring temporal consistency is
critical, but very difficult without warehouse support.
Applications such as RouterMiner and G-RCA [14] enable real-
time network troubleshooting by correlating data from feeds
including C, S, T, WD and many others; however, each of these

V

BA

1 2 3 4

1 2 3 4 1 2 3 4Cl Cl

CM

O Cl

CM

Cl

CM

Cl O

Cl Cl

CM

O

117

feeds produces base tables with widely varying timeliness (recall
Section 2).

An outline of the procedure for ensuring the consistency of a
query is to treat the query as a derived table and determine its
partition dependencies. A query can be answered with a given
level of consistency if that consistency level can be inferred from
the set of all source partitions accessed by the query. A query that
cannot be answered with the desired consistency can have its
temporal range trimmed (or its consistency relaxed). For
example, if we are performing a selection on table V in Figure 4
and we require Complete consistency, then the inference rules
state that the query can only be run on the data in partition 2.

While the proposed mechanism for ensuring query consistency is
general, it can be confusing to users. A convenient way to
summarize the state of a (base or derived) table is a consistency
line. The C-consistency line of table V is the maximum value of
pt such that all partitions V(t), t≤pt, have C(V(t)). A query that
references tables S1 through Sn can be answered with C-
consistency if it is restricted to accessing partitions of Si at or
below the C-consistency line of Si for each i=1,..,n. In previous
literature, we have referred to the Open-consistency line as the
leading edge of a table, and the Closed-consistency line as the
trailing edge [11]. A Complete-consistency line is likely of little
value since some partitions might permanently fail to become
Complete.

For example, the Open-line (leading edge) of table V in Figure 4
is partition 3, while the Closed-line (trailing edge) of V is partition
2. We cannot define a Complete line since partition 1 is not
Complete.

4.1.1 Case Study

We now give an example of how applications can choose and
exploit query consistency guarantees. A fragment of one of the
Darkstar applications was shown in Figure 2. This application
processes packet delay and packet loss measurements to come up
with network alarm events. These measurements are taken
roughly every five minutes, one measurement for each link in the
network. A loss or delay alarm record is produced for a given link
if there are four or more consecutive loss or delay measurements,
respectively, that exceed a specified threshold. If a measurement
for a given link is missing in a 5-minute window, it is considered
to have exceeded the threshold for the purposes of alarm
generation. In Figure 2, WLR is the materialized view that
contains loss alarm records, each record containing a link id, the
start and end times of the alarm, and the average packet loss and
delay during the alarm interval. The size of each WLR partition is
five minutes, which corresponds to the frequency of the
underlying data feeds. The ovals in Figure 2 correspond to
intermediate views that implement the application logic (e.g.,
selecting measurements that exceed the threshold, computing the
starting point of each alarm event, computing alarm statistics,
etc.). To complete the application, a Web-based front end
displays the current and historical alarms by periodically querying
the WLR table.

Since this is a real-time alerting application, one may argue that
WLR should have Open consistency; i.e., it should be loaded with
all the available data at all times. However, the problem is that
missing measurements are assumed to have exceeded the
threshold. Thus, if we attempt to update WLR before the latest

measurements arrive, we will incorrectly assume that all of these
measurements are missing and we may generate false alarms.
Instead, it is more appropriate to use Closed consistency for WLR,
with partitions closing at each 5-minute boundary. Note that
Complete consistency may not be appropriate for this application
since we do not want to delay the generation of network alarms
for the data that have already arrived, even if a partition is not yet
complete.

4.2 Update Consistency
In addition to understanding data semantics and query results,
another use for consistency is to minimize the number of base
table and view updates in a warehouse. For an example drawn
from experience, consider a derived table V defined by an
aggregation query which summarizes a real-time table S with
once-per-5-minutes updates (with 5-minute partitions) into a daily
grand-total summary (with per-day partitions). If V is updated
every time S is updated, V would be updated about 288 times
(1440 minutes in a day / 5) before the day is closed out. If we are
interested in the grand total rather than the running sum, this
procedure for updating V is wasteful. Here, a partition of V is
only useful if it has Closed consistency, so we should only
compute it when it can be safely Closed.

