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ABSTRACT 

A stream warehouse is a Data Stream Management System 
(DSMS) that stores a very long history, e.g. years or decades; or 
equivalently a data warehouse that is continuously loaded.  A 
stream warehouse enables queries that seamlessly range from real-
time alerting and diagnostics to long-term data mining.  However, 
continuously loading data from many different and uncontrolled 
sources into a real-time stream warehouse introduces a new 
consistency problem: users want results in as timely a fashion as 
possible, but “stable” results often require lengthy synchronization 
delays.  In this paper we develop a theory of temporal consistency 
for stream warehouses that allows for multiple consistency levels. 
We show how to restrict query answers to a given consistency 
level and we show how warehouse maintenance can be optimized 
using knowledge of the consistency levels required by 
materialized views. 

1. INTRODUCTION 
Many real-world enterprises generate streams of information 
about their operations and require real-time response for their 
maintenance. Examples include financial markets, 
communications networks, data center management, and vehicular 
road networks.  Data Stream Management Systems (DSMSs) have 
been developed to provide real-time analysis and alerting of these 
and other data streams, typically by processing events in-memory 
and over a short time window.  However, users often want to 
perform longer-term analyses over large time windows on the data 
streams, e.g. to determine the conditions that should raise alerts. 

While it is possible to build separate systems for either real-time 
or long-term data analysis, a system which provides both 
capabilities is more useful.  The window of data used for queries 
can seamlessly range from short term to very long term, making it 
difficult to decide where to divide the systems.  Furthermore, 
historical data can provide a context for interpreting new data [2].   
A stream warehouse bridges the short-term vs. long-term gap by 
loading data continuously in a streaming fashion and warehousing 
them over a long time period (e.g. years).  Stream warehouse 
systems, such as Moirae [2], latte [22], DataDepot [11], Everest 

[1], and Truviso [10], have been applied to monitoring 
applications such as data centers [2], RFID [23], web complexes 
[1], highway traffic [22], and wide-scale networks [14]. 

A DSMS normally monitors a nearly-instantaneous and ordered 
data feed of, e.g., network packets [8], financial tickers or sensor 
measurements.  However, a stream warehouse operates on longer 
time scales, and, instead of processing data from a localized 
source, it receives a wide range of data feeds from disparate, far-
flung, and uncontrolled sources.  For example, the Darkstar 
network management system [14] (built using DataDepot) 
receives more than 100 distinct data feeds, each of which collects 
data from a worldwide communications network using many 
different dissemination mechanisms.  These distinct feeds need to 
be cross-correlated and analyzed into higher level data products 
for use by network analysts.  In such a widely distributed and 
heterogeneous environment, one can no longer assume that data 
within a stream arrive in time-order (or nearly so), or that streams 
are synchronized with each other.  This leads to new temporal 
consistency problems:  we want to load new data (and propagate 
changes to the materialized views maintained by the warehouse) 
as quickly as possible, but “stable” results may require significant 
synchronization delays.  (Note that the temporal consistency 
issues studied in this paper are orthogonal to transactional 
consistency issues that arise from multiple data writers and/or 
readers.) 

Consider a network monitoring system that collects performance 
measurements, such as router CPU utilization or the number of 
packets forwarded, and various system logs.  Suppose that an 
alerting application generates an alarm whenever the CPU usage 
of a router exceeds a supplied threshold.  If a high-CPU-usage 
record arrives, the application should not have to wait until all 
temporally preceding data have arrived before taking action.  
Similarly, a view containing all the routers that have generated at 
least ten critical system log messages in any one-minute window 
can be updated whenever the message count for a particular 
router, call it r, reaches ten; we do not need to see data from other 
routers, nor do we need to wait and see if any more messages 
from r arrive in this window.  On the other hand, suppose that we 
want to maintain aggregated statistics for each time window. It 
may be better to wait until all the expected measurements have 
arrived before updating the statistics over the latest window, both 
in terms of interpretability (aggregates computed on incomplete 
data may not be accurate) and update efficiency (we want to avoid 
re-computing expensive aggregates while data are still trickling 
in). 

These types of problems become even more challenging in 
production stream warehouses that correlate a wide variety of 
highly disordered and asynchronous feeds and maintain complex 

 

 

This article is published under a Creative Commons License Agreement 
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and 
reproduction in any medium as well allowing derivative works, provided that 
you attribute the original work to the author(s) and CIDR 2011. 
 
5th Biennial Conference on Innovative Data Systems Research (CIDR ‘11)  
January 9-12, 2011, Asilomar, California, USA. 
 

114



 

 

materialized view hierarchies.  Such warehouses often support 
critical applications; examples from the networking domain 
include real-time network troubleshooting and anomaly detection 
[14].  However, without an understanding of temporal data 
consistency, we may not know how to trust the answers. 

