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1 Introduction

This document describes a Dataflow Framework for the Java programming language. This is an industrial-
strength framework. The Dataflow Framework is used in the Checker Framework, Google’s Error Prone,
Uber’s NullAway, Meta’s Nullsafe, and in other contexts.
The primary purpose of the Dataflow Framework is to estimate values: for each line of source code, it
determines properties for each variable, that are true for every value the variable might contain.
The Dataflow Framework’s result (Section 2.2.10) is an abstract value for each expression (an estimate of the
expression’s run-time value) and a store at each program point. A store maps variables and other expressions
to abstract values.
As a pre-pass, the Dataflow Framework transforms an input AST into a control flow graph (Section 3)
consisting of basic blocks made up of nodes representing single operations. An analysis operates over the
control flow graph. The effect of a single node on the dataflow store is represented by a transfer function,
which takes an input store and a node and produces an output store. Once the analysis reaches a fixed
point, the result can be accessed by client code.
The easiest way to create a dataflow analysis for Java is to use the Checker Framework. The Checker
Framework performs type checking along with flow-sensitive type inference, which is equivalent to a dataflow
analysis or an abstract interpretation. In the Checker Framework, the abstract values to be computed are
annotated types. You would define a type hierarchy corresponding to the lattice for your dataflow analysis.
An individual checker can customize its analysis by extending the abstract value class and by overriding the
behavior of the transfer function for particular node types. This approach requires you to write very little
code. The downside is that it will run relatively slowly because of the Checker Framework’s rich functionality.
If you do not need that functionality, you can write a faster analysis directly on the Dataflow Framework.
Some users first create an analysis using the Checker Framework, and then if it is not fast enough, they
rewrite it for the Dataflow Framework.
The Dataflow Framework was designed with several goals in mind. First, to encourage use beyond the
Checker Framework, it is written as a separate package that can be built and used with no dependence on
the Checker Framework. Second, the framework supports analysis but not transformation, so it provides
information that can be used by a type checker or an IDE, but it does not support optimization. Third, the
framework aims to minimize the burden on developers who build on top of it. In particular, the hierarchy of
analysis classes is designed to reduce the effort required to implement a new flow-sensitive type checker in
the Checker Framework. The Dataflow User’s Guide gives an introduction to customizing dataflow to add
checker-specific enhancements.
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1.1 Potential version conflicts if you export the Dataflow Framework

If your tool uses the Dataflow Framework, then please shade the Dataflow Framework in your tool.
You can do this using the Maven Shade Plugin, https://maven.apache.org/plugins/maven-shade-plugin/,
or the Gradle Shadow Plugin, https://imperceptiblethoughts.com/shadow/. If you cannot shade the
Checker Framework and Dataflow Framework classes, then please ask the Checker Framework developers to
create a shaded artifact just for you, every time they release the Checker Framework. See dataflow/build.gradle
for instructions.
The reason to shade the Dataflow Framework is to permit users to run multiple tools. Suppose that two
tools both utilize the Dataflow Framework. If the two tools use different versions of the Dataflow Framework,
then it may be impossible for users to run both tools due to a version conflict. The Checker Framework
uses an unshaded version the Dataflow Framework, since the Dataflow Framework is part of the Checker
Framework. If you do not shade the Dataflow Framework in your tool, then users will not be able to use
both your tool and the Checker Framework (or any other tool that does not shade the Checker Framework
and Dataflow Framework classes).

2 Organization

2.1 Projects

The source code of the combined Checker Framework and Dataflow Framework is divided into multiple
projects: javacutil, dataflow, framework, and checker, which can be built into distinct jar files. checker.jar is a
fat jar that contains all of these, plus the Stub Parser.
javacutil provides convenient interfaces to routines in Oracle’s javac library. There are utility classes for
interacting with annotations, elements, trees and types, as well as InternalUtils, which gives direct access
to internal features of javac that are not part of a supported interface. There are interfaces or abstract
classes for reporting errors, for processing types in an AST, and for providing the annotations present on an
Element. The org.checkerframework.javacutil.trees package provides a class to parse expressions into javac
Trees (TreeParser), a class to build new Trees from scratch (TreeBuilder), and a class to represent newly
introduced variables that are not part of an input program (DetachedVarSymbol).
dataflow contains the classes to represent and construct control flow graphs and the base classes required for
flow analysis. These classes are described in detail in Section 2.2.1.
framework contains the framework aspects of the Checker Framework, including the derived classes for flow
analysis of annotated types which are described later in this document.
checker contains the type system-specific checkers.
The dataflow project depends only on javacutil.

2.2 Classes

This section gives an overview of the major Java classes and interfaces in the implementation of the Dataflow
Framework and the flow-sensitive type checking feature of the Checker Framework. It includes both the base
classes in the dataflow project and the derived classes in the framework project. The class and interface
declarations are given with full package names to indicate which project they belong to.

2

https://maven.apache.org/plugins/maven-shade-plugin/
https://imperceptiblethoughts.com/shadow/


2.2.1 Nodes

Dataflow doesn’t actually work on trees; it works on Nodes. A Node class represents an individual operation
of a program, including arithmetic operations, logical operations, method calls, variable references, array
accesses, etc. Nodes simplify writing a dataflow analysis by separating the dataflow analysis from the original
source code. Table 1 on page 13 lists the Node types.

package org.checkerframework.dataflow.cfg.node;

abstract class Node
class *Node extends Node

2.2.2 Blocks

The Block classes represent basic blocks.

package org.checkerframework.dataflow.cfg.block;

interface Block
abstract class BlockImpl implements Block
interface SingleSuccessorBlock extends Block
abstract class SingleSuccessorBlockImpl extends BlockImpl implements SingleSuccessorBlock

A RegularBlock contains no exception-raising operations and has a single control-flow successor.

package org.checkerframework.dataflow.cfg.block;
interface RegularBlock extends SingleSuccessorBlock
class RegularBlockImpl extends SingleSuccessorBlockImpl implements RegularBlock

An ExceptionBlock contains a single operation that may raise an exception, with one or more exceptional
successors and a single normal control-flow successor.

package org.checkerframework.dataflow.cfg.block;
interface ExceptionBlock extends SingleSuccessorBlock
class ExceptionBlockImpl extends SingleSuccessorBlockImpl implements ExceptionBlock

A SpecialBlock represents method entry or exit, including exceptional exit which is represented separately
from normal exit.

package org.checkerframework.dataflow.cfg.block;
interface SpecialBlock extends SingleSuccessorBlock
class SpecialBlockImpl extends SingleSuccessorBlockImpl implements SpecialBlock

A ConditionalBlock contains no operations at all. It represents a control-flow split to either a “then” or an
“else” successor based on the immediately preceding boolean-valued Node.

package org.checkerframework.dataflow.cfg.block;
interface ConditionalBlock extends Block
class ConditionalBlockImpl extends BlockImpl implements ConditionalBlock
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2.2.3 ControlFlowGraph

A ControlFlowGraph represents the body of a method or an initializer expression as a graph of Blocks
with distinguished entry, exit, and exceptional exit SpecialBlocks. ControlFlowGraphs are produced by the
CFGBuilder classes and are treated as immutable once they are built.

package org.checkerframework.dataflow.cfg;
class ControlFlowGraph

2.2.3.1 CFGBuilder The CFGBuilder classes visit an AST and produce a corresponding ControlFlow-
Graph as described in Section 3.3.

package org.checkerframework.dataflow.cfg;
class CFGBuilder

The Checker Framework derives from CFGBuilder in order to desugar enhanced for loops that make explicit
use of type annotations provided by the checker in use.

package org.checkerframework.framework.flow;
class CFCFGBuilder extends CFGBuilder

2.2.3.2 CFGVisualizeLauncher The CFGVisualizeLauncher generates a DOT or String representation
of the control flow graph for a given method in a given class.

package org.checkerframework.dataflow.cfg;
class CFGVisualizeLauncher

2.2.4 JavaExpressions

The Dataflow Framework records the abstract values of certain expressions, called JavaExpressions: local
variables, field accesses, array accesses, references to this, and pure method calls. JavaExpressions are keys
in the store of abstract values.

package org.checkerframework.dataflow.analysis;
class JavaExpressions

Java expressions that appear in method pre- and postconditions are parsed into JavaExpressions using helper
routines in org.checkerframework.framework.util.JavaExpressionParseUtil.

2.2.5 AbstractValue

AbstractValue is the internal representation of dataflow information produced by an analysis. An Abstract-
Value is an estimate about the run-time values that an expression may evaluate to. The client of the
Dataflow Framework defines the abstract value, so the information may vary widely among different users
of the Dataflow Framework, but they share a common feature that one can compute the least upper bound
of two AbstractValues.

package org.checkerframework.dataflow.analysis;
interface AbstractValue<V extends AbstractValue<V>>
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For the Checker Framework, abstract values are essentially AnnotatedTypeMirrors.

package org.checkerframework.framework.flow;
abstract class CFAbstractValue<V extends CFAbstractValue<V>> implements AbstractValue<V>
class CFValue extends CFAbstractValue<CFValue>

For the Nullness Checker, abstract values additionally track the meaning of PolyNull, which may be either
Nullable or NonNull. The meaning of PolyNull can change when a PolyNull value is compared to the null
literal, which is specific to the Nullness Checker. Other checkers often also support a Poly* qualifier, but
only the Nullness Checker tracks the meaning of its poly qualifier using the dataflow analysis.

package org.checkerframework.checker.nullness;
class NullnessValue extends CFAbstractValue<NullnessValue>

2.2.6 UnusedAbstractValue

UnusedAbstractValue is an AbstractValue that is not used during dataflow analysis. This class should only
be used as a type argument in transfer functions, for analyses that do not need and do not have their own
AbstractValue classes.
For example, LiveVariable analysis (Section 6), needs to compute the least upper bound of successors’ stores,
and it is meaningless to further calculate the least upper bound of two individual live variables at a smaller
granularity. Since there is no computation between two AbstractValues, LiveVariable analysis uses the
UnusedAbstractValue rather than implementing a specific AbstractValue for this analysis.