The update consistency of a table is the minimal consistency
required by queries on it or its dependent tables, and determines
when to refresh its partition(s). A partition of a table is computed
only when it can be inferred to have a query consistency matching
the desired update consistency.

Naively, we might require the warehouse administrator to mark
each table with its desired update consistency. However, any
given table may supply data to many derived tables, each with
differing types of update consistency. We need an algorithm for
determining what kind of update consistency table S should
enforce.

Furthermore, not every view is primarily intended for output. A
table might be materialized to simplify or accelerate the
materialization of another table, or it might be a partial result
shared by several tables (see, e.g., the application fragment in
Figure 2). We assume that output tables are marked as such (all
leaf-level materialized views are output tables). A table can be
marked with one of the following labels:

• Prefer_Open: a table that does not have to reflect the most
recent data, but one whose partitions can be easily updated (in
an incremental manner) if necessary; e.g., monotonic views
such as selections and transformations of one other table.

• Require_Open: a real-time table in which any possible data
must be provided as soon as possible.

• Prefer_Closed: Tables whose partitions are expensive to re-
compute, such as joins and complex aggregation (depending
on the incremental maintenance strategy).

• Prefer_Complete: a table whose output is only meaningful if
the input is complete.

All output tables need to be marked with these initial labels,
which may be more effort than the warehouse administrator cares
to expend. By default, selection and union views may be marked
Prefer_Open because they can be very easily updated. Join and

118

aggregation views may be marked Prefer_Closed since it is more
efficient to perform batch updates to them rather than
continuously updating them whenever new data are available (or
because users may not be interested in partial aggregates). We
note that Prefer_Open is a “don’t care” type of condition.

The algorithm for determining update consistency works in a
reverse breadth-first search (BFS) of the data flow DAG, starting
from the leaf-level views and working to the roots (base tables).
When a table T is selected for processing, all of its dependent
tables have received their final marking. To mark table T, we
follow a resolution procedure. Let M be the set of dependent
table markings, along with the marking of table T, if any (internal-
use tables might not be marked).

The three consistency levels we are using form a hierarchy:
Complete implies Closed, and Closed implies Open. The general
resolution procedure is to choose the lowest level of consistency
in M, with the “don’t care” consistency level as a fallback.
Therefore our update consistency resolution procedure is simple
and produces a single result. There is one complication: it is
likely that not all base table partitions will ever be labeled
Complete, and therefore we should use Complete update
consistency only if all dependent tables use Complete update
consistency.

Update Consistency Resolution:
1. If Require_Open is in M, mark T as Require_Open

2. Else, if some label in M is Prefer_Closed, mark T as
Prefer_Closed

3. Else, if all labels in M are Prefer_Complete, mark T as
Prefer_Complete

4. Else, mark T as Prefer_Open.

Tables marked Require_Open or Prefer_Open use Open update
consistency, while tables marked Prefer_Closed (resp.
Prefer_Complete) use Closed (resp. Complete) update
consistency.

Consider the example illustrated in Figure 5. The leaf tables (V,
W, X, Y) are all output tables, indicated by a rectangle, with pre-
assigned update consistency levels of (Require_Open,
Prefer_Complete, Prefer_Closed, Prefer_Open) respectively.
These tables are considered first in the reverse BFS search of the
DAG. When one of these tables is processed, its own label is the
only entry in M, so each table in (V, W, X, Y) is assigned its
preferred update consistency. Non-output tables (A, B, C) are
processed next. When one of these tables is processed, the
markings of its successor tables are the entries in M. For
example, when B is processed the entries in M are
(Prefer_Complete, Prefer_Closed) so the resolution procedure
marks B as Prefer_Closed.

