Functional Composition of Sensor Web APIs

Ruben Verborgh', Vincent Haerinck?, Thomas Steiner?, Davy Van Deursen!,
Sofie Van Hoecke?, Jos De Roo?, Rik Van de Walle!, and Joaquim Gabarro®

! Ghent University — IBBT, ELIS — Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium
{ruben.verborgh,rik.vandewalle}@ugent.be
2 gLIT Lab, University College West Flanders
Ghent University Association, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
{vincent.haerinck, sofie.van.hoecke}@howest.be
3 Universitat Politécnica de Catalunya — Department Ls1, 08034 Barcelona, Spain
{tsteiner, gabarro}@lsi.upc.edu
4 Agfa Healthcare, Moutstraat 100, 9000 Ghent, Belgium
jos.deroo@agfa.com

Abstract. Web APIs are becoming an increasingly popular alternative
to the more heavy-weight Web services. Recently, they also have been
used in the context of sensor networks. However, making different Web APIs
(and thus sensors) cooperate often requires a significant amount of man-
ual configuration. Ideally, we want Web APIs to behave like Linked Data,
where data from different sources can be combined in a straightforward
way. Therefore, in this paper, we show how Web APIs, semantically de-
scribed by the light-weight format RESTdesc, can be composed automat-
ically based on their functionality. Moreover, the composition process
does not require specific tools, as compositions are created by generic
Semantic Web reasoners as part of a proof. We then indicate how the
composition in this proof can be executed. We describe our architecture
and implementation, and validate that proof-based composition is a fea-
sible strategy on a Web scale. Our measurements indicate that current
reasoners can integrate compositions of more than 200 Web APIs in un-
der one second. This makes proof-based composition a practical choice
for today’s Web APIs.

Keywords: Semantic Web, Web APIs, sensors, composition, reasoning

1 Introduction

Sensors are gradually finding their way to the world of Web Apis. The REST
principles of resource-oriented API design, as defined by Fielding [15], are gaining
momentum on the Web of Things [17,40]. On top of this, Semantic Web tech-
nologies are then used to make the sensor data meaningful to machines [34,35].
A uniform way to access semantic sensor data is not the endpoint: machines need
a way to select what sensor they need for a specific situation. This is the task
of semantic Web API descriptions [33,39,42], which capture the functionality of

Web APIs in a semantic format. However, much more innovate power becomes
available when different sensors are combined to deliver new and unprecedented
functionality. Unfortunately, today, this involves a substantial amount of manual
work: while Web APIs bare the potential to be composed straightforwardly, they
lack the semantics to do this in an automated way [26].

The present paper addresses this issue by introducing a method to auto-
matically compose Web APIs. On the one hand, this allows a faster and easier
development of Web applications. On the other hand, it enables on-demand
solutions for specific problems and questions, for which it would be impracti-
cal or infeasible to create ad-hoc solutions manually. Furthermore, the proposed
method does not require specific tools or software, but rather works with generic
Semantic Web reasoners. This ensures the maintainability and generalizability
of the solution towards the future.

In the end, we want to enable for Web APIs what Linked Data [7] does
for data: the automated integration of various, heterogeneous sources with the
help of semantics, leading to composability. Web APIs are an excellent match
for this, because of the many parallels between the Linked Data and REST
principles [15,20,44]. Also, Web APIs allow us to move beyond the traditional
input/output-based matching from the Web services world, instead delivering
integration based on functionality.

This paper is structured as follows. In Section 2, we describe related work
on Web API composition. Section 3 introduces a use case and explains the con-
cepts of reasoning-based composition, followed by the principles of composition
execution. Section 4 proposes an architecture and implementation to perform
composition and execution in an automated way. This approach is evaluated in
Section 5, and Section 6 concludes the paper by placing Web API composition
in the broader Web context and provides an overview of future work.

2 Related Work

In the next subsections, we discuss related work in the fields of Semantic Web
Service description, Web API description, and Semantic Web reasoners.

2.1 Semantic Web Service Description and Composition

Semantic Web service description has been a topic of intense research for at least
a decade. There are many approaches to service description with different under-
lying service models. OWL-s [31] and wsMO [25] are the most known Semantic
Web Service description paradigms. They both allow to describe the high-level
semantics of services whose message format is wWsDL [12]. Though extension to
other message formats is possible, this is rarely seen in practice. Semantic An-
notations for WSDL (SAWSDL [24]) aim to provide a more light-weight approach
for bringing semantics to WsDL services. Composition of Semantic Web services
has been well documented, but all approaches require specific software [18,19,32]
and none of the solutions have found widespread adoption.

2.2 'Web API Description

In recent years, more and more Web API description formats have been evolv-
ing. The link between the Semantic Web and Web APIs has been explored many
times [37]. Linked Open Services (LOS, [33]) expose functionality on the Web
using Linked Data technologies, namely HTTP [14], RDF [21], and SPARQL [38].
Input and output parameters are described with SPARQL graph patterns em-
bedded inside RDF string literals to achieve quantification, which RDF does not
support natively. Linked Data Services (LIDs, [39]) define interface conventions
that are compatible with the Linked Data principles [7] and are supported by a
lightweight formal model. RESTdesc [42] is a hypermedia API description format
that describes Web APIs’ functionality in terms of resources and links.