package org.checkerframework.dataflow.analysis;
public final class UnusedAbstractValue implements AbstractValue<UnusedAbstractValue>

2.2.7 Store

A Store is a set of dataflow facts computed by an analysis, so it is a mapping from JavaExpressions to
AbstractValues. As with AbstractValues, one can take the least upper bound of two Stores.

package org.checkerframework.dataflow.analysis;
interface Store<S extends Store<S>>

The Checker Framework store restricts the type of abstract values it may contain.

package org.checkerframework.framework.flow;
abstract class CFAbstractStore<V extends CFAbstractValue<V>,

S extends CFAbstractStore<V, S>>
implements Store<S>

class CFStore extends CFAbstractStore<CFValue, CFStore>

An InitializationStore tracks which fields of the “self” reference have been initialized.

package org.checkerframework.checker.initialization;
class InitializationStore<V extends CFAbstractValue<V>,

S extends InitializationStore<V, S>>
extends CFAbstractStore<V, S>
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A NullnessStore additionally tracks the meaning of PolyNull.

package org.checkerframework.checker.nullness;
class NullnessStore extends InitializationStore<NullnessValue, NullnessStore>

2.2.8 Transfer functions

A transfer function (Section 2.2.8.3) is explicitly represented as a node visitor that takes a TransferInput
(Section 2.2.8.1) and produces a TransferResult (Section 2.2.8.2).

2.2.8.1 TransferInput The TransferInput represents the set of dataflow facts known to be true imme-
diately before the node to be analyzed. A TransferInput may contain a single store, or a pair of “then” and
“else” stores when following a boolean-valued expression.

package org.checkerframework.dataflow.analysis;
class TransferInput<V extends AbstractValue<V>,

S extends Store<S>>

2.2.8.2 TransferResult A TransferResult is the output of a transfer function. In other words, it is the
set of dataflow facts known to be true immediately after a node. A Boolean-valued expression produces a
ConditionalTransferResult that contains both a “then” and an “else” store, while most other Nodes produce
a RegularTransferResult with a single store.

package class org.checkerframework.dataflow.analysis;
abstract TransferResult<V extends AbstractValue<V>,

S extends Store<S>>
class ConditionalTransferResult<V extends AbstractValue<V>,

S extends Store<S>>
extends TransferResult<A, S>

class RegularTransferResult<V extends AbstractValue<V>,
S extends Store<S>>

extends TransferResult<A, S>

2.2.8.3 TransferFunction A TransferFunction is a NodeVisitor that takes an input and produces an
output.

package org.checkerframework.dataflow.analysis;
interface TransferFunction<V extends AbstractValue<V>,

S extends Store<S>>
extends NodeVisitor<TransferResult<V, S>, TransferInput<V, S>>

interface ForwardTransferFunction<V extends AbstractValue<V>,
S extends Store<S>>

extends TransferFunction<V, S>
interface BackwardTransferFunction<V extends AbstractValue<V>,

S extends Store<S>>
extends TransferFunction<V, S>

The Checker Framework defines a derived class of TransferFunction to serve as the default for most checkers.
The class constrains the type of abstract values and it overrides many node visitor methods to refine the
abstract values in their TransferResults.
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package org.checkerframework.framework.flow;
abstract class CFAbstractTransfer<V extends CFAbstractValue<V>,

S extends CFAbstractStore<V, S>,
T extends CFAbstractTransfer<V, S, T>>

extends AbstractNodeVisitor<TransferResult<V, S>, TransferInput<V, S>>
implements ForwardTransferFunction<V, S>

class CFTransfer extends CFAbstractTransfer<CFValue, CFStore, CFTransfer>

The Initialization Checker’s transfer function tracks which fields of the “self” reference have been initialized.

package org.checkerframework.checker.initialization;
class InitializationTransfer<V extends CFAbstractValue<V>,

T extends InitializationTransfer<V, T, S>,
S extends InitializationStore<V, S>>

extends CFAbstractTransfer<V, S, T>

The Regex Checker’s transfer function overrides visitMethodInvocation to special-case the isRegex and asRegex
methods.

package org.checkerframework.checker.regex;
class RegexTransfer extends CFAbstractTransfer<CFValue, CFStore, RegexTransfer>

2.2.9 Analysis

An Analysis performs iterative dataflow analysis over a control flow graph using a given transfer function.
Both forward and backward analyses are supported.

package org.checkerframework.dataflow.analysis;
interface Analysis<V extends AbstractValue<V>,

S extends Store<S>,
T extends TransferFunction<V, S>>

abstract class AbstractAnalysis<V extends AbstractValue<V>,
S extends Store<S>,
T extends TransferFunction<V, S>>

implements Analysis<V, S, T>
interface ForwardAnalysis<V extends AbstractValue<V>,

S extends Store<S>,
T extends ForwardTransferFunction<V, S>>

extends Analysis<V, S, T>
interface BackwardAnalysis<V extends AbstractValue<V>,

S extends Store<S>,
T extends BackwardTransferFunction<V, S>>

extends Analysis<V, S, T>

The Checker Framework defines a derived class of Analysis for use as the default analysis of most checkers.
This class adds information about the type hierarchy being analyzed and acts as a factory for abstract values,
stores, and the transfer function.

package org.checkerframework.framework.flow;
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abstract class CFAbstractAnalysis<V extends CFAbstractValue<V>,
S extends CFAbstractStore<V, S>,
T extends CFAbstractTransfer<V, S, T>>

extends ForwardAnalysisImpl<V, S, T>

class CFAnalysis extends CFAbstractAnalysis<CFValue, CFStore, CFTransfer>

The Nullness Checkers’ analysis overrides the factory methods for abstract values, stores, and the transfer
function.

package org.checkerframework.checker.nullness;
class NullnessAnalysis extends CFAbstractAnalysis<NullnessValue,

NullnessStore, NullnessTransfer>

The RegexChecker’s analysis overrides the factory methods for abstract values, stores, and the transfer
function.

package org.checkerframework.checker.regex;
class RegexAnalysis extends CFAbstractAnalysis<CFValue, CFStore, RegexTransfer>

2.2.10 AnalysisResult

An AnalysisResult preserves the dataflow information computed by an Analysis for later use by clients. The
information consists of an AbstractValue for each node in the CFG and a Store that is valid at the start of
each Block. The AnalysisResult class can return AbstractValues for either Nodes or Trees and it can re-run
the transfer function to compute Stores that are valid immediately before or after any Tree.

package org.checkerframework.dataflow.analysis;
class AnalysisResult<V extends AbstractValue<V>,

S extends Store<S>>

2.2.11 AnnotatedTypeFactory

AnnotatedTypeFactorys are not part of the Dataflow Framework, per se, but they are parameterized by the
Dataflow Framework classes that they use.

package org.checkerframework.framework.type;
class AnnotatedTypeFactory implements AnnotationProvider

In the Checker Framework, dataflow analysis is performed on demand, one class at a time, the first time
that a ClassTree is passed to getAnnotatedType. This is implemented in the abstract class GenericAnno-
tatedTypeFactory with concrete implementation in BaseAnnotatedTypeFactory.

package org.checkerframework.framework.type;
abstract class GenericAnnotatedTypeFactory<Checker extends BaseTypeChecker<?>,

Value extends CFAbstractValue<Value>,
Store extends CFAbstractStore<Value, Store>,
TransferFunction extends CFAbstractTransfer<Value, Store, TransferFunction>,
FlowAnalysis extends CFAbstractAnalysis<Value, Store, TransferFunction>>
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1 class Test {
2 void test( boolean b) {
3 int x = 2;
4 if (b) {
5 x = 1;
6 }
7 }
8 }
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Figure 1: A simple Java code snippet to introduce the CFG. In CFG visualizations, special basic blocks
are shown as ovals; conditional basic blocks are polygons with eight sides; and regular and exception basic
blocks are rectangles.

extends AnnotatedTypeFactory

package org.checkerframework.common.basetype;
class BaseAnnotatedTypeFactory

extends GenericAnnotatedTypeFactory<CFValue, CFStore, CFTransfer, CFAnalysis>

3 The Control-Flow Graph

A control-flow graph (CFG) represents a single method or field initialization. (The Dataflow Framework
performs an intra-procedural analysis. This analysis is modular and every method is considered in isolation.)
This section also describes the translation from the abstract syntax tree (AST) to the CFG. We start with
a simple example, then give a more formal definition of the CFG and its properties, and finally describe the
translation from the AST to the CFG.
As is standard, a control-flow graph is a set of basic blocks that are linked by control-flow edges. Possibly
less standard, every basic block consists of a sequence of so-called nodes, each of which represents a minimal
Java operation or expression.
Consider the method test of Figure 1. The if conditional got translated to a conditional basic block (octagon)
with two successors. There are also two special basic blocks (ovals) to denote the entry and exit point of the
method.

3.1 Formal Definition of the Control-Flow Graph

The control-flow graph models all paths that can possibly be taken by an execution of the method.
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Definition 3.1 (Control-Flow Graph). A control-flow graph consists of a set of basic blocks and a set of
directed edges between these basic blocks, some of which are labeled.

Definition 3.2 (Basic Block). A basic block is a sequence of nodes, where the only control flow between the
nodes inside the basic block is sequential. Furthermore, there is no control flow occurring between those nodes
and nodes of other basic blocks, except between the last node of one block b1 and the first node of another
block b2, if b2 is a successor of b1. A basic block may have multiple successors.

Definition 3.3 (Types of Basic Blocks). There are four types of basic blocks in a control-flow graph:

1. Regular basic block. A regular basic block contains any non-empty sequence of nodes and has exactly
one successor. None of the nodes in the block can throw an exception at run time.