Figure 5. Update consistency inference

4.2.1 Experimental Evaluation

To see the potential performance benefit of using update
consistency, we collected the number of updates performed on
tables WU_RAW, WD_RAW, and WLR in Figure 1, over a 10
day, 18+ hour period. WU_RAW and WD_RAW (are supposed
to) receive updates every 15 minutes; therefore we expect 1033
updates to these tables during the observation period.
W_METADATA is another input, but it receives updates only
once per day, so we will ignore it in our analysis.

The implementation of DataDepot that we measured did not
incorporate update consistency. The only update scheduling
options available were immediate (update a table whenever one of
its sources has been updated) and periodic (e.g. every 15
minutes). Since the W application is real-time critical, we used
immediate scheduling to minimize data latency. The extensive
use of joins in this application suggests that immediate updates are
likely to be inefficient, since one will often perform an (inner) join
update when data from only one range variable is available.
Without an update consistency analysis, however, the warehouse
has no basis for not performing an update when data from only
one range variable is available, since the join might be an outer
join, and which source table supplies the outer join range variable
is not clear.

During the observation period, there were 1364 updates to
WU_RAW and 1359 to WD_RAW. The excess over the
expected 1033 updates are due to late arrivals of some of the
packages that comprise the data in a partition (recall the
discussion in Section 2). Under Open update consistency, the
number of updates to WLR should be 1033 plus one for each
excess update to one of the RAW tables, for a total of 1690
updates. We observed 4702 updates to WLR: 3012 unnecessary
updates. The use of update consistency clearly has the potential to
be a significant optimization since we could reduce the number of
updates to WLR by 64 percent. If we used Closed consistency,
we could reduce the number of updates by 78 percent.

5. EXTENSIONS
Our framework for computing and using query and update
consistency is general and can be extended to additional
consistency levels, as long as one can produce safe inference
rules.

As we discussed in Section 4, determining the consistency level of
a base table partition is a matter of guesswork. Closed partitions
are generally not really closed since very late data might arrive,
sources might provide revisions to previously loaded data (“Sorry,
we sent you garbage”), and so on. Thus, it may be useful to
provide different levels of closed-ness according to different
definitions. For example, WeakClosed(V(t)) might mean that the
data are probably loaded and stable enough for queries, while
StrongClosed(V(t)) might mean that we are certain enough that no
more data will arrive and that we will refuse to process revisions.
The definition of Closed in Section 4.1 corresponds to
WeakClosed here.

If we have reasonably accurate and stable statistics about late
arrivals, we can associate specific time-out values with various
levels of closed-ness. For instance, we may know that revisions
and updates mostly occur within five minutes of the expected
partition closing time, and very few occur an hour later. A similar

Require_Open Prefer_Complete Prefer_Closed Prefer_Open

Require_Open Prefer_Closed Prefer_Closed

V W X Y

A B C

119

example is X-Percent-Closed(V(t)), which indicates that X
percent of the data will not change in the future. This consistency
marker is motivated by nearly-append-only data feeds that we
have observed in the Darkstar warehouse, which are mostly stable
except for occasional revisions. Finally, different levels of
completeness, such as X-Percent-Full(V(t)) may also be useful ---
the warehouse may maintain summary views whose results are
acceptable as long as they summarize a sufficient fraction of the
input.

The above types of consistency levels may be used to quantify
and monitor data quality in a stream warehouse. For example, if
the number of packages per partition is a fixed constant, we can
track multiple X-Percent Closed and Full consistency lines for
various values of X in order to understand the extent of missing
and delayed data. Such consistency lines may also be useful for
monitoring and debugging the warehouse update propagation
algorithm. For example, if all the base tables are full, but recent
derived table partitions are only 25 percent full, or just open, then
perhaps the warehouse is spending too much time trying to keep
up with the raw inputs rather than propagating updates through
materialized views. We hope to report on a visual data quality
tool based on consistency lines in future work.