Motivated by our experiences with production stream warehouses, 
we present temporal consistency models for a stream warehouse 
that range from very weak to very strong, and we show how they 
can be tracked and used simultaneously.  Given that warehouse 
tables are typically partitioned by time, the key technical novelty 
is to reason about and to propagate consistency information at the 
granularity of partitions.  Since a significant part of the value of a 
stream warehouse is its ability to correlate disparate data sources 
for the users, our models describe the state of the data in an 
intuitive way that allows users to interpret real-time query results.  
For instance, a partition that is guaranteed not to change is marked 
“closed”, while one that may be updated with new data, but whose 
existing data are guaranteed not to change, is marked “append-
only”.  Since warehouse maintenance involves propagating 
changes across view hierarchies, we also discuss disseminating 
consistency level information from base tables to materialized 
views and vice versa. We show that stronger consistency levels 
not only provide assurances for query results, but they can also be 
used to avoid unnecessary computations.  Finally, we discuss 
applications of our models to monitoring data stream quality.  

2. BACKGROUND AND MOTIVATION 
A DSMS continuously ingests data from one or more data feeds, 
and processes a collection of long-running queries over these 
feeds.  Many sources can produce a data feed: a stream of 
measurements, log files delivered from an external source, a log 
of updates to a transactional store, and so on.  The feed regularly 
presents a package of records for ingest into the stream system.  
The records in a package are stamped with the time of the 
observation (or observation time interval), and also the package 
itself is often timestamped.  The set of timestamps in a package 
are generally highly correlated with the package timestamp and 
delivery time. 

Data feeds are usually append-only; i.e., records that have arrived 
in the past are not deleted or modified in the future.  For example, 
a feed of network measurements may have a schema of the form 
(timestamp, router_id, avg_cpu_usage), with each record 
corresponding to the average CPU usage of the router with the 
given router_id recorded at the given time(stamp).  We may 
receive a new package every five minutes, containing new CPU 
usage measurements for each router.  Here, data from old 
packages (old measurements) are never deleted or modified. 
However, in some applications, old packages may be revised and 
retransmitted. 

When a package arrives in a DSMS, the conventional behavior is 
to fully process the new records (modulo operator scheduling 
policies [5]).  Some exceptions occur: a sort operator might 
reorder slightly disordered streams, and blocking operators such 
as aggregation and outer join might delay some or all of their 
output until a punctuation [21] indicates end-of-window.  
However, these mechanisms assume that streams are mostly-
synchronized and mostly-ordered, so that buffering costs and 
processing delay times are small (the discussion of punctuation 

generation in [13] implicitly assumes that streams are 
synchronized). 

As mentioned, a stream warehouse faces more challenging 
problems of disorder in its input streams.  We have found the 
following disorder problems within the Darkstar warehouse: 

Data arrive in a smear over time 

In the course of operating several DataDepot warehouses, we 
noticed that any given package of data contains records with a 
range of timestamps.  This behavior is not unexpected since data 
are gathered from world-wide network elements.  We investigated 
this phenomenon by examining the data arrivals of several 
Darkstar tables.   

We first examined arrivals for table C, which contains 5-minute 
statistics about router performance – a package normally arrives 
once every 5 minutes.  We found that 23 percent of the packages 
(covering a 10-day period) contain some data for a previous 5-
minute period, and sometimes for data up to an hour old (the 
packages frequently arrive late also).  In another table, T, loaded 
at 1-minute intervals, every package except one contained records 
for a previous time period (observed over a 7-day interval).  A 
third table, S (loaded at 1-minute intervals), showed the greatest 
disorder: each package contained data for an average of 4.5 
previous time periods.  The degree of disorder changes over time, 
as illustrated in Figure 1 which plots the number of time periods 
with at least one record in any given package.  We hypothesize 
that the degree of disorder within a package is related to load on 
the data delivery system. 
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Figure 1.  Number of time periods in one package for S 

Data sources are unsynchronized  

Different data feeds use different collection and delivery 
mechanisms, and therefore they tend to have different degrees of 
currency.  We considered three feeds, the previously mentioned C 
and T (containing router alerts), and a third feed WD (packet loss 
and delay measurements), and sampled the lateness of the most 
recent data in each of these tables.  On average, T was 6 minutes 
behind, C was 17 minutes behind, and WD was 47 minutes 
behind. Again, we believe that the currency of these feeds changes 
according to the load on their data delivery system. 

Late arrivals are common   

Significantly late arrivals are not common enough to readily 
measure, but in our experience they occur often enough to be an 
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operational concern – corroborated by another recent study [15].  
Often the problem is a temporary failure of a component in the 
data delivery system.  Occasionally, a portion of the source data is 
discovered to be corrupt and needs re-acquisition and reloading. 

 

Given the large data volumes and high disorder in the source 
streams of a stream warehouse, conventional in-memory buffering 
techniques are prohibitively expensive [10].  Compounding the 
problem are complex view hierarchies.  For example, Figure 2 
shows a fragment of a real-time network monitoring application 
which searches for misbehaving routers, involving WD and other 
data (the full application has another 21 tables).  The octagons are 
the base tables, while boxes identify tables that are often queried. 
These types of applications are too large to manage using 
conventional means and too complex to be understood without 
consistency assurances. 

Another problem is that there can be multiple notions of 
consistency that users desire.  For example, some Darkstar users 
(or applications) require access to router alerts (e.g., T) as soon as 
possible, and need to correlate them with the most recent possible 
router performance reports (e.g., C).  Other users (or other 
materialized views) might need stable answers to queries based on 
these streams, even at the cost of a moderate synchronization 
delay. 