2. Special basic blocks. A special basic block contains the empty sequence of nodes (i.e., is empty) and
denotes either the entry or one of the exit blocks of a method. There are three types of special basic
blocks:

• Entry block. This basic block is the (only) entry point of the method and thus is the only basic
block without predecessors.

• Exit block. This basic block denotes the (normal) exit of a method, and it has no successors.
• Exceptional exit block, which indicates exceptional termination of the method. As an exit block,

this block has no successors.

Every method has exactly one entry block, zero or one exit blocks, and zero or one exceptional exit
blocks. There is always either an exit block, an exceptional exit block, or both.

3. Exception basic block. An exception basic block contains exactly one node that might throw an
exception at run time (e.g., a method call). There are zero or one non-exceptional successors (only
a basic block containing a throw statement does not have a non-exceptional successor). There are
one or more exceptional successors (see 3.4). In all cases there is at least one successor (regular or
exceptional).

4. Conditional basic block. A conditional basic block does not contain any nodes and is used as a split
point after the execution of a node of boolean type. It has exactly two successors (both non-exceptional):
the then successor that is reached when the previous node evaluates to true and the else successor that
is reached when the previous node evaluates to false. There is always exactly a single predecessor block
for every conditional basic block, which is either a regular basic block or an exception basic block. In
both cases, the last node in the predecessor will be of boolean type and the boolean value controls which
successor of the conditional block is executed.

The Java implementation of the four block types above is described in Section 2.2.2.

Definition 3.4 (Control-Flow Graph Edges). The basic blocks of a control-flow graph are connected by
directed edges. If b1 and b2 are connected by a directed edge (b1, b2), we call b1 a predecessor of b2, and we
call b2 a successor of b1. In a control-flow graph, there are three types of edges:

1. Exceptional edges. An exceptional edge connects an exception basic block with its exceptional suc-
cessors, and it is labeled by the most general exception that might cause execution to take this edge
during run time. Note that the outgoing exceptional edges of a basic block do not need to have mutually
exclusive labels; the semantics is that the control flow follows the most specific edge. For instance, if
one edge is labeled with type A and another is labeled with type B where B is a subtype of A, then the
execution only takes the first edge if the exception is of a subtype of A, but not a subtype of B.
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There is not necessarily a most specific exception type in the program text; in that case, does the
translation add a most specific case that will never be executed at run time?
In general, what is the relation of the ordering in source code to the one here?

There is at most one successor for every exception type.

2. Conditional edges. A conditional edge is a non-exceptional edge that connects a conditional basic
block with one of its successors, and is labeled with either “true” or “false”.

3. Regular, non-conditional edge. Any other edge is a regular edge, and does not carry a label. Only
regular basic blocks, the entry basic block, and exception basic blocks have outgoing regular edges.

Definition 3.5 (Nodes). A node is a minimal Java operation or expression. It is minimal in the sense
that it cannot be decomposed further into subparts between which control flow occurs. Examples for such
nodes include integer literals, an addition node (which performs the mathematical addition of two nodes) or
a method call. Control flow such as if and break are not represented as nodes. The full list of nodes is given
in Table 1 and several of them are described in more detail in Section 3.2.
It is important to note that, even though nodes can contain references to other nodes, it is only the “top-level”
node which is considered at that point in the basic block. In the example of the addition node, this means
that only the addition operation is to be executed, and its operands would occur earlier in the control-flow
graph (as they are evaluated first, before performing the addition).

In the visualization, a string representation of the node is used, followed by the node type in square brackets.
Note that the string representation often also includes more than just the “top-level” node. For instance,
the addition expression a + b[0]; will appear as “a + b[0] [ NumericalAddition ]” rather than “a” plus some
temporary variable. This is done for clarity, so that it is easy to see what expressions are summed up and
because we don’t create internal names for expression results.
Table 1 lists all node types in the framework. All classes are in package org.checkerframework.dataflow.cfg.node.

Table 1: All node types in the Dataflow Framework.

Node type Notes Example
Node The base class of all nodes
ValueLiteralNode The base class of literal value nodes
BooleanLiteralNode true
CharacterLiteralNode ’c’
DoubleLiteralNode 3.14159
FloatLiteralNode 1.414f
IntegerLiteralNode 42
LongLiteralNode 1024L
NullLiteralNode null

ShortLiteralNode 512
StringLiteralNode "memo"

Accessor expressions
ArrayAccessNode args[i]
FieldAccessNode f, obj.f
MethodAccessNode obj.hashCode
LocalVariableNode Use of a local variable, either as l-value or

r-value
Continued on next page
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Node type Notes Example
ThisNode Base class of references to this

ExplicitThisNode Explicit use of this in an expression
ImplicitThisNode Implicit use of this in an expression
SuperNode Explicit use of super in expression super(x, y)

MethodInvocationNode Note that access and invocation are distinct hashCode()

Expression supertypes
BinaryOperationNode Base class of binary expression nodes
UnaryOperationNode Base class of unary expression nodes

Arithmetic and logical operations
BitwiseAndNode a & b
BitwiseComplementNode ~b
BitwiseOrNode a | b
BitwiseXorNode a ^ b
ConditionalAndNode Short-circuiting a && b
ConditionalNotNode !a
ConditionalOrNode Short-circuiting a || b
FloatingDivisionNode 1.0 / 2.0
FloatingRemainderNode 13.0 % 4.0
LeftShiftNode x << 3
IntegerDivisionNode 3 / 2
IntegerRemainderNode 13 % 4
NumericalAdditionNode x + y
NumericalMinusNode -x
NumericalMultiplicationNode x * y
NumericalPlusNode +x
NumericalSubtractionNode x - y
SignedRightShiftNode x >> 3
StringConcatenateNode s + ".txt"
SwitchExpressionNode
TernaryExpressionNode c ? t : f
UnsignedRightShiftNode x >>> 5

Relational operations
EqualToNode x == y
NotEqualNode x != y
GreaterThanNode x > y
GreaterThanOrEqualNode x >= y
LessThanNode x < y
LessThanOrEqualNode x <= y

SwitchExpression A switch expression (not statement!)
CaseNode Case of a switch. Acts as an equality test.
AssignmentNode x = 1

ArrayCreationNode new double[]
ObjectCreationNode new Object()

FunctionalInterfaceNode A member reference or lambda
TypeCastNode (float)42

Continued on next page
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Node type Notes Example
InstanceOfNode x instanceof Float

Conversion nodes
NarrowingConversionNode Implicit conversion
StringConversionNode Might be implicit obj.toString()
WideningConversionNode Implicit conversion

Non-value nodes
Types appearing in expressions, such as
MyType.class

ArrayTypeNode
ParameterizedTypeNode
PrimitiveTypeNode

ClassNameNode Identifier referring to Java class or interface java.util.HashMap
PackageNameNode Identifier referring to Java package java.util

ThrowNode Throw an exception
ReturnNode Return from a method
AssertionErrorNode assert x != null : "Hey"

ExpressionStatementNode An expression that is used as a statement m();

SynchronizedNode Start or end of a synchronized code block
MarkerNode No-op node used to annotate a CFG with

information of the underlying Java source
code. Mostly useful for debugging and vi-
sualization. An example is indicating the
start/end of switch statements.

NullChkNode Null checks inserted by javac
VariableDeclarationNode Declaration of a local variable
ClassDeclarationNode Declaration of a class
LambdaResultExpressionNode Body of a single-expression lambda

Table 1: All node types in the Dataflow Framework.

In theory, nearly any statement can throw an Error such as OutOfMemoryError or NoSuchFieldError. The Dataflow
Framework does not represent all that possible flow. It only creates the exceptional edges shown in Table 2.
Other AST constructs are desugared into the above nodes (see Section 3.3.1).

3.2 Noteworthy Translations and Node Types

In this section we mention any non-straightforward translations from the AST to the CFG, or special
properties about individual nodes.

3.2.1 Program Structure

Java programs are structured using high-level programming constructs such as loops, if-then-else constructs,
try-catch-finally blocks or switch statements. During the translation from the AST to the CFG some of
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Node type Exception type
ArrayAccessNode NullPointerException, ArrayIndexOutOfBoundsException
FieldAccessNode NullPointerException
MethodAccessNode NullPointerException
MethodInvocationNode Throwable, types in throws clause of the signature
IntegerDivisionNode ArithmeticException
IntegerRemainderNode ArithmeticException
ObjectCreationNode Throwable, types in throws clause of the signature
ArrayCreationNode NegativeArraySizeException, OutOfMemoryError
TypeCastNode ClassCastException
ThrowNode Type of e when throw e
AssertionErrorNode AssertionError
ClassNameNode ClassCircularityError, ClassFormatError,

NoClassDefFoundError, OutOfMemoryError

Table 2: All node types that could throw Exception, and the types to be thrown. All exception types are in
package java.lang.

this program structure is lost and all non-sequential control flow is represented by two low-level constructs:
conditional basic blocks and control-flow edges between basic blocks. For instance, a while loop is translated
into its condition followed by a conditional basic block that models the two possible outcomes of the condition:
either the control flow follows the “true” branch and continues with the loop’s body, or control goes to the
“false” successor and executes the first statement after the loop.

3.2.2 Assignment

As described in JLS §15.26.1, the execution of an assignment is in general not strictly left-to-right. Rather,
the right-hand side might be evaluated even if the left-hand side of the assignment causes an exception. This
semantics is faithfully represented in the CFG produced by the translation. An example of a field assignment
exhibiting this behavior is shown in Figure 2.

3.2.3 Postfix/Prefix Increment/Decrement

Postfix and prefix increment and decrement have a side effect to update the variable or field. To represent
this side effect, the Dataflow Framework creates an artificial assignment node like n = n + 1 for ++n or n++.
This artificial assignment node is stored in unaryAssignNodeLookup of ControlFlowGraph. The assignment node is
also stored in treeLookup for prefix increment or decrement so that the result of it is after the assignment.
However, the node before the assignment is stored in treeLookup for postfix increment or decrement because
the result of it should be before the assignment. For further information about node-tree mapping, see
Section 3.3.2.