Conventionally defined punctuations allow for group-wise
processing, i.e., an assurance that all data within a group have
arrived. Analogously, in some cases we might be able to provide
group-wise consistency guarantees if we know that, e.g., all data
from routers in the European region has arrived while we are still
waiting for data from Southeast Asia routers. Propagating group-
wise punctuation would require a more sophisticated analysis of
the queries that define materialized views, e.g. that an aggregation
query groups on the region column.

If we are willing to make increasingly detailed analyses of the
queries that define tables, we can obtain a more refined and less
restrictive set of consistency levels. Three additional types of
consistency are:

• NoNewRecords: no records will be added to the partition in
the future, but some existing records may be removed (this
may happen in views with negation).

• NoFieldChange(K,F): If a record with key K exists in the
partition, the value of fields K union F will not change in the
future.

• NoDeletedRecords: no records will be deleted from this
partition in the future, but new records may be added (this
occurs in monotonic views).

A full description of how to analyze queries to apply these
consistency levels is lengthy and detailed. However, we outline
one type of query as an example. Suppose that table V is
computed by outer-joining B to A, and the join predicate is from a
foreign key on A to a primary key on B. Then NoNewRecords(V)
depends on NoNewRecords(A) and NoFieldChange(A) only, not
on table B.

5.1 Update Consistency in the Presence of
Multiple Hierarchies
The discussion of update consistency resolution in Section 4.2
assumes that the collection of consistency levels form a hierarchy,

e.g., Complete(V(t)) => Closed(V(t)) => Open(V(t)). However, a
complex collection of consistency levels is likely to have many
incomparable definitions. For example, from WeakClosed(V(t))
we cannot infer 100-Percent-Full(V(t)), nor vice versa. In this
section we show how to resolve the update consistency of a table
in a general setting.

Let Cn be the set of consistency classes available to the
warehouse. We define a predicate Stronger(C1,C2), C1 and C2
in Cn, if C1(V(t)) => C2(V(t)). We assume that the pair (Cn,
Stronger) forms a directed acyclic graph, Gc, that includes all
transitive edges.

Consistency classes such as Closed, in which some partitions
might never reach the specified level of consistency, lead us to
make additional definitions. For consistency level C in Cn, we
define Linear(C) if C(V(t)) => C(V(t-k)) for 0 < k < t. We also
choose a default consistency level, Cdefault in Cn, to be the
update consistency level to be used if the update consistency
resolution procedure returns an empty result.

As in Section 4.2, let M be the set of dependent table markings,
along with the marking of table V. Let Dep the set of children of
T in the data flow DAG. Then:

Update Consistency Resolution with hierarchies

1. Mark a node C in Cn if

a. Linear(C), and C in M.
b. Not Linear(C), C in M, and for each D in Dep, the

update consistency of D is C.

2. Let U be the marked nodes {C1} in Cn such that there is
no C2 in Cn such that Stronger(C1,C2).

3. If U is non-empty
a. Return U
b. Else return {Cdefault}

Let U(V) be the set of update consistency levels returned by the
update consistency resolution procedure. Then a partition V(t) is
updated if we can infer consistency level Cu(V(T)) for some Cu in
U(V).

We now present examples to illustrate update consistency
inference with multiple hierarchies. Suppose that
Cn={C1,…,C7}, and neither C5 nor C7 are linear (which we note
with the double lined circle). Edges imply the Stronger relation
(e.g. Stronger(C5,C3)), and we have removed transitive edges for
clarity. In Figure 6, M = {C2, C3, C6}, so the result is that U =
{C3, C3}. In Figure 7, M = {C5, C4}. However, not every S in
Dep has update consistency C5 (as witnessed by the C4 marking},
and therefore we do not use C5 in the resolution procedure.
Therefore U = {C4}.

6. RELATED WORK
The type of consistency we discuss in this paper relates to
temporal consistency rather than transactional consistency. Data
warehouses often use locking [9] or multi-version concurrency
control [11][19] for the latter. However the method for
implementing transactional consistency is orthogonal to the
concerns of this paper.