 

Figure 2.  Data flow in an application fragment 

3. SYSTEM MODEL 
This work was motivated by the practical problems encountered 
by users of our DataDepot stream warehouse.  We phrase the 
system model in DataDepot terms, but the model applies to all of 
the stream warehouses we have seen (perhaps with a change of 
phrasing). 

A stream warehouse is characterized by streaming inputs, by a 
strong emphasis on the temporal nature of the data, and by 
multiple levels of materialized views.  To manage a long-term 
store of a data stream, the stream is split into temporal partitions 
(or panes [16], windows [4][10], etc.).  Each temporal partition 
stores data within a contiguous time range. The collection of 
temporal partitions of a stored stream comprises a complete and 

non-overlapping range of the stored window of the data stream.  A 
feed package may contain data for multiple partitions, as shown in 
Figure 1.  The storage of a high-volume stream may require 
additional partitioning dimensions, but we will not be concerned 
with this complication in this paper. 

A data warehouse maintains a collection of materialized views 
computed from the raw inputs to the warehouse.  Materialized 
views are used to accelerate user queries by pre-computing their 
answers and to simplify data access by cleaning and de-
normalizing tables.  A stream warehouse typically has a large 
collection of materialized views arranged as a Directed Acyclic 
Graph (DAG).  The DAG tracks data dependencies, e.g. that view 
V is computed from streams A and B (Figure 2 shows a data flow 
DAG, the reverse of a dependency DAG).  A stream warehouse 
also tracks temporal dependencies, e.g. that data in V from 1:00 to 
1:15 are computed from data in stream A from 1:00 to 1:15 and 
from data in B from 12:30 to 1:15 (as in Figure 3). 

Let V be a warehouse table.  We assume that V has a timestamp 
field, V.ts which tends to increase over time.  Further, we assume 
that every table V is temporally partitioned, and that the partitions 
are identified by integer values so that V(t) is the tth partition of V.  
Associated with V is a strictly increasing partitioning function 
ptV(t).  Partition t of V contains all and only those data in V such 
that  

ptV(t) ≤ V.ts < ptV(t+1). 

Base tables are loaded directly from a source stream (for example, 
WU_RAW in Figure 2).  Derived tables (materialized views) are 
defined by a query over other base and derived tables (for 
example, WU_R in Figure 2).  We define S(V) to be the set of 
source tables of V, e.g. S(WU_R) = {WU, W_METADATA}.  
We assume that all derived-table-defining queries exhibit 
temporal locality (e.g., they may be defined over a sliding 
window).   

Let S be a table in S(V).  Then Dep(V(t),S) is the set of partitions 
in S that supply data to V(t), and Dep(V(t)) is the set of all 
partitions that supply data to V(t) regardless of the source table.  
For example, suppose that in Figure 3, each partition represents 15 
minutes of data, and that partition 20 corresponds to 1:00 through 
1:15.  Then Dep(V(20), B) = {B(20)} and Dep(V(20)) = {A(18), 
A(19), A(20), B(20)}.  When any of the partitions in Dep(V(20)) 
are updated, V(20) must also be updated (incrementally, if 
possible, or by being re-computed from scratch). 

 

Figure 3.  Partition dependencies 

4.   CONSISTENCY MODELS 
Our basic notion of temporal consistency assigns one or more 
markers to each temporal partition in a table.  Consistency 
markers can be thought of as a generalization of punctuations, 
since multiple consistency levels would be used in general.  
Below, we propose two related but different notions of 
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consistency.  The first, query consistency defines properties of 
data in a partition that determine if those data can be used to 
answer a query with a desired consistency level.  The second, 
update consistency, propagates table consistency requirements 
and is used to optimize the processing of updates to a stream 
warehouse. 

4.1 Query Consistency 
Our definition of query consistency starts at the base tables.  For 
the purposes of this discussion, we use a minimal set of three 
levels of consistency, but many more are desirable in practice.  
We choose this particular set of three levels because they are 
natural and they form a simple hierarchy, but they also illustrate 
some interesting aspects of query consistency.  However, an 
actual implementation of a warehouse would likely use a more 
refined set of consistency levels, as we will discuss in Section 5. 

Let B be a base table and let B(d) be one of its partitions.  Then: 

• Open(B(d)) if data exist or might exist in B(d). 

• Closed(B(d)) if we do not expect any more updates to B(d) 
according to a supplied definition of expectation; e.g., that 
data can be at most 15 minutes late. 

• Complete(B(d)) if Closed(B(d)) and all expected data have 
arrived (i.e., no data are permanently lost). 

The notions of Open and Closed consistency are the natural 
minimal and maximal definitions.  Complete consistency is 
stronger, and it is motivated by DataDepot user requirements: 
only perform analysis on complete data partitions because 
otherwise one may get misleading results (however, Closed 
partitions are often acceptable to users).  Of course, the vagaries 
of the raw data sources may make it difficult to precisely establish 
when a partition has achieved one of these levels of consistency; 
this is similar to the problem of generating punctuations.  
However, several types of inference are possible: 

• If there is at least one record in a partition, we mark it as 
Open.  However, a partition might have Open consistency 
even though it is empty: no data might ever be generated for 
it.  We might mark an empty base table partition as Open if 
we can infer that some data could have arrived, e.g. if a 
temporally later partition is non-empty. 