3.2.4 Conditional stores

The Dataflow Framework extracts information from control-flow splits that occur in if, for, while, and switch

statements and in conditional operator expressions. In order to have the information available at the split, we
eagerly produce two stores contained in a ConditionalTransferResult after certain boolean-valued expressions.
The stores are called the then and else stores. So, for example, after the expression x == null, two different
stores will be created. The Nullness Checker would produce a then store that maps x to @Nullable and an
else store that maps x to @NonNull.
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1 class Test {
2 int f;
3

4 void test(Test x) {
5 x.f = 1;
6 }
7 }
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Figure 2: Control flow for a field assignment is not strictly left-to-right (cf. JLS §15.26.1), which is properly
handled by the translation.

The Dataflow Framework allows a maximum of two stores and when there are two distinct stores, they always
refer to the most recent boolean-valued expression. Stores are propagated through most nodes and they are
reversed for conditional not expressions. The transfer functions for many nodes merge conditional stores
back together because they cannot maintain the distinction between them. Merging just means taking the
least upper bound of the two stores and it happens automatically by calling TransferInput.getRegularStore.
Assignments usually merge conditional stores. For the translation of conditional operator expressions, a
special non-merging assignment node is used (see Section 3.2.6 below).

3.2.5 Branches

The control flow graph represents all non-exceptional control-flow splits, or branches, as ConditionalBlocks
that contain no nodes. If there is one store flowing into a conditional block, then it is duplicated to both
successors. If there are two stores flowing into a conditional block, the then store is propagated to the block’s
then successor and the else store is propagated to the block’s else successor.
Consider the control flow graph generated for the simple if statement in Figure 3. The conditional expression
b1 immediately precedes the ConditionalBlock, represented by the octagonal node. The ConditionalBlock is
followed by both a then and an else successor block, after which control flow merges back together at the
exit block. The edge labels EACH_TO_EACH, THEN_TO_BOTH, and ELSE_TO_BOTH are flow rules described in Section 4.4.
As described above, the then store propagates to (both stores of) the block’s then successor according to
rule THEN_TO_BOTH and the else store propagates to (both stores of) the block’s else successor according to rule
ELSE_TO_BOTH. More precise rules are used to preserve dataflow information for short-circuiting expressions,
as described in Section 3.2.6.

3.2.6 Conditional Expressions

The conditional and (&&, cf. JLS §15.23) and the conditional or (||, cf. JLS §15.24) expressions are subject
to short-circuiting: if evaluating the left-hand side already determines the result, then the right-hand side is
not evaluated. This semantics is faithfully represented in the constructed CFG and more precise flow rules

15



1 class Test {
2 void testIf ( boolean b1) {
3 int x = 0;
4 if (b1) {
5 x = 1;
6 } else {
7 x = 2;
8 }
9 }

10 }

<entry>

x   [ VariableDeclaration ]
0   [ IntegerLiteral ]    
x = 0   [ Assignment ]   
b1   [ LocalVariable ]   

EACH_TO_EACH

x   [ LocalVariable ]
1   [ IntegerLiteral ]   
x = 1   [ Assignment ]  

<exit>

EACH_TO_EACH

EACH_TO_EACH

then
THEN_TO_BOTH

x   [ LocalVariable ]
2   [ IntegerLiteral ]   
x = 2   [ Assignment ]   

else
ELSE_TO_BOTH

EACH_TO_EACH

Figure 3: Example of an if statement translated into a ConditionalBlock.

(Section 4.4) are used to preserve additional dataflow information.
An example program using conditional or is shown in Figure 4. Note that the CFG correctly represents
short-circuiting. The expression b2 || b3 is only executed if b1 is false and b3 is only evaluated if b1 and b2
are false.
Observe in Figure 4 that the flow rule between the first conditional block and its then successor is THEN_TO_THEN,
rather than the default flow rule for such edges THEN_TO_BOTH, which is present on the edge from the last
conditional block to its then successor. THEN_TO_THEN is a more precise rule which propagates the then store
from the predecessor of the conditional block to the then store of the then successor and leaves the else store
of the successor untouched. This is a valid rule for propagating information along the short-circuit edge of a
conditional or expression because b1 || (b2 || b3) being false implies that b1 is false, so dataflow information
that obtains when b1 is true has no effect on the dataflow information obtains when b1 || (b2 || b3) is false.
To put it another way, if control reaches the block containing b1 || (b2 || b3) and that expression is false,
then control must have flowed along the else branches of both conditional blocks and only the facts that
obtain along those edges need to be kept in the else store of the block containing b1 || (b2 || b3).
Conditional operator expressions (using the ternary conditional operator ? :, cf. JLS §15.25) use an addi-
tional synthetic local variable in the CFG. The second (then) and third (else) expressions are assigned to
this local variable. In contrast to other assignments, this assignment does not merge the stores, to allow the
propagation of conditional stores from these sub-expressions. The TernaryExpressionNode at the merge of the
two branches can then either be treated like a local variable read or return a conditional store.
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1 class Test {
2 void test( boolean b1 ,

boolean b2 , boolean b3) {
3 int x = 0;
4 if (b1 || (b2 || b3)) {
5 x = 1;
6 }
7 }
8 }

<exit>

x   [ LocalVariable ]
1   [ IntegerLiteral ]    
x = 1   [ Assignment ]    

EACH_TO_EACH

(b2 || b3)   [ ConditionalOr ]   

then
THEN_TO_THEN b3   [ LocalVariable ]    

else
ELSE_TO_BOTH

b2   [ LocalVariable ]   

EACH_TO_EACH

(b1 || (b2 || b3))   [ ConditionalOr ]    

EACH_TO_EACH

EACH_TO_EACH

then
THEN_TO_THEN

else
ELSE_TO_BOTH

then
THEN_TO_BOTH

else
ELSE_TO_BOTH

<entry>

x   [ VariableDeclaration ]
0   [ IntegerLiteral ]    
x = 0   [ Assignment ]    
b1   [ LocalVariable ]   

EACH_TO_EACH

EACH_TO_EACH

EACH_TO_EACH

Figure 4: Example of a conditional or expression (||) with short-circuiting and more precise flow rules.
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1 class
Test
{

2 int
test( boolean
b)
{

3 int
x
=
b
?
this. hashCode ()
:
5;

4 return
x;

5 }
6 }

Before: NullnessStore#62(
  b > NV{@Initialized @NonNull, boolean, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~

<entry>

Before: NullnessStore#62(
  b > NV{@Initialized @NonNull, boolean, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
x   [ VariableDeclaration ]
condExpr#num0   [ VariableDeclaration ]
b   [ LocalVariable ]    > NV{@Initialized @NonNull, boolean, f f}

EACH_TO_EACH

Before: NullnessStore#63(
  b > NV{@Initialized @NonNull, boolean, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~

EACH_TO_EACH

Before: NullnessStore#64(
  b > NV{@Initialized @NonNull, boolean, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
this   [ ExplicitThis ]    > NV{@Initialized @NonNull, Test, f f}

this.hashCode   [ MethodAccess ]

THEN_TO_BOTH

Before: NullnessStore#65(
  b > NV{@Initialized @NonNull, boolean, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
5   [ IntegerLiteral ]    > NV{@Initialized @NonNull, int, f f}
condExpr#num0 = 5   [ Assignment ]    > NV{@Initialized @NonNull, int, f f}

ELSE_TO_BOTH

Before: NullnessStore#66(
  b > NV{@Initialized @NonNull, boolean, f f}
  this > NV{@UnknownInitialization @NonNull, Test, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
this.hashCode()   [ MethodInvocation ]    > NV{@Initialized @NonNull, int, f f}

EACH_TO_EACH

Before: then=NullnessStore#75(
  b > NV{@Initialized @NonNull, boolean, f f}
  condExpr#num0 > NV{@Initialized @NonNull, int, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false),
else=NullnessStore#76(
  b > NV{@Initialized @NonNull, boolean, f f}
  condExpr#num0 > NV{@Initialized @NonNull, int, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
(b ? this.hashCode() : 5)   [ TernaryExpression ]    > NV{@Initialized @NonNull, int, f f}
x = (b ? this.hashCode() : 5)   [ Assignment ]    > NV{@Initialized @NonNull, int, f f}
x   [ LocalVariable ]    > NV{@Initialized @NonNull, int, f f}

return x   [ Return ]    > NV{@FBCBottom @NonNull, boolean, f f}

EACH_TO_EACH

Before: then=NullnessStore#67(
  b > NV{@Initialized @NonNull, boolean, f f}
  this > NV{@UnknownInitialization @NonNull, Test, f f}
  this.hashCode() > NV{@Initialized @NonNull, int, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false),
else=NullnessStore#68(
  b > NV{@Initialized @NonNull, boolean, f f}
  this > NV{@UnknownInitialization @NonNull, Test, f f}
  this.hashCode() > NV{@Initialized @NonNull, int, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~
condExpr#num0 = this.hashCode()   [ Assignment ]    > NV{@Initialized @NonNull, int, f f}

EACH_TO_EACH

Before: NullnessStore#69(
  b > NV{@Initialized @NonNull, boolean, f f}
  this > NV{@UnknownInitialization @NonNull, Test, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~