The Resource Linking Language (ReLL, [1]) features media types, resource
types, and link types as first class citizens for descriptions. The RESTler crawler [1]
finds RESTful services based on these descriptions. The authors of ReLL also pro-
pose a method for ReLL API composition [2] using Petri nets to describe the
machine-client navigation. However, automatic, functionality-based composition
is not supported.

Several methods aim to enhance existing technologies to deliver annotations
of Web APIs. HTML for RESTful Services (hRESTS, [22]) is a microformat to anno-
tate HTML descriptions of Web APIs in a machine-processable way. SA-REST [16]
provides an extension of hRESTS that describes other facets such as data for-
mats and programming language bindings. MicrowsMO [23,29], an extension to
SAWSDL that enables the annotation of RESTful services, supports the discovery,
composition, and invocation of Web APIs. The Semantic Web sErvices Editing
Tool (SWEET, [27]) is an editor that supports the creation of mashups through
semantic annotations with MicrowsMO and other technologies. A shared API de-
scription model, providing common grounds for enhancing APIs with semantic
annotations to overcome the current heterogeneity, has been proposed in the
context of the soagall project [28].

2.3 Semantic Web Reasoning

Pellet [36] and the various Jena [11] reasoners are likely the most-known examples
of publicly available Semantic Web reasoners. Pellet is an OWL DL [8] reasoner,
while the Jena framework offers transitive, RDFS [10], OWL [8], and rule reasoners.
The rule reasoner is the most powerful, but uses a rule language that is specific
to Jena and therefore not interchangeable.

Another category of reasoners use the Notation3 language (N3, [4]), a small
superset of RDF that adds support for formulas and quantification, providing
a logical framework for inferencing [5]. The initial N3 reasoner is the forward-
chaining cwm [3], which is a general-purpose data processing tool for RDF, includ-
ing tasks such as querying and proof-checking. Another important N3 reasoner
is EYE [13], whose features include backward-chaining and high performance.
A useful capability of both N3 reasoners is their ability to generate and exchange
proofs, which can be used for software synthesis or API composition [30,45].

3 Concept

3.1 Example Use Case

To illustrate the theoretical framework, we first introduce an example that will
be carried through the paper. The problem statement is as follows:

A user wants to reserve a nearby restaurant. He will take a table outside
if the weather allows it.

To solve this problem, the following Web APIs (and several others) are available:

Location API gets the current location;
Temperature API reads a temperature sensor near a specific location;
Pressure API reads an air pressure sensor near a specific location;
Restaurant API makes a restaurant reservation.

If we were to solve this problem manually with the given APIs, a straightfor-
ward solution would be to combine them as in Fig. 1. This graph shows how,
starting from the Initial state (the user and his preferences), we can reach the
Goal state (inside or outside reservation in a nearby restaurant, depending on
the weather). First, the Location API needs to look up the current location of the
user. Then, the Temperature and Pressure APIs can be invoked with this loca-
tion. Based on their results, the details of the reservation can be completed. Fi-
nally, the Restaurant API uses these parameters to make the reservation, thereby
satisfying the Goal. The order in which the execution happens is governed by
the dependencies between the APIs, as depicted in Fig. 1.

This composition can either serve as a one-time solution for a specific situ-
ation, or be reused in different scenarios, in which case it becomes a Web API
itself. In any case, the goal is to create and execute this composition in a fully
automated way. This process will be explained in the next subsections.

3.2 Universally Representing Compositions

In order to automatically create compositions, we need a universal way to rep-
resent these compositions and the APIs of which they consist, so machines can
manipulate them easily. In essence, a composition can be seen as a logic entail-
ment, since the Initial state must entail the Goal state:

I(composition) = ... = ... = G(composition)

This perfectly aligns with the notion of dependencies, since the satisfaction of G
depends on the satisfaction of I. Analogously, each API can be seen as an impli-
cation. For instance, given a location of a place, the Temperature API allows to
obtain its temperature. In that sense, the Temperature API fulfills the implica-
tion between a location and its temperature:

T = location(place) = temperature(place)

That way, Web APIs can be represented as implications, and compositions as
a chain of implications that leads to entailment.

—— “is a dependency of”

Fig. 1. By combining the Location, Temperature, Pressure, and Restaurant Apris, and
respecting their dependencies, we can reach the Goal from the Initial state.