• We might know that exactly five packages provide data for a 
partition and that packages rarely arrive more than one hour 
late.  If so, we can mark a partition as both Closed and 
Complete if all five packages have arrived.  If only four have 
arrived, but an hour has passed since the expected arrival time 
of the fifth one, we would only mark the partition as Closed.  
If the fifth package never arrives, this partition never becomes 
Complete. 

The consistency of a partition of a derived table is determined by 
the consistency of its source partitions.  Each level of consistency 
has its own inference rules, and inference is performed for each 
consistency level separately.  The most basic inference rule is as 
follows: for consistency level C, infer C(V(t)) if C(S(d)) for each 
S(d) in Dep(V(t)).  However, by analyzing the query that defines a 
materialized view we can sometimes create a more accurate 
inference rule. 

Let us consider an example set of inference rules using our set of 
three consistency levels.  Let V be a derived table and let V(t) be 
one of its partitions. 

Query Consistency Inference 

• Let RQD(V), a subset of S(V), be the non-empty set of tables 
referenced by “required” range variables, i.e., those used for 
inner-join or intersection.  

• If RQD(V) is non-empty, then Open(V(t)) if for each S in 
RQD(V), there is a S(d) in Dep(V(t),S) such that 
Open(S(d)). 

• If RQD(V) is empty, then Open(V(t)) if there is a S(d) in 
Dep(V(t)) such that Open(S(d)). 

• Closed(V(t)) if Closed(S(d)) for each S(d) in Dep(V(t)). 

• Complete(V(t)) if Complete(S(d)) for each S(d) in Dep(V(t)). 

The Closed and Complete consistency levels use the basic 
inference rule, but by analyzing the query that defines 
materialized view V we can avoid labeling a partition V(t) as 
Open when no data can be in it.  Section 5 contains additional 
examples of query-dependent consistency inference rules. 

The inference that a partition of a derived table has a particular 
consistency level is computed top-down (from source to 
dependent tables).  Normally, this inference would be performed 
at view maintenance time by comparing source with destination 
consistency metadata.  This maintenance can be performed 
globally, as with, e.g., Oracle [9], or piecemeal, as with 
DataDepot [11].  Note that the consistency of a partition can 
change even though the partition does not need to be updated, 
e.g., due to a base table partition becoming Closed as well as 
Open. 

For example, consider table V computed by an inner join of A and 
B as shown in Figure 4.  In this figure, we represent Open, 
Closed, and Complete consistency markers by O, Cl, and CM, 
respectively, and we omit an O marker if a Cl marker exists.  
Partition 1 of V can be inferred to have Closed consistency, since 
both sources are Closed, but not Complete consistency; however 
partition 2 can be inferred to be Complete.  Partition 3 is Open 
because both A and B can contribute an Open (or Closed) 
partition. Partition 4 cannot even be inferred to be Open. 

 

Figure 4.  Query consistency inference 

Query consistency markers ensure the consistency of query 
results.  In Darkstar applications, ensuring temporal consistency is 
critical, but very difficult without warehouse support.  
Applications such as RouterMiner and G-RCA [14] enable real-
time network troubleshooting by correlating data from feeds 
including C, S, T, WD and many others; however, each of these 
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feeds produces base tables with widely varying timeliness (recall 
Section 2). 

An outline of the procedure for ensuring the consistency of a 
query is to treat the query as a derived table and determine its 
partition dependencies.  A query can be answered with a given 
level of consistency if that consistency level can be inferred from 
the set of all source partitions accessed by the query.  A query that 
cannot be answered with the desired consistency can have its 
temporal range trimmed (or its consistency relaxed).  For 
example, if we are performing a selection on table V in Figure 4 
and we require Complete consistency, then the inference rules 
state that the query can only be run on the data in partition 2. 

While the proposed mechanism for ensuring query consistency is 
general, it can be confusing to users.  A convenient way to 
summarize the state of a (base or derived) table is a consistency 
line.  The C-consistency line of table V is the maximum value of 
pt such that all partitions V(t), t≤pt, have C(V(t)).  A query that 
references tables S1 through Sn can be answered with C-
consistency if it is restricted to accessing partitions of Si at or 
below the C-consistency line of Si for each i=1,..,n.  In previous 
literature, we have referred to the Open-consistency line as the 
leading edge of a table, and the Closed-consistency line as the 
trailing edge [11].  A Complete-consistency line is likely of little 
value since some partitions might permanently fail to become 
Complete. 

For example, the Open-line (leading edge) of table V in Figure 4 
is partition 3, while the Closed-line (trailing edge) of V is partition 
2.  We cannot define a Complete line since partition 1 is not 
Complete. 