<exceptional-exit>

RuntimeException Error

Before: NullnessStore#79(
  b > NV{@Initialized @NonNull, boolean, f f}
  condExpr#num0 > NV{@Initialized @NonNull, int, f f}
  x > NV{@Initialized @NonNull, int, f f}
  initialized fields = []
  invariant fields = []
  isPolyNullNonNull = false
  isPolyNullNull = false)
~~~~~~~~~

<exit>

EACH_TO_EACH

EACH_TO_EACH

Figure 5: Example of a conditional operator expression (? :).
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3.2.7 Implicit this access

The Java compiler AST uses the same type (IdentifierTree) for local variables and implicit field accesses
(where this. is left out). To relieve the user of the Dataflow Framework from manually determining the two
cases, we consistently use FieldAccessNode for field accesses, where the receiver might be an ImplicitThisNode.

3.2.8 Assert statements

Assert statements are treated specially by the CFG builder because it is unknown at CFG construction time
whether or not assertions will be enabled when the program is run. When assertions are enabled, the dataflow
information gained by analyzing the assert statement can improve precision and allow the programmer to
avoid redundant annotations. However, when assertions are disabled, it would be unsound to assume that
they had any effect on dataflow information.
The user of the Dataflow Framework may specify that assertions are enabled or disabled. When assertions
are assumed to be disabled, no CFG Nodes are built for the assert statement. When assertions are assumed
to be enabled, CFG Nodes are built to represent the condition of the assert statement and, in the else
successor of a ConditionalBlock, CFG Nodes are built to represent the detail expression of the assert, if any.
If assertions are not assumed to be enabled or disabled, then the CFG is conservative and represents the fact
that the assert statement may execute or may not. This takes the form of a ConditionalBlock that branches
on a fake variable. For example, see Figure 6. The fake variable named assertionsEnabled#num0 controls the
first ConditionalBlock. The then successor of the ConditionalBlock is the same subgraph of CFG Nodes that
would be created if assertions were assumed to be enabled, while the else successor of the ConditionalBlock
is the same, empty, subgraph of CFG Nodes that would be created if assertions were assumed to be disabled.

3.2.9 Varargs method invocation

In Java, varargs in method or constructor invocation is compiled as new array creation (cf. JLS §15.12.4.2).
For example, m(1, 2, 3) will be compiled as m(new int[]{1, 2, 3}) when the signature of m is m(int... args).
Dataflow Framework creates an ArrayCreationNode with initializer for varargs in the same way as the Java
compiler does. Note that it doesn’t create an ArrayCreationNode when the varargs is an array with the same
depth as the type of the formal parameter, or if null is given as the actual varargs argument.

3.2.10 Default case and fall through for switch statement

A switch statement is handled as a chain of CaseNode and nodes in the case. CaseNode makes a branch by
comparing the equality of the expression of the switch statement and the expression of the case. Note that
the expression of a switch statement must be executed only once at the beginning of the switch statement.
To refer to its value, a fake variable is created and it is assigned to a fake variable. A THEN_TO_BOTH edge goes
to nodes in the case and a ELSE_TO_BOTH edge goes to the next CaseNode. When the next case is the default
case, it goes to nodes in the default case. If a break statement is in nodes, it creates an edge to next node
of the switch statement. If there is any possibility of fall-through, an edge to the first node in the next case
is created after nodes in the case. For example, see Figure 7. The fake variable named switch#num0 is created
and each case node creates the branches.

3.2.11 Switch expressions

A switch expression is translated similarly to a switch statement. An additional fake variable switchExpr is
used to store the value from the cases. The SwitchExpressionNode itself can then be handled like a read of that
variable.
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1 class Test {
2 void testAssert ( Object a) {
3 assert a != null
4 : " Argument is null";
5 }
6 }

<exit>

a   [ LocalVariable ]    
null   [ NullLiteral ]    
(a != null)   [ NotEqual ]    

EACH_TO_EACH

<entry>

assertionsEnabled#num0   [ LocalVariable ]   

EACH_TO_EACH

<exceptional-exit>

throw AssertionError("Argument is null")   [ Throw ]

AssertionError

then
THEN_TO_BOTH

"Argument is null"   [ StringLiteral ]    
AssertionError("Argument is null")   [ AssertionError ]

else
ELSE_TO_BOTH

then
THEN_TO_BOTH

else
ELSE_TO_BOTH

EACH_TO_EACH

EACH_TO_EACH

Figure 6: Example of an assert statement translated with assertions neither assumed to be enabled nor
assumed to be disabled.

3.2.12 Handling finally blocks

Control flow statements, like return, break, and continue, within try blocks will cause execution of the finally

block before continuing at the target of the jump. The Dataflow Framework models this behavior by adding
a jump to a duplicate of the finally block before the jump to the original target of the control flow statement.
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1 class Test {
2 void test(int x) {
3 switch (x) {
4 case 1:
5 int a = x;
6 break ;
7 case 2:
8 int b = x;
9 default :

10 int c = x;
11 break ;
12 }
13 }
14 }

<entry> 

switch#num0   [ VariableDeclaration ]
switch#num0   [ LocalVariable ]
x   [ LocalVariable ]
switch#num0 = x   [ Assignment ]
marker (start of switch statement)   [ Marker ]
1   [ IntegerLiteral ]
case 1:   [ Case ]

EACH_TO_EACH

EACH_TO_EACH

a   [ VariableDeclaration ]
x   [ LocalVariable ]
a = x   [ Assignment ]

then
THEN_TO_BOTH

2   [ IntegerLiteral ]
case 2:   [ Case ]

else
ELSE_TO_BOTH

<exit> 

EACH_TO_EACH

EACH_TO_EACH

b   [ VariableDeclaration ]
x   [ LocalVariable ]
b = x   [ Assignment ]

then
THEN_TO_BOTH

c   [ VariableDeclaration ]
x   [ LocalVariable ]
c = x   [ Assignment ]

else
ELSE_TO_BOTH

EACH_TO_EACH

EACH_TO_EACH

Figure 7: Example of a switch statement with case, default and fall through.
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3.3 AST to CFG Translation

This section gives a high-level overview of the translation process from the abstract syntax tree to the
control-flow graph as described in Section 3.1.
First, we define several entities, which will be used in the translation.

Definition 3.6 (Extended Node). In the translation process the data type extended node is used. An
extended node can be one of four possibilities:

• Simple extended node. An extended node can just be a wrapper for a node that does not throw an
exception, as defined in Definition 3.5.

• Exception extended node. Similar to a simple node, an exception extended node contains a node,
but this node might throw an exception at run time.

• Unconditional jump. An unconditional jump indicates that control flow proceeds non-sequentially to
a location indicated by a target label.

• Conditional jump. A conditional jump can follow an extended node that contains a node of boolean
type. It contains two target labels, one if the node evaluates to true and one for false.

Comparison of nodes and extended nodes. Nodes themselves never contain control flow information;
they only represent computation.
An extended node is a wrapper around a node that represents control flow information. It contains: a node,
a label, a predecessor, and a successor.
An extended node is temporarily used to keep track of some control flow information. Later, the basic block
data structures are created, and they represent the control flow. (And at that point the extended nodes are
discarded.)

Definition 3.7 (Label). A label is a marker that is used to refer to extended nodes. It is used only
temporarily during CFG construction.

The process of translating an AST to a CFG proceeds in three distinct phases.

1. Phase one. In the first phase, a single linear sequence of extended nodes is created. The control flow
is implicitly assumed to be sequential through the sequence of extended nodes, until a (conditional or
unconditional) jump is encountered in an if, for, while, or switch statement, in which case the jump
target decides where execution proceeds.
The labels used as targets of jumps are associated with positions in this sequence and are managed
by maintaining a binding function from labels to sequence positions. The advantage of having this
indirection is that one can create a label and associate with the next free position in the sequence,
without knowing which exact extended node will be placed there. Furthermore, labels can be created
and used before they are actually bound to their correct position in the sequence (e.g., when that
position is not yet known). At the end, the binding function can be used to resolve labels to extended
nodes.
Furthermore, phase one also computes a mapping from AST tree elements to nodes, as well as a set of
leaders. A leader is an extended node for which one of the following conditions applies:

• It is the first extended node in the sequence.
• It is the target of a jump (i.e. there is a label bound to the location of the node in the sequence).
• It is the first node following a jump.
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2. Phase two. Phase two translates the linear representation to a control-flow graph by performing the
following transformations:

• Simple extended nodes are translated to regular basic blocks, where multiple nodes can be grouped
in one regular basic block.

• Exception extended nodes are translated to exception basic blocks with the correct edges.
• Unconditional jumps are replaced with edges between the correct basic blocks.
• Conditional jumps are replaced by a conditional basic block.

To greatly simplify the implementation, phase two is allowed to produce a degenerated control-flow
graph. In particular, the following deficiencies are possible:

• Regular basic blocks might be empty.
• Some conditional basic blocks might be unnecessary, in that they have the same target for both

the “then” as well as the “else” branch.
• Two consecutive, non-empty, regular basic blocks can exist, even if the second block has only

exactly one predecessor and the two blocks could thus be merged.

3. Phase three. In the third and last phase, the control-flow graph is transformed such that the de-
ficiencies remaining from phase two are removed. It is ensured that removing one kind of deficiency
does not create another degenerate case.

3.3.1 Desugaring

Desugaring means replacing complicated source language constructs by simpler ones, or removing syntactic
sugar from an input program. Originally, we intended for the control flow graph representation to be as
close as possible to the Java abstract syntax tree to simplify the mapping from tree to CFG node and back
and to reuse existing checker code written in terms of trees. However, we ran into several cases that were
better handled by desugaring.

• We decided to represent implicit conversion operations like boxing, unboxing, widening, and narrowing
as explicit CFG nodes because they change the type of a value. For example, implicit unboxing of an
Integer will be translated into a call to Integer.intValue. The pre-conversion type can be associated
with the original node and the post-conversion type can be associated with the explicit conversion
node. It also makes it possible for the transfer function to operate on the conversion nodes.

• Enhanced for loops are defined in terms of a complicated translation into simpler operations, including
field accesses, branches, and method calls that could affect dataflow information. It would be pro-
hibitively difficult for a checker writer to write a transfer function that correctly accounted for all of
those operations, so we desugar enhanced for loops.

• Once we decided to make conversion nodes explicit it made sense to desugar compound assignments.
A compound assignment like

Integer i; i += 3;

performs both an unboxing and a boxing operation on i. Desugaring all compound assignments greatly
reduced the total number of node classes.

• String concatenation assignments are also desugared. A string concatenation assignment like

String s; s += "str";
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is represented as

String s; s = s + "str";

in CFGs. This avoids duplicating the same logic that is necessary in assignment and concatenation
nodes, which was error prone.

In order to desugar code and still maintain the invariant that every CFG node maps to a tree, we needed to
create new AST tree nodes that were not present in the input program. Javac allows us to do this through
non-supported APIs and we wrote some utility classes in javacutil to make the process easier. The new trees
are created during CFG building and they persist as long as some CFG node refers to them. However, the
trees are not inserted into the AST, so they are not type-checked or seen by other tree visitors. Their main
purpose is to carry Java types and to satisfy AnnotatedTypeFactory methods.
A further complication is that these newly-introduced AST trees are not part of the TreePath when visiting
the AST. We work around this problem by giving the AnnotatedTypeFactory a mapping, called the pathHack,
from newly-introduced trees to their containing MethodTree and ClassTree.
Possibly even worse, we needed to create fake symbols for variables created when desugaring enhanced
for loops. Javac does not expose the ability to create a symbol, so we created a new subclass of Sym-
bol.VarSymbol called javacutil.tree.DetachedVarSymbol for this purpose. AnnotatedTypeFactory explicitly
checks for DetachedVarSymbols in its DeclarationFromElement method.

3.3.2 Conversions and node-tree mapping

As mentioned in Section 3.3.1, we represent implicit Java type conversions such as boxing, unboxing, widen-
ing, and narrowing by explicit CFG nodes. This means that some AST tree nodes correspond to multiple
CFG nodes: a pre-conversion node and a post-conversion node. We will describe how the conversions work
and how the node-tree mappings are implemented.
Boxing and unboxing are represented in terms of calls to Java standard library methods. Boxing corre-
sponds to a call to BoxedClass.valueOf while unboxing corresponds to a call to BoxedClass.*Value. This allows
annotations on the library methods, as well as transfer functions for method invocations, to apply to the
conversions with no special work on the part of a checker developer.
Widening and narrowing conversions are represented as special node types, although it would be more
consistent to change them into type casts.
We maintain the invariant that a CFG node maps to zero or one AST tree and almost all of them map