120

Figure 6. Update consistency resolutio

Figure 7. Update consistency resolution (b)

Materialized view maintenance in a data warehouse has an
extensive literature; we summarize some key points below
notion of temporal consistency in a data warehouse
taken to mean some type of strong consistency
materialized views are sourced from the same data, generally
meaning that all views are updated in a single global pass. While
some work has been done to allow for multiple consistency zones
[6][24] using different consistency policies (
deferred updates), any table belongs to a single zone and all tables
in a zone are updated together. Even modern data warehousing
systems are oriented towards batch updates
community often defines a database as being consisten
contains data representing a recent time interval, and mutually
consistent if tables represent the same time intervals

Temporal databases often use the bitemporal model
record in a bitemporal database has a valid time
the time interval during which an event occurred, and a
transaction time, which refers to the system clock time when
record is the most recent description of an event. However, the
bitemporal model is not useful for much of the data in a stream
warehouse (temporal metadata tables are a notable exception): t
analyst is not concerned about transaction time, records i
feeds generally have many often conflicting timestamps and
sequence numbers, and bitemporal databases do not enable update
consistency.

Conventional DSMSs usually assume that data are
nearly so, and they manage disorder by sorting

. Update consistency resolution (a)

. Update consistency resolution (b)

in a data warehouse has an
some key points below. The

in a data warehouse is generally
consistency [25], e.g., that all

materialized views are sourced from the same data, generally
ated in a single global pass. While

some work has been done to allow for multiple consistency zones
using different consistency policies (e.g., immediate vs.

), any table belongs to a single zone and all tables
Even modern data warehousing

s [9]. The Real-Time
community often defines a database as being consistent if it

nterval, and mutually
the same time intervals [12].

bitemporal model [20]. Each
valid time, which refers to

an event occurred, and a
, which refers to the system clock time when a

record is the most recent description of an event. However, the
bitemporal model is not useful for much of the data in a stream

bles are a notable exception): the
analyst is not concerned about transaction time, records in event
feeds generally have many often conflicting timestamps and

bitemporal databases do not enable update

usually assume that data are in-order or
by sorting or by punctuations

and a limited degree of “out-
operators can be assumed to have the most recent data, and
consistency becomes a non-issue
stream consistency using revisions)
reader to the more detailed discussion in Section 2 of

Concepts similar to Closed consistency were discussed in
that work assumed a specific tri
on handling revisions. Our consistency models only assume that
each record has a timestamp whose value tends to increase over
time, and they are oriented towards users’ t
and efficient warehouse maintenance.

Another interesting comparison is
warehouse systems whose consistency management has been
most fully described: DataDepot (in this paper and in
Truviso [10][15]. These two systems have approached stream
warehousing from different angles: DataDepot
processing to a conventional data warehouse, while Truviso adds
warehousing capabilities to a stream system.

Truviso allows stream queries to reference conventional database
tables, which can be updated during stream processing. T
uses window consistency [7]
processing of stream S on window w has read
table T during the processing of w. To ha
Truviso computes window revisions
as the increments for self-maintaining views

The consistency mechanisms described in this paper and those
described for Truviso are orthogonal. DataDepot could benefit
from window consistency (currently it uses temporal metadata
tables such as W_METADATA in
revisions are an optimized method for performing view
maintenance, as compared to DataDepot’s default of recomputing
partitions affected by new data (Truviso falls back to recomputing
affected windows for views that are non self
Thus, the consistency mechanism
to both systems.

7. CONCLUSIONS AND FUTURE WORK
We proposed mechanisms for managing
consistency of materialized views in a stream warehouse. The
first, query consistency, propagat
base tables to materialized views
guarantees of query results. The second,
propagates table consistency requirements from
views to base tables, and is used to optimize the managem
stream warehouse. We focused on
consistency: Open, Closed, and
in Section 5, many more useful consistency definitions
within our framework.