4.1.1 Case Study 

We now give an example of how applications can choose and 
exploit query consistency guarantees.  A fragment of one of the 
Darkstar applications was shown in Figure 2.  This application 
processes packet delay and packet loss measurements to come up 
with network alarm events.  These measurements are taken 
roughly every five minutes, one measurement for each link in the 
network.  A loss or delay alarm record is produced for a given link 
if there are four or more consecutive loss or delay measurements, 
respectively, that exceed a specified threshold.   If a measurement 
for a given link is missing in a 5-minute window, it is considered 
to have exceeded the threshold for the purposes of alarm 
generation.  In Figure 2, WLR is the materialized view that 
contains loss alarm records, each record containing a link id, the 
start and end times of the alarm, and the average packet loss and 
delay during the alarm interval. The size of each WLR partition is 
five minutes, which corresponds to the frequency of the 
underlying data feeds.  The ovals in Figure 2 correspond to 
intermediate views that implement the application logic (e.g., 
selecting measurements that exceed the threshold, computing the 
starting point of each alarm event, computing alarm statistics, 
etc.).  To complete the application, a Web-based front end 
displays the current and historical alarms by periodically querying 
the WLR table. 

Since this is a real-time alerting application, one may argue that 
WLR should have Open consistency; i.e., it should be loaded with 
all the available data at all times.  However, the problem is that 
missing measurements are assumed to have exceeded the 
threshold.  Thus, if we attempt to update WLR before the latest 

measurements arrive, we will incorrectly assume that all of these 
measurements are missing and we may generate false alarms.  
Instead, it is more appropriate to use Closed consistency for WLR, 
with partitions closing at each 5-minute boundary.  Note that 
Complete consistency may not be appropriate for this application 
since we do not want to delay the generation of network alarms 
for the data that have already arrived, even if a partition is not yet 
complete. 

4.2 Update Consistency 
In addition to understanding data semantics and query results, 
another use for consistency is to minimize the number of base 
table and view updates in a warehouse.  For an example drawn 
from experience, consider a derived table V defined by an 
aggregation query which summarizes a real-time table S with 
once-per-5-minutes updates (with 5-minute partitions) into a daily 
grand-total summary (with per-day partitions).  If V is updated 
every time S is updated, V would be updated about 288 times 
(1440 minutes in a day / 5) before the day is closed out.  If we are 
interested in the grand total rather than the running sum, this 
procedure for updating V is wasteful.  Here, a partition of V is 
only useful if it has Closed consistency, so we should only 
compute it when it can be safely Closed.   

The update consistency of a table is the minimal consistency 
required by queries on it or its dependent tables, and determines 
when to refresh its partition(s).  A partition of a table is computed 
only when it can be inferred to have a query consistency matching 
the desired update consistency.   

Naively, we might require the warehouse administrator to mark 
each table with its desired update consistency.  However, any 
given table may supply data to many derived tables, each with 
differing types of update consistency.  We need an algorithm for 
determining what kind of update consistency table S should 
enforce. 

Furthermore, not every view is primarily intended for output.  A 
table might be materialized to simplify or accelerate the 
materialization of another table, or it might be a partial result 
shared by several tables (see, e.g., the application fragment in 
Figure 2).  We assume that output tables are marked as such (all 
leaf-level materialized views are output tables).  A table can be 
marked with one of the following labels: 

• Prefer_Open: a table that does not have to reflect the most 
recent data, but one whose partitions can be easily updated (in 
an incremental manner) if necessary; e.g., monotonic views 
such as selections and transformations of one other table. 

• Require_Open: a real-time table in which any possible data 
must be provided as soon as possible. 

• Prefer_Closed: Tables whose partitions are expensive to re-
compute, such as joins and complex aggregation (depending 
on the incremental maintenance strategy). 

• Prefer_Complete: a table whose output is only meaningful if 
the input is complete. 

All output tables need to be marked with these initial labels, 
which may be more effort than the warehouse administrator cares 
to expend.  By default, selection and union views may be marked 
Prefer_Open because they can be very easily updated.  Join and 
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aggregation views may be marked Prefer_Closed since it is more 
efficient to perform batch updates to them rather than 
continuously updating them whenever new data are available (or 
because users may not be interested in partial aggregates).  We 
note that Prefer_Open is a “don’t care” type of condition.   

The algorithm for determining update consistency works in a 
reverse breadth-first search (BFS) of the data flow DAG, starting 
from the leaf-level views and working to the roots (base tables).  
When a table T is selected for processing, all of its dependent 
tables have received their final marking.  To mark table T, we 
follow a resolution procedure.  Let M be the set of dependent 
table markings, along with the marking of table T, if any (internal-
use tables might not be marked). 

The three consistency levels we are using form a hierarchy: 
Complete implies Closed, and Closed implies Open.  The general 
resolution procedure is to choose the lowest level of consistency 
in M, with the “don’t care” consistency level as a fallback.  
Therefore our update consistency resolution procedure is simple 
and produces a single result.  There is one complication: it is 
likely that not all base table partitions will ever be labeled 
Complete, and therefore we should use Complete update 
consistency only if all dependent tables use Complete update 
consistency.  

Update Consistency Resolution: 
1. If Require_Open is in M, mark T as Require_Open 

2. Else, if some label in M is Prefer_Closed, mark T as 
Prefer_Closed 

3. Else, if all labels in M are Prefer_Complete, mark T as 
Prefer_Complete 

4. Else, mark T as Prefer_Open. 

Tables marked Require_Open or Prefer_Open use Open update 
consistency, while tables marked Prefer_Closed (resp. 
Prefer_Complete) use Closed (resp. Complete) update 
consistency. 