to a single tree. But we can’t maintain a unique inverse mapping because some trees have both pre-
and post-conversion nodes. Instead, we remember two mappings, one from tree to pre-conversion node
and, for those trees that were converted, one from tree to post-conversion node. Both the CFGBuilder
and the ControlFlowGraph store two separate mappings. The Analysis class explicitly stores the tree to
pre-conversion node mapping as treeLookup and it indirectly uses the tree to post-conversion mapping in
Analysis.getValue(Tree). This has effectively hidden the distinction between pre and post-conversion nodes
from the Checker Framework, but in the long run it may be necessary to expose it.

4 Dataflow Analysis

This section describes how the dataflow analysis over the control-flow graph is performed and how to imple-
ment a particular analysis.
Roughly, a dataflow analysis in the framework works as follows. Given the abstract syntax tree of a method,
the framework computes the corresponding control-flow graph as described in Section 3. Then, a simple
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forward or backward iterative algorithm is used to compute a fix-point, by iteratively applying a set of
transfer functions to the nodes in the CFG. These transfer functions are specific to the particular analysis
and are used to approximate the run-time behavior of different statements and expressions.

4.1 Managing Intermediate Results of the Analysis

Conceptually, the dataflow analysis computes an abstract value for every node and flow expression1. The
transfer function (Section 4.3) produces these abstract values, taking as input the abstract values computed
earlier for sub-expressions. For instance, in a constant propagation analysis, the transfer function for addition
(+) would look at the abstract values for the left and right operand, and determine that the AdditionNode is
a constant if and only if both operands are constant.
An analysis result contains two parts:

1. The node-value mapping (Analysis.nodeValues) maps Nodes to their abstract values. Only nodes that can
take on an abstract value are used as keys. For example, in the Checker Framework, the mapping is
from expression nodes to annotated types.
The framework consciously does not store the abstract value directly in the node, to remove any
coupling between the control-flow graph and a particular analysis. This allows the control-flow graph
to be constructed only once, and then reused for different dataflow analyses.

2. A set of stores. Each store maps a flow expression to an abstract value. Each store is associated with
a specific program point.
The stores tracked by an analysis implement the Store interface, which defines the following operations:

• Least upper bound: Compute the least upper bound of two stores (e.g., at a merge-point in the
control-flow graph).

• Equivalence: Compare two stores if they are (semantically) different, which is used to determine
if a fix-point is reached in the dataflow analysis. Note that reference-equality is most likely not
sufficient.

• Copy mechanism: Clone a store to get an exact copy.

The store is analysis-dependent, but the framework provides a default store implementation which can
be reused. The default implementation is

org.checkerframework.framework.flow.CFStore

What information is tracked in the store depends on the analysis to be performed. Some examples of
stores include

org.checkerframework.checker.initialization.InitializationStore
org.checkerframework.checker.nullness.NullnessStore

Every store is associated with a particular point in the control-flow graph, and all stores are managed by
the framework. It saves an explicit store for the start of each basic block. When dataflow information
is requested for a later point in a block, the analysis applies the transfer function to recompute it from
the initial store.

After an analysis has iterated to a fix-point, the computed dataflow information is maintained in an Analy-
sisResult, which can map either nodes or trees to abstract values.

1Certain dataflow analyses might choose not to produce an abstract value for every node. For instance, a constant propagation
analysis would only be concerned with nodes of a numerical type, and could ignore other nodes.
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4.2 Answering Questions

After the flow analysis for a particular method has been computed, there are two kinds of information that
have been computed. Firstly, the node-value mapping stores an abstract value for every node, and secondly,
the information maintained in various stores is available.
Two kinds of queries are possible to the dataflow analysis after the analysis is complete:

1. For a given AST tree node, what is its abstract value? Both pre- and postconversion values can be
retrieved. A discussion of conversions can be found in Section 3.3.2.

2. For a given AST tree node, what is the state right after this AST tree node? Examples of questions
include:

• Which locks are currently held?
• Are all fields of a given object initialized?

The store may first need to be (re-)computed, as the framework does not store all intermediate stores but
rather only those for key positions as described in Section 4.1.
To support both kinds of queries, the framework builds a map from AST tree nodes (of type com.sun.source.tree.Tree)
to CFG nodes. To answer questions of the first type it is then possible to go from the AST tree node to the
CFG node and look up its abstract value in the node-value mapping (this is provided by the framework).
By default, the abstract value returned for a tree by Analysis.getValue(Tree) includes any implicit conversions
because it uses the mapping from tree node to post-conversion CFG node. To request the pre-conversion
value, one currently uses the ControlFlowGraph.treelookup map directly.
To support questions of the second kind, every node has a reference to the basic block it is part of. Thus,
for a given AST tree node, the framework can determine the CFG node and thereby the CFG basic block,
and compute the necessary store to answer the question.

4.3 Transfer Function

A transfer function is an object that has a transfer method for every Node type, and also a transfer method
for procedure entry.

• A transfer method for a Node type takes a store and the node, and produces an updated store. This is
achieved by implementing the NodeVisitor<S, S> interface for the store type S.
These transfer methods also get access to the abstract value of any sub-node of the node n under
consideration. This is not limited to immediate children, but the abstract value for any node contained
in n can be queried.

• A transfer method for procedure entry returns the initial store, given the list of parameters (as
LocalVariableNodes that represent the formal parameters) and the MethodTree (useful if the initial store
depends on the procedure signature, for instance).

4.4 Flow Rules

As mentioned in Section 3.2.4, dataflow analysis conceptually maintains two stores for each program point,
a then store containing information valid when the previous boolean-valued expression was true and an else
store containing information valid when the expression was false. In many cases, there is only a single store
because there is no boolean-valued expression to split on or there was an expression, but it yielded no useful
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dataflow information. However, any CFG edge may potentially have a predecessor with two stores and a
successor with two stores.
We could simply propagate information from both predecessor stores to both successor stores, but that would
throw away useful information, so we define five flow rules that allow more precise propagation.

• EACH_TO_EACH is the default rule for an edge with a predecessor that is not a ConditionalBlock. It propagates
information from the then store of the predecessor to the then store of the successor and from the else
store of the predecessor to the else store of the successor.

• THEN_TO_BOTH is the default rule for an edge from a ConditionalBlock to its then successor. It propagates
information from the then store of its predecessor to both the then and else stores of the then successor,
thereby splitting the conditional store to take advantage of the fact that the condition is known to be
true.

• ELSE_TO_BOTH is the default rule for an edge from a ConditionalBlock to its else successor. It propagates
information from the else store of its predecessor to both the then and else stores of the else successor,
thereby splitting the conditional store to take advantage of the fact that the condition is known to be
false.

• THEN_TO_THEN is a special rule for a short-circuit edge from a ConditionalBlock to its then successor. It
only propagates information from the then store of its predecessor to the then store of its successor.
This flow rule is used for conditional or expressions because the else store of a || b is not influenced
by the then store of a.

• ELSE_TO_ELSE is a special rule for a short-circuit edge from a ConditionalBlock to its else successor. It only
propagates information from the else store of its predecessor to the else store of its successor. This
flow rule is used for conditional and expressions because the then store of a && b is not influenced by
the else store of a.

Note that the more precise flow rules THEN_TO_THEN and ELSE_TO_ELSE improve the precision of the store they
do not write to. In other words, THEN_TO_THEN yields a more precise else store of its successor by not propa-
gating information to the else store which might conflict with information already there, and conversely for
ELSE_TO_ELSE. See Section 3.2.6 for more details and an example.
Currently, we only use flow rules for short-circuiting edges of conditional ands and ors. The CFG builder
sets the flow rule of each short-circuiting edge as it builds the CFG for the conditional and/or expression.
The dataflow analysis logic requires that both the then and the else store of each block contain some
information before the block is analyzed, so it is a requirement that at least one predecessor block writes the
then store and at least one writes the else store.

4.5 Concurrency

By default, the Dataflow Framework analyzes the code as if it is executed sequentially. This is unsound if the
code is run concurrently. Use the -AconcurrentSemantics command-line option to enable concurrent semantics.
In the concurrent mode, the dataflow analysis cannot infer any local information for fields. This is because
after a local update, another thread might change the field’s value before the next use.
An exception to this are monotonic type properties, such as the @MonotonicNonNull annotation of the null-
ness type system. The meta-annotation @MonotonicQualifier declares that a qualifier behaves monotonically,
however it is not yet used to preserve dataflow information about fields under concurrent semantics.

27



5 Example: Constant Propagation

As a proof-of-concept, I (Stefan) implemented a constant propagation analysis for local variables and in-
teger values. The main class is org.checkerframework.dataflow.cfg.playground.ConstantPropagationPlayground. I
describe the most important aspects here.
Abstract values. A class Constant is used as an abstract value, which can either be top (more than one
integer value seen), bottom (no value seen yet), or constant (exactly one value seen; in which case the value
is also stored).
The store. The store maps Nodes to Constant, where only LocalVariableNodes and IntegerLiteralNodes are used
as keys. Only those two nodes actually are of interest (there is no addition/multiplication/etc. yet, and
other constructs like fields are not yet supported by the analysis).
Two different instances of LocalVariableNode can be uses of the same local variable, and thus the equals method
has been implemented accordingly. Therefore, every local variable occurs at most once in the store, even if
multiple (equal) LocalVariableNodes for it exist.
The transfer function. The transfer function is very simple. The initial store contains top for all param-
eters, as any value could have been passed in. When an integer literal is encountered, the store is extended
to indicate what abstract value this literal stands for. Furthermore, for an assignment, if the left-hand side
is a local variable, the transfer function updates its abstract value in the store with the abstract value of the
right-hand side (which can be looked up in the store).
To illustrate how we can have different information in the then and else block of a conditional, I also
implemented another transfer function that considers the EqualToNode, and if it is of the form a == e for a
local variable a and constant e, passes the correct information to one of the branches. This is also shown in
Figure 8.
Example. A small example is shown in Figure 8.

6 Example: Live Variable

A live variable analysis for local variables and fields was implemented to show the backward analysis works
properly. The main class is org.checkerframework.dataflow.cfg.playground.LiveVariablePlayground.
Abstract values. A class LiveVarValue is a live variable (which is represented by a node) wrapper turning
node into abstract value. A node can be LocalVariableNode or FieldAccessNode.
The store. The live variable store LiveVarStore has a field liveVarValueSet which contains a set of LiveVarValues.
Only LocalVariableNode or FieldAccessNode will be considered as a live variable and added to liveVarValueSet.
The store defines methods putLiveVar(LiveVarValue) and killLiveVar(LiveVarValue) to add and kill live variables.
The transfer function. The transfer function LiveVarTransfer initializes empty stores at normal and ex-
ceptional exit blocks (because this is a backward transfer function). The transfer function visits assignments
to update the live variable values in the stores.
Example. An example is shown in Figure 9.

7 Example: Very Busy Expression Analysis

An expression is “very busy” if no matter what path is taken, the expression is used before any variables
occurring in it are redefined. This analysis is a backward analysis that intersects abstract states from
successors.
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1 class Test {
2 void test( boolean b, int a) {
3 int x = 1;
4 int y = 0;
5 if (b) {
6 x = 2;
7 } else {
8 x = 2;
9 y = a;

10 }
11 x = 3;
12 if (a == 2) {
13 x = 4;
14 }
15 }
16 }
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Figure 8: Simple sequential program to illustrate constant propagation. Intermediate analysis results are
shown.
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1 class Test {
2 public void test () {
3 int a = 1, b = 2,

c = 3;
4 if (a > 0) {
5 int d = a + c;
6 } else {
7 int e = a + b;
8 }
9 }

10 }

Before:   live variables = none
~~~~~~~~~