There are several issues not fully add
issue is the handling of very l
after the base table partitions have been marked Closed. These
partitions, and all dependent partitions in dependent tables, need
to be recomputed, but what is the best way to handle the revisions
to the consistency markings? We have proposed the “trailing
edge line” as a convenient way to summarize stable data,
arrivals poke holes in this line.

Another issue which is not fully addressed is the processi
query-specific consistency properties. Our basic

-of-order” processing [17]. Query
operators can be assumed to have the most recent data, and

issue (but see [3], which manages
stream consistency using revisions). We refer the interested
reader to the more detailed discussion in Section 2 of [15].

nsistency were discussed in [3], but
specific tri-temporal data model and focused

consistency models only assume that
each record has a timestamp whose value tends to increase over
time, and they are oriented towards users’ trust in query answers

ficient warehouse maintenance.

Another interesting comparison is between the two stream
warehouse systems whose consistency management has been
most fully described: DataDepot (in this paper and in [11]), and

. These two systems have approached stream
warehousing from different angles: DataDepot adds stream
processing to a conventional data warehouse, while Truviso adds
warehousing capabilities to a stream system.

Truviso allows stream queries to reference conventional database
tables, which can be updated during stream processing. Truviso

 for these types of queries: the
processing of stream S on window w has read-consistency on

sing of w. To handle late-arriving data,
sions [15], which can be thought of

maintaining views [18].

The consistency mechanisms described in this paper and those
described for Truviso are orthogonal. DataDepot could benefit
from window consistency (currently it uses temporal metadata

bles such as W_METADATA in Figure 2). The window
revisions are an optimized method for performing view
maintenance, as compared to DataDepot’s default of recomputing
partitions affected by new data (Truviso falls back to recomputing
affected windows for views that are non self-maintaining [15]).
Thus, the consistency mechanism described in this paper applies

CONCLUSIONS AND FUTURE WORK
mechanisms for managing and exploiting the

consistency of materialized views in a stream warehouse. The
, propagates consistency properties from

materialized views, and provides consistency
. The second, update consistency,

sistency requirements from materialized
used to optimize the management of a

stream warehouse. We focused on a most basic three types of
Open, Closed, and Complete; however, as discussed

ful consistency definitions can fit

There are several issues not fully addressed in this paper. One
issue is the handling of very late data, e.g. data that arrive long
after the base table partitions have been marked Closed. These
partitions, and all dependent partitions in dependent tables, need

the best way to handle the revisions
to the consistency markings? We have proposed the “trailing-

t way to summarize stable data, but late

Another issue which is not fully addressed is the processing of
operties. Our basic models make

121

some use of query-specific handling, e.g. inner-join vs. outer-join
range variables. However, query-specific consistency inference
can become arbitrarily complex; experience will determine
whether the complexity produces a tangible benefit.

All the examples in this paper assumed that recent data may be
suspect, but they eventually stabilize over time. We are also
interested in applying our consistency framework to data that
begin as “exact” when loaded into the warehouse and then
“decay” or lose accuracy over time. Examples include location
data periodically collected from moving objects, and sensor
measurements.

8. REFERENCES
[1] M. Ahuja, C. C. Chen, R.Gottapu, J. Hallmann, W. Hasan, R.

Johnson, M. Kozyrczak, R. Pabbati, N. Pandit, S. Pokuri,
and K. Uppala, Peta-scale data warehousing at Yahoo!, Proc.
of SIGMOD 2009, 855-862.

[2] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee, Moirae:
History-Enhanced Monitoring, Proc. of CIDR 2007, 275-
286.

[3] R. Barga, J. Goldstein, M. Ali, and M. Hong, Consistent
Streaming Through Time: A Vision for Event Stream
Processing. Proc. of CIDR 2007, 363-374.

[4] I. Botan, R. Derekhshan, N. Dindar, L. Haas, R. Miller, and
N. Tatbul. SECRET: A Model for Analysis of the Execution
Semantics of Stream Processing Systems. PVLDB 3(1):232-
243 (2010).