Consider the example illustrated in Figure 5.  The leaf tables (V, 
W, X, Y) are all output tables, indicated by a rectangle, with pre-
assigned update consistency levels of (Require_Open, 
Prefer_Complete, Prefer_Closed, Prefer_Open) respectively.  
These tables are considered first in the reverse BFS search of the 
DAG.  When one of these tables is processed, its own label is the 
only entry in M, so each table in (V, W, X, Y) is assigned its 
preferred update consistency.  Non-output tables (A, B, C) are 
processed next.  When one of these tables is processed, the 
markings of its successor tables are the entries in M.  For 
example, when B is processed the entries in M are 
(Prefer_Complete, Prefer_Closed) so the resolution procedure 
marks B as Prefer_Closed. 

 

 

Figure 5.  Update consistency inference 

4.2.1 Experimental Evaluation 

To see the potential performance benefit of using update 
consistency, we collected the number of updates performed on 
tables WU_RAW, WD_RAW, and WLR in Figure 1, over a 10 
day, 18+ hour period.  WU_RAW and WD_RAW (are supposed 
to) receive updates every 15 minutes; therefore we expect 1033 
updates to these tables during the observation period.  
W_METADATA is another input, but it receives updates only 
once per day, so we will ignore it in our analysis. 

The implementation of DataDepot that we measured did not 
incorporate update consistency.  The only update scheduling 
options available were immediate (update a table whenever one of 
its sources has been updated) and periodic (e.g. every 15 
minutes).  Since the W application is real-time critical, we used 
immediate scheduling to minimize data latency.  The extensive 
use of joins in this application suggests that immediate updates are 
likely to be inefficient, since one will often perform an (inner) join 
update when data from only one range variable is available.  
Without an update consistency analysis, however, the warehouse 
has no basis for not performing an update when data from only 
one range variable is available, since the join might be an outer 
join, and which source table supplies the outer join range variable 
is not clear. 

During the observation period, there were 1364 updates to 
WU_RAW and 1359 to WD_RAW.  The excess over the 
expected 1033 updates are due to late arrivals of some of the 
packages that comprise the data in a partition (recall the 
discussion in Section 2).  Under Open update consistency, the 
number of updates to WLR should be 1033 plus one for each 
excess update to one of the RAW tables, for a total of 1690 
updates.  We observed 4702 updates to WLR: 3012 unnecessary 
updates.  The use of update consistency clearly has the potential to 
be a significant optimization since we could reduce the number of 
updates to WLR by 64 percent.  If we used Closed consistency, 
we could reduce the number of updates by 78 percent. 

5. EXTENSIONS 
Our framework for computing and using query and update 
consistency is general and can be extended to additional 
consistency levels, as long as one can produce safe inference 
rules. 

As we discussed in Section 4, determining the consistency level of 
a base table partition is a matter of guesswork.  Closed partitions 
are generally not really closed since very late data might arrive, 
sources might provide revisions to previously loaded data (“Sorry, 
we sent you garbage”), and so on.  Thus, it may be useful to 
provide different levels of closed-ness according to different 
definitions.  For example, WeakClosed(V(t)) might mean that the 
data are probably loaded and stable enough for queries, while 
StrongClosed(V(t)) might mean that we are certain enough that no 
more data will arrive and that we will refuse to process revisions.  
The definition of Closed in Section 4.1 corresponds to 
WeakClosed here. 

If we have reasonably accurate and stable statistics about late 
arrivals, we can associate specific time-out values with various 
levels of closed-ness.  For instance, we may know that revisions 
and updates mostly occur within five minutes of the expected 
partition closing time, and very few occur an hour later.  A similar 

Require_Open Prefer_Complete Prefer_Closed Prefer_Open

Require_Open Prefer_Closed Prefer_Closed

V W X Y

A B C
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example is X-Percent-Closed(V(t)), which indicates that X 
percent of the data will not change in the future.  This consistency 
marker is motivated by nearly-append-only data feeds that we 
have observed in the Darkstar warehouse, which are mostly stable 
except for occasional revisions.  Finally, different levels of 
completeness, such as X-Percent-Full(V(t)) may also be useful --- 
the warehouse may maintain summary views whose results are 
acceptable as long as they summarize a sufficient fraction of the 
input.   

The above types of consistency levels may be used to quantify 
and monitor data quality in a stream warehouse.  For example, if 
the number of packages per partition is a fixed constant, we can 
track multiple X-Percent Closed and Full consistency lines for 
various values of X in order to understand the extent of missing 
and delayed data.  Such consistency lines may also be useful for 
monitoring and debugging the warehouse update propagation 
algorithm.  For example, if all the base tables are full, but recent 
derived table partitions are only 25 percent full, or just open, then 
perhaps the warehouse is spending too much time trying to keep 
up with the raw inputs rather than propagating updates through 
materialized views.  We hope to report on a visual data quality 
tool based on consistency lines in future work. 