<entry>

Before:   live variables = none
~~~~~~~~~
a   [ VariableDeclaration ]
1   [ IntegerLiteral ]
a = 1   [ Assignment ]
b   [ VariableDeclaration ]
2   [ IntegerLiteral ]
b = 2   [ Assignment ]
c   [ VariableDeclaration ]
3   [ IntegerLiteral ]
c = 3   [ Assignment ]
a   [ LocalVariable ]
0   [ IntegerLiteral ]
(a > 0)   [ GreaterThan ]

EACH_TO_EACH

Before:   live variables = a, b, c
~~~~~~~~~

EACH_TO_EACH

Before:   live variables = a, c
~~~~~~~~~
d   [ VariableDeclaration ]
a   [ LocalVariable ]
c   [ LocalVariable ]
(a + c)   [ NumericalAddition ]
d = (a + c)   [ Assignment ]

THEN_TO_BOTH

Before:   live variables = a, b
~~~~~~~~~
e   [ VariableDeclaration ]
a   [ LocalVariable ]
b   [ LocalVariable ]
(a + b)   [ NumericalAddition ]
e = (a + b)   [ Assignment ]

ELSE_TO_BOTH

Before:   live variables = none
~~~~~~~~~

<exit>

EACH_TO_EACH EACH_TO_EACH

Figure 9: Simple sequential program to illustrate live variable. Intermediate analysis results are shown.

The main class is org.checkerframework.dataflow.cfg.playground.BusyExpressionPlayground.
Abstract values. The BusyExprValue is a very busy expression, represented by a node. The node can be any
BinaryOperationNode, such as NumericalAdditionNode or LeftShiftNode.
The store. The busy expression store BusyExprStore has a field busyExprValueSet which contains a set of
BusyExprValues. If a node is a BinaryOperationNode, addUseInExpression(Node) will recursively analyze the subex-
pressions of the node to determine if they are nested BinaryOperationNodes. It then uses putBusyExpr(BusyExprValue)
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to put the expression in the set. killBusyExpr(Node) is used when a variable is re-assigned.
The transfer function. The transfer function BusyExprTransfer initializes empty stores at normal and
exceptional exit blocks (because this is a backward transfer function). The transfer function visits assignment,
method invocation, and return statement nodes to update the busy expression values in the stores.
Example. An example is shown in Figure 10.

8 Example: Reaching Definition Analysis

The reaching definitions for a given program point are those assignments that may have updated the current
values of variables. This reaching definition analysis is a standard example of a forward analysis.
Abstract values. A class ReachingDefinitionNode is used as an abstract value, which can only wrap AssignmentNode.
The reaching definition analysis processes such values in the store.
The store. The reaching definition store ReachingDefinitionStore has a field reachingDefSet which contains a
set of ReachingDefinitionNodes. The store defines methods putDef(ReachingDefinitionValue) and killDef(Node) to
add and kill reaching definitions.
The transfer function. The transfer function visits AssignmentNode to update the information of reaching
definitions in the stores. A reaching definition will be killed in the store when its left-hand side is same as
that of the new generated value, and the new generated value will be added into the store.
Example. An example is shown in Figure 11.

9 Default Analysis

9.1 Overview

The default flow-sensitive analysis org.checkerframework.framework.flow.CFAnalysis works for any checker de-
fined in the Checker Framework. This generality is both a strength and a weakness because the default
analysis can always run but the facts it can deduce are limited. The default analysis is extensible so checkers
can add logic specific to their own qualifiers.
The default flow-sensitive analysis takes advantage of several forms of control-flow to improve the precision
of type qualifiers. It tracks assignments to flow expressions, propagating type qualifiers from the right-hand
side of the assignment. It considers equality and inequality tests to propagate the most precise qualifiers
from the left or right-hand side to the true (resp. false) successor. It also applies type qualifiers from method
postconditions after calls.

9.2 Interaction of the Checker Framework and the Dataflow Analysis

This section describes how the dataflow analysis is integrated into the Checker Framework to enable flow-
sensitive type checking.
A main purpose of a type factory is to create an AnnotatedTypeMirror based on an input tree node. Using the
results of the dataflow analysis, the type factory can return a more refined type than otherwise possible.
Type factories that extend from GeneralAnnotatedTypeFactory and set the constructor parameter useFlow to true
will automatically run dataflow analysis and use the result of the analysis when creating an AnnotatedTypeMirror.
The first time that a GenericAnnotatedTypeFactory instance visits a ClassTree, the type factory runs the dataflow
analysis on all the field initializers of the class first, then the bodies of methods in the class, and then finally
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1 class Test {
2 public void test () {
3 int a = 2, b = 3;
4 if (a != b) {
5 int x = b - a;
6 int y = a - b;
7 } else {
8 int y = b - a;
9 a = 0;

10 int x = a - b;
11 }
12 }
13 }

Process order: 1
AnalysisResult#1
Before:   busy expressions = none
~~~~~~~~~

<entry>

Process order: 2
AnalysisResult#3
Before:   busy expressions = none
~~~~~~~~~
a   [ VariableDeclaration ]
2   [ IntegerLiteral ]
a = 2   [ Assignment ]
b   [ VariableDeclaration ]
3   [ IntegerLiteral ]
b = 3   [ Assignment ]
a   [ LocalVariable ]
b   [ LocalVariable ]
(a != b)   [ NotEqual ]
~~~~~~~~~
TransferInput#31
After:   busy expressions = (b - a)