[5] R. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M.
Cherniack, and M. Stonebraker, Operator Scheduling in a
Data Stream Manager, Proc. of VLDB 2003, 838-849.

[6] L. Colby, A. Kawaguchi, D. Lieuwen, I. S. Mumick, and K.
Ross, Supporting Multiple View Maintenance Policies, Proc.
of SIGMOD 1997, 405-416.

[7] N. Conway, Transactions and Data Stream Processing,
http://neilconway.org/docs/thesis/pdf, April 2008.

[8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk,
Gigascope: A Stream Database for Network Applications,
Proc. of SIGMOD 2003, 647-651.

[9] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S.
Bellamkonda, S. Shankar, T. Bozkaya, and L. Sheng,
Optimizing Refresh of a Set of Materialized Views, Proc. of
VLDB 2005, 1043-1054.

[10] M. Franklin, S. Krishnamurthy, N. Conway, A. Li, A.
Russakovsky, and N. Thombre, Continuous Analytics:
Rethinking Query Processing in a Network-Effect World,
Proc. of CIDR 2009.

[11] L. Golab, T. Johnson, J. Seidel, and V. Shkapenyuk, Stream
warehousing with DataDepot, Proc. of SIGMOD 2009, 847-
854.

[12] A.K. Jha, M. Xiong, and K. Ramamritham. Mutual
Consistency in Real-Time Databases. Proc. of the 27th IEEE
Real Time Systems Symposium (RTSS) 2006, 335-343.

[13] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O.
Spatscheck, A Heartbeat Mechanism and Its Application in
Gigascope, Proc. of VLDB 2005, 1079-1088.

[14] C. Kalmanek, Z. Ge, S. Lee, C. Lund, D. Pei, J. S. Seidel, K.
Van der Merwe, and J. Yates, Darkstar: Using Exploratory
Data Mining to Raise the Bar on Network Reliability and
Performance, Proc. of DRCN 2009.

[15] S. Krishnamurthy, M. Franklin, J. Davis, D. Farina, P.
Golovko, A. Li, and N. Thombre, Continuous analytics over
discontinuous streams, Proc. of SIGMOD 2010, 1081-1092.

[16] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker, No
pane, no gain: efficient evaluation of sliding-window
aggregates over data streams. SIGMOD Record 34(1): 39-44
(2005).

[17] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson,
and D. Maier, Out-of-order processing: a new architecture
for high-performance stream systems, PVLDB 1(1): 274-288
(2008).

[18] I. Mumick, D. Quass, and B. Mumick, Maintenance of Data
Cubes and Summary Tables in a Warehouse, Proc. of
SIGMOD 1997, 100-111.

[19] D. Quass and J. Widom. On-line warehouse view
maintenance. Proc. of SIGMOD 1997, 393-404.

[20] R.T. Snodgrass. The TSQL2 Temporal Query Language,
Kluwer 1995.

[21] P. Tucker, D. Maier, T. Sheard, and L. Fegaras, Exploiting
Punctuation Semantics in Continuous Data Streams, TKDE
15(3): 555-568 (2003).

[22] K. Tufte, J. Li, D. Maier, V. Papadimos, R. Bertini, and J.
Rucker, Travel time estimation using NiagaraST and latte,
Proc. of SIGMOD 2007, 1091-1093.

[23] E. Welbourne, N. Khoussainova, J. Letchner, Y. Li, M.
Balazinska, G. Borriello, and D. Suciu, Cascadia: a system
for specifying, detecting, and managing RFID events, Proc.
of MobiSys 2008, 281-294.

[24] Y. Zhuge, H. Garcia-Molina, and J. Wiener, Multiple View
Consistency for Data Warehousing, Proc. of ICDE 1997,
289-300.

[25] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom,
View Maintenance in a Warehousing Environment, Proc. of
SIGMOD 1995: 316-327.

122