Conventionally defined punctuations allow for group-wise 
processing, i.e., an assurance that all data within a group have 
arrived.  Analogously, in some cases we might be able to provide 
group-wise consistency guarantees if we know that, e.g., all data 
from routers in the European region has arrived while we are still 
waiting for data from Southeast Asia routers.  Propagating group-
wise punctuation would require a more sophisticated analysis of 
the queries that define materialized views, e.g. that an aggregation 
query groups on the region column. 

If we are willing to make increasingly detailed analyses of the 
queries that define tables, we can obtain a more refined and less 
restrictive set of consistency levels.  Three additional types of 
consistency are: 

• NoNewRecords: no records will be added to the partition in 
the future, but some existing records may be removed (this 
may happen in views with negation). 

• NoFieldChange(K,F): If a record with key K exists in the 
partition, the value of fields K union F will not change in the 
future. 

• NoDeletedRecords: no records will be deleted from this 
partition in the future, but new records may be added (this 
occurs in monotonic views). 

A full description of how to analyze queries to apply these 
consistency levels is lengthy and detailed.  However, we outline 
one type of query as an example.  Suppose that table V is 
computed by outer-joining B to A, and the join predicate is from a 
foreign key on A to a primary key on B.  Then NoNewRecords(V) 
depends on NoNewRecords(A) and NoFieldChange(A) only, not 
on table B. 

5.1 Update Consistency in the Presence of 
Multiple Hierarchies 
The discussion of update consistency resolution in Section 4.2 
assumes that the collection of consistency levels form a hierarchy, 

e.g., Complete(V(t)) => Closed(V(t)) => Open(V(t)).  However, a 
complex collection of consistency levels is likely to have many 
incomparable definitions.  For example, from WeakClosed(V(t)) 
we cannot infer 100-Percent-Full(V(t)), nor vice versa.  In this 
section we show how to resolve the update consistency of a table 
in a general setting. 

Let Cn be the set of consistency classes available to the 
warehouse.  We define a predicate Stronger(C1,C2), C1 and C2 
in Cn, if C1(V(t)) => C2(V(t)).  We assume that the pair (Cn, 
Stronger) forms a directed acyclic graph, Gc, that includes all 
transitive edges.  

Consistency classes such as Closed, in which some partitions 
might never reach the specified level of consistency, lead us to 
make additional definitions.  For consistency level C in Cn, we 
define Linear(C) if C(V(t)) => C(V(t-k)) for 0 < k < t.  We also 
choose a default consistency level, Cdefault in Cn, to be the 
update consistency level to be used if the update consistency 
resolution procedure returns an empty result.  

As in Section 4.2, let M be the set of dependent table markings, 
along with the marking of table V.  Let Dep the set of children of 
T in the data flow DAG.  Then: 

Update Consistency Resolution with hierarchies 
 
1. Mark a node C in Cn if 

a. Linear(C), and C in M. 
b. Not Linear(C), C in M, and for each D in Dep, the 

update consistency of D is C. 

2. Let U be the marked nodes {C1} in Cn such that there is 
no C2 in Cn such that Stronger(C1,C2). 

3. If U is non-empty 
a. Return U 
b. Else return {Cdefault} 

Let U(V) be the set of update consistency levels returned by the 
update consistency resolution procedure.  Then a partition V(t) is 
updated if we can infer consistency level Cu(V(T)) for some Cu in 
U(V). 

We now present examples to illustrate update consistency 
inference with multiple hierarchies.  Suppose that 
Cn={C1,…,C7}, and neither C5 nor C7 are linear (which we note 
with the double lined circle).  Edges imply the Stronger relation 
(e.g. Stronger(C5,C3)), and we have removed transitive edges for 
clarity.  In Figure 6, M = {C2, C3, C6}, so the result is that U = 
{C3, C3}.  In Figure 7, M = {C5, C4}.  However, not every S in 
Dep has update consistency C5 (as witnessed by the C4 marking}, 
and therefore we do not use C5 in the resolution procedure.  
Therefore U = {C4}. 

6. RELATED WORK 
The type of consistency we discuss in this paper relates to 
temporal consistency rather than transactional consistency.  Data 
warehouses often use locking [9] or multi-version concurrency 
control [11][19] for the latter.  However the method for 
implementing transactional consistency is orthogonal to the 
concerns of this paper. 
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Figure 6.  Update consistency resolutio

 

Figure 7.  Update consistency resolution (b)

Materialized view maintenance in a data warehouse has an 
extensive literature; we summarize some key points below
notion of temporal consistency in a data warehouse
taken to mean some type of strong consistency
materialized views are sourced from the same data, generally 
meaning that all views are updated in a single global pass.  While 
some work has been done to allow for multiple consistency zones
[6][24] using different consistency policies (
deferred updates), any table belongs to a single zone and all tables 
in a zone are updated together.  Even modern data warehousing
systems are oriented towards batch updates
community often defines a database as being consisten
contains data representing a recent time interval, and mutually 
consistent if tables represent the same time intervals 

Temporal databases often use the bitemporal model
record in a bitemporal database has a valid time
the time interval during which an event occurred, and a 
transaction time, which refers to the system clock time when
record is the most recent description of an event.  However, the 
bitemporal model is not useful for much of the data in a stream 
warehouse (temporal metadata tables are a notable exception): t
analyst is not concerned about transaction time, records i
feeds generally have many often conflicting timestamps and 
sequence numbers, and bitemporal databases do not enable update 
consistency. 