EACH_TO_EACH

Process order: 3
AnalysisResult#5
Before:   busy expressions = (b - a)
~~~~~~~~~

EACH_TO_EACH

Process order: 4
AnalysisResult#7
Before:   busy expressions = (a - b), (b - a)
~~~~~~~~~
x   [ VariableDeclaration ]
b   [ LocalVariable ]
a   [ LocalVariable ]
(b - a)   [ NumericalSubtraction ]
x = (b - a)   [ Assignment ]
y   [ VariableDeclaration ]
a   [ LocalVariable ]
b   [ LocalVariable ]
(a - b)   [ NumericalSubtraction ]
y = (a - b)   [ Assignment ]
~~~~~~~~~
TransferInput#2
After:   busy expressions = none

THEN_TO_BOTH

Process order: 5
AnalysisResult#9
Before:   busy expressions = (b - a)
~~~~~~~~~
y   [ VariableDeclaration ]
b   [ LocalVariable ]
a   [ LocalVariable ]
(b - a)   [ NumericalSubtraction ]
y = (b - a)   [ Assignment ]
a   [ LocalVariable ]
0   [ IntegerLiteral ]
a = 0   [ Assignment ]
expression statement a = 0   [ ExpressionStatement ]
x   [ VariableDeclaration ]
a   [ LocalVariable ]
b   [ LocalVariable ]
(a - b)   [ NumericalSubtraction ]
x = (a - b)   [ Assignment ]
~~~~~~~~~
TransferInput#1
After:   busy expressions = none

ELSE_TO_BOTH

Process order: 6
AnalysisResult#11
Before:   busy expressions = none
~~~~~~~~~

<exit>

EACH_TO_EACH EACH_TO_EACH

Figure 10: Very Busy Expression Analysis illustration. Intermediate analysis results are shown.
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1 class Test {
2 public void test () {
3 int a = 1, b = 2,

c = 3;
4 if (a > 0) {
5 int d = a + c;
6 } else {
7 int e = a + b;
8 }
9 b = 0;

10 a = b;
11 }
12 }

Process order: 1
TransferInput#0
Before:   reaching definitions = none
~~~~~~~~~

<entry>

Process order: 2
TransferInput#1
Before:   reaching definitions = none
~~~~~~~~~
a   [ VariableDeclaration ]
1   [ IntegerLiteral ]
a = 1   [ Assignment ]
b   [ VariableDeclaration ]
2   [ IntegerLiteral ]
b = 2   [ Assignment ]
c   [ VariableDeclaration ]
3   [ IntegerLiteral ]
c = 3   [ Assignment ]
a   [ LocalVariable ]
0   [ IntegerLiteral ]
(a > 0)   [ GreaterThan ]
~~~~~~~~~
AnalysisResult#1
After:   reaching definitions = { a = 1, b = 2, c = 3 }

EACH_TO_EACH

Process order: 3
TransferInput#15
Before:   reaching definitions = { a = 1, b = 2, c = 3 }
~~~~~~~~~

EACH_TO_EACH

Process order: 4
TransferInput#17
Before:   reaching definitions = { a = 1, b = 2, c = 3 }
~~~~~~~~~
d   [ VariableDeclaration ]
a   [ LocalVariable ]
c   [ LocalVariable ]
(a + c)   [ NumericalAddition ]
d = (a + c)   [ Assignment ]
~~~~~~~~~
AnalysisResult#3
After:   reaching definitions = { a = 1, b = 2, c = 3, d = (a + c) }

THEN_TO_BOTH

Process order: 5
TransferInput#18
Before:   reaching definitions = { a = 1, b = 2, c = 3 }
~~~~~~~~~
e   [ VariableDeclaration ]
a   [ LocalVariable ]
b   [ LocalVariable ]
(a + b)   [ NumericalAddition ]
e = (a + b)   [ Assignment ]
~~~~~~~~~
AnalysisResult#5
After:   reaching definitions = { a = 1, b = 2, c = 3, e = (a + b) }

ELSE_TO_BOTH

Process order: 6
TransferInput#32
Before:   reaching definitions = { a = 1, b = 2, c = 3, e = (a + b), d = (a + c) }
~~~~~~~~~
b   [ LocalVariable ]
0   [ IntegerLiteral ]
b = 0   [ Assignment ]
expression statement b = 0   [ ExpressionStatement ]
a   [ LocalVariable ]
b   [ LocalVariable ]
a = b   [ Assignment ]
expression statement a = b   [ ExpressionStatement ]
~~~~~~~~~
AnalysisResult#7
After:   reaching definitions = { c = 3, e = (a + b), d = (a + c), b = 0, a = b }

EACH_TO_EACH EACH_TO_EACH

Process order: 7
TransferInput#42
Before:   reaching definitions = { c = 3, e = (a + b), d = (a + c), b = 0, a = b }
~~~~~~~~~

<exit>

EACH_TO_EACH

Figure 11: Simple sequential program to illustrate reaching definitions. Intermediate analysis results are
shown.
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the dataflow analysis is run recursively on the members of nested classes. The result of dataflow analysis is
stored in the GenericAnnotatedTypeFactory instance.
When creating an AnnotatedTypeMirror for a tree node, the type factory queries the result of the dataflow
analysis to determine if a more refined type for the tree node was inferred by the analysis. This is the first
type of query described in Section 4.2.
Dataflow itself uses the type factory to get the initial AnnotatedTypeMirror for a tree node in the following way.
For a given node n

• If it has no corresponding AST tree node, use “top” as its abstract value.

• If it has a corresponding AST tree node, ask the AnnotatedTypeFactory about the type of the tree node.
The factory will then use its checker-dependent logic to compute this type. A typical implementation
will look at the type of sub-trees and compute the overall type based on the information about these
sub-trees.
Note that the factory recursively uses information provided by the flow analysis to determine the types
of sub-trees. There is a check in Analysis.getValue that the node whose type is being requested is a
sub-node of the node to which the transfer function is currently being applied. For other nodes, the
analysis will return null (i.e., no information) and the factory will return the flow-insensitive annotated
type.

The AnnotatedTypeFactory and helper classes need to be prepared to work even when dataflow analysis is not fin-
ished yet. Code should either check whether dataflow analysis is still in progress (using analysis.isRunning())
or handle possible null values. The factory should return conservative, flow-insensitive types if the analysis
is still in progress.

9.3 The Checker Framework Store and Dealing with Aliasing

Word of caution: The exact rules of what information is retained may or may not be implemented exactly
as described here. This is a good starting point in any case, but if very precise information is needed,
then the source code is very readable and well documented.

The Dataflow Framework provides a default implementation of a store with the class CFAbstractStore, which
is used (as CFStore) as the default store if a checker does not provide its own implementation. This imple-
mentation of a store tracks the following information:

• Abstract values of local variables.

• Abstract values of fields where the receiver is an access sequence compose of the following:

– Field access.
– Local variable.
– Self reference (i.e., this).
– Pure or non-pure method call.

The most challenging part is ensuring that the information about field accesses is kept up to date in the face
of incomplete aliasing information. In particular, at method calls and assignments care needs to be taken
about which information is still valid afterwards.
The store maintains a mapping from field accesses (as defined in Section 9.3.1) to abstract values, and the
subsequent sections describe the operations that keep this mapping up-to-date.
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A side-effect-free method has no visible side-effects, such as setting a field of an object that existed before
the method was called. A deterministic method returns the same value (according to ==) every time it is
called with the same arguments and in the same environment. A pure method is both side-effect-free and
deterministic. The Dataflow Framework respects the @SideEffectFree, @Deterministic,and @Pure annotations of
the Checker Framework

9.3.1 Internal Representation of field access

To keep track of the abstract values of fields, the Dataflow Framework uses its own representation of field
accesses (that is different from the Node type introduced earlier). This data type is defined inductively as
follows:

〈FieldAccess〉 ::= 〈Receiver〉 〈Field〉 Java field (identified by its Element)

〈Receiver〉 ::= 〈SelfReference〉 this

| 〈LocalVariable〉 local variable (identified by its Element)

| 〈FieldAccess〉

| 〈MethodCall〉 Java method call of a method

| 〈Unknown〉 any other Java expression

〈MethodCall〉 ::= 〈Receiver〉 ‘.’ 〈Method〉 ‘(’ 〈Receiver〉,∗ ‘)’

〈Unknown〉 is only used to determine which information needs to be removed (e.g., after an assignment), but
no field access that contains 〈Unknown〉 is stored in the mapping to abstract values. For instance, 〈Unknown〉
could stand for a non-pure method call, an array access, or a ternary expression.

9.3.2 Updating Information in the Store

In the following, let o be any 〈Receiver〉, x a local variable, f a field, m a pure method, and e an expression.
Furthermore, we assume to have access to a predicate might_alias(o1, o2) that returns true if and only if o1
might alias o2; see Section 9.3.2.5.

9.3.2.1 At Field Assignments For a field update of the form o1.f1 = e, the dataflow analysis first
determines the abstract value eval for e. Then, it updates the store S as follows.

1. For every field access o2.f1 that is a key in S, remove its information if o2 lexically contains a 〈Receiver〉
that might alias o1.f1 as determined by the might_alias predicate. Note that the “lexically contains”
notion for pure method calls includes both the receiver as well as the arguments.
This includes the case where o1 = o2 (that is, they are syntactically the same) and the case where o2
and o1.f1 might be aliases.

2. S[o1.f1] = eval

9.3.2.2 At Local Variable Assignments For a local variable assignment of the form x = e, the
dataflow analysis first determines the abstract value eval for e. Then, it updates the store S as follows.

1. For every field access o2.f2 that is a key in S, remove its information if o2 lexically contains a 〈Receiver〉
that might alias x as determined by the might_alias predicate.

2. S[x] = eval
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9.3.2.3 At Other Assignments For any other assignment z = e where the assignment target z is not
a field or local variable, the dataflow analysis first determines the abstract value eval for e. Then, it updates
the store S as follows.

1. For every field access o2.f2, remove its information if o2 lexically contains a 〈Receiver〉 that might alias
z as determined by the might_alias predicate.

9.3.2.4 At Non-Pure Method Calls A non-pure method call might modify the value of any field
arbitrarily. Therefore, at a method call, any information about fields is lost.

9.3.2.5 Alias Information The Checker Framework does not include an aliasing analysis, which could
provide precise aliasing information. For this reason, we implement the predicate might_alias as follows:

might_alias(o1, o2) := (type(o1) <: type(o2) or type(o2) <: type(o1))

where type(o) determines the Java type of a reference o and <: denotes standard Java subtyping.
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