Conventional DSMSs usually assume that data are
nearly so, and they manage disorder by sorting
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Even modern data warehousing 

s [9].  The Real-Time 
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, which refers to the system clock time when a 

record is the most recent description of an event.  However, the 
bitemporal model is not useful for much of the data in a stream 

bles are a notable exception): the 
analyst is not concerned about transaction time, records in event 
feeds generally have many often conflicting timestamps and 

bitemporal databases do not enable update 

usually assume that data are in-order or 
by sorting or by punctuations 

and a limited degree of “out-
operators can be assumed to have the most recent data, and 
consistency becomes a non-issue
stream consistency using revisions)
reader to the more detailed discussion in Section 2 of

Concepts similar to Closed consistency were discussed in 
that work assumed a specific tri
on handling revisions.  Our consistency models only assume that 
each record has a timestamp whose value tends to increase over 
time, and they are oriented towards users’ t
and efficient warehouse maintenance.

Another interesting comparison is
warehouse systems whose consistency management has been 
most fully described: DataDepot (in this paper and in
Truviso [10][15].  These two systems have approached stream 
warehousing from different angles: DataDepot 
processing to a conventional data warehouse, while Truviso adds 
warehousing capabilities to a stream system.

Truviso allows stream queries to reference conventional database 
tables, which can be updated during stream processing.  T
uses window consistency [7] 
processing of stream S on window w has read
table T during the processing of w.  To ha
Truviso computes window revisions
as the increments for self-maintaining views

The consistency mechanisms described in this paper and those 
described for Truviso are orthogonal. DataDepot could benefit 
from window consistency (currently it uses temporal metadata 
tables such as W_METADATA in 
revisions are an optimized method for performing view 
maintenance, as compared to DataDepot’s default of recomputing 
partitions affected by new data (Truviso falls back to recomputing 
affected windows for views that are non self
Thus, the consistency mechanism 
to both systems. 

7. CONCLUSIONS AND FUTURE WORK
We proposed mechanisms for managing 
consistency of materialized views in a stream warehouse.  The 
first, query consistency, propagat
base tables to materialized views
guarantees of query results.  The second, 
propagates table consistency requirements from 
views to base tables, and is used to optimize the managem
stream warehouse.  We focused on
consistency: Open, Closed, and 
in Section 5, many more useful consistency definitions 
within our framework. 

There are several issues not fully add
issue is the handling of very l
after the base table partitions have been marked Closed.  These 
partitions, and all dependent partitions in dependent tables, need 
to be recomputed, but what is the best way to handle the revisions 
to the consistency markings?  We have proposed the “trailing
edge line” as a convenient way to summarize stable data,
arrivals poke holes in this line. 

Another issue which is not fully addressed is the processi
query-specific consistency properties.  Our basic

-of-order” processing [17].  Query 
operators can be assumed to have the most recent data, and 

issue (but see [3], which manages 
stream consistency using revisions).  We refer the interested 
reader to the more detailed discussion in Section 2 of [15]. 

nsistency were discussed in [3], but 
specific tri-temporal data model and focused 

consistency models only assume that 
each record has a timestamp whose value tends to increase over 
time, and they are oriented towards users’ trust in query answers 

ficient warehouse maintenance. 

Another interesting comparison is between the two stream 
warehouse systems whose consistency management has been 
most fully described: DataDepot (in this paper and in [11]), and 
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The consistency mechanisms described in this paper and those 
described for Truviso are orthogonal. DataDepot could benefit 
from window consistency (currently it uses temporal metadata 

bles such as W_METADATA in Figure 2).  The window 
revisions are an optimized method for performing view 
maintenance, as compared to DataDepot’s default of recomputing 
partitions affected by new data (Truviso falls back to recomputing 
affected windows for views that are non self-maintaining [15]).  
Thus, the consistency mechanism described in this paper applies 
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mechanisms for managing and exploiting the 

consistency of materialized views in a stream warehouse.  The 
, propagates consistency properties from 

materialized views, and provides consistency 
.  The second, update consistency, 

sistency requirements from materialized 
used to optimize the management of a 

stream warehouse.  We focused on a most basic three types of 
Open, Closed, and Complete; however, as discussed 

ful consistency definitions can fit 

There are several issues not fully addressed in this paper.  One 
issue is the handling of very late data, e.g. data that arrive long 
after the base table partitions have been marked Closed.  These 
partitions, and all dependent partitions in dependent tables, need 

the best way to handle the revisions 
to the consistency markings?  We have proposed the “trailing-

t way to summarize stable data, but late 
 

Another issue which is not fully addressed is the processing of 
operties.  Our basic models make 
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some use of query-specific handling, e.g. inner-join vs. outer-join 
range variables.  However, query-specific consistency inference 
can become arbitrarily complex; experience will determine 
whether the complexity produces a tangible benefit. 

All the examples in this paper assumed that recent data may be 
suspect, but they eventually stabilize over time.  We are also 
interested in applying our consistency framework to data that 
begin as “exact” when loaded into the warehouse and then 
“decay” or lose accuracy over time.  Examples include location 
data periodically collected from moving objects, and sensor 
measurements. 
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