3.3 Deriving Compositions

Not only are implications a straightforward representation to manipulate, the
question whether we can solve a certain problem becomes a matter of entailment:
does the Initial state entail the Goal state? However, more important than
whether the problem can be solved, is how it can be solved, in other words,
which APIs are necessary to find the answer. In the logic world, this comes down
to providing the proof of the entailment: why does the Initial state entail the
Goal state? For the restaurant example, a proof might look like this':

I = preferences(user)

preferences(user) = location(place)

location(place) = temperature(place)

location(place) = pressure(place)

s B A
I

(

(

(

) (
demand (appointment) = reservatlon(appomtment) (5

reservation(appointment) = (

consequent(1) = antecedent(2 (

consequent(2) = antecedent(3 (

(

(1) (2)
(2) (3)

consequent(2) = antecedent(4)
(4) (5)
(5) (6)
(6) =

consequent(3), consequent(4) = antecedent(5 (10
consequent(5) = antecedent(6 (11
I= (1),(7),(8),(9),(10),(11), (6 (12

In this proof, we immediately recognize the structure of the composition as
depicted in Fig. 1. The characterisations of the Initial and Goal states can be
seen in (1) and (6) respectively, and the definitions of the APIs in (2) to (5). The
dependency relations are contained in (7) to (11). For instance, the fact that
the Location API is a dependency of the Temperature API in Fig. 1 corresponds
to the implication in (8). Finally, (12) contains the combined proof elements
that explain why I entails G, effectively generating the whole composition. This
indicates how the proof of entailment explains how APIs can be combined to
deliver the requested functionality. As a result, the proof is in fact an alternate
and automatically reconstructed representation of the composition graph.

! Note that certain background knowledge is assumed (ontologies and/or rules).

3.4 Executing compositions

Once we have obtained a proof, we can execute all Web API calls within it. That
way, it becomes a pragmatic proof, in which all of the inferences will actually
be carried out. The execution order is governed by the dependencies between
the APIs. Because the proof starts with the Initial state and ends with the Goal
state—and cycles are impossible within proofs—we are sure at each step of the
execution to find at least one API whose dependencies have been resolved. This
is obvious in the example proof, since every proof step only refers to steps with
a lower number.

As a result, for the first API call, all parameters are known in advance. In the
example, the sole option is to start with the Location API, since this is the only
API with no other dependencies than the Initial state. Its parameter, an address,
is already known and will be present in the proof. The situation is different for
the Temperature and Pressure APIs: they both depend on the Location API
and have the resulting geographical coordinates as a parameter. This value is
unknown at the time the proof is constructed. However, the proof does tell us
how this value can be obtained: it is the result of the Location API invocation.

There are two ways to deal with these unknown values: A first approach is to
do bookkeeping during the execution. Since the proof tells us the dependencies
between the APIs, we can assign the values received from previous API calls to
the associated variables. A second approach is to repeat the reasoning process
after each execution of an API call. The Initial state is thereby augmented with
the information returned by the API call, giving rise to a new composition with
fewer steps. The benefit is that this approach also works if the API provides
a result that is different than expected.

Now that we understand how to manually compose and execute Web APIs,
we will have a look at the automation of the process.

4 Architecture and Implementation

4.1 Overview

In this section, we describe how the concepts put forward in Section 3 have been
automated and realized in a software platform. Fig. 2 shows an overview of the
platform’s architecture. It consists of three main components:

— the reasoner, which generates the composition;
— the executor, which governs the execution of compositions;
— the client, offering the interface to coordinate the above two components.

The platform expects the following inputs:

— various APIs and corresponding descriptions;
— a request, consisting of the Initial and Goal states.

The APIs and descriptions are likely to be part of a reusable collection, for
instance, an API repository. In contrast, the Initial and Goal states will probably
differ between invocations.

Reasoner <—[descriptions }}}
Executor <—{ APIS JJ}

Fig. 2. The principal platform architecture, showing the client that interacts with the
reasoner and executor.

Client

P

Upon receiving a request, the client instructs the reasoner to verify whether
the Initial state entails the Goal state, reckoning with the provided API descrip-
tions. At the same time, if this entailment holds, the client will ask for the proof.
This proof will contain all details needed by the executor to actually invoke the
APIs and obtain the desired result. If we apply this to the restaurant example,
the available APIs are Location, Temperature, Pressure, Restaurant, and pos-
sibly many others, all of them with their corresponding description. To start
the process, the user gives the address of his preferred restaurant to the client,
along with the instruction to reserve this restaurant on the next sunny day for
his nearby friends. In Subsections 4.3 and 4.4, we will zoom in on the implemen-
tation of the reasoner and the executor, but first, Subsection 4.2 will introduce
and justify the description technology used in this implementation.

4.2 Description Technology

The first decision to make is what technology will describe the Web APIs, since
the platform can only be as powerful as the expressivity of the description
method permits. Candidate technologies should possess these characteristics:

— support REST or hypermedia APIs [15] (as opposed to RPC-style services);

— explain the functionality of the API in a machine-processable way (as op-
posed to detailing only input and output parameters);

— allow composition of any number of APIs.

For the implementation, we selected RESTdesc [42,43], since it explicitly tar-
gets hypermedia APIs and focuses on functionality. Furthermore, RESTdesc de-
scriptions are expressed in Notation3 (N3, [4]), a Semantic Web logic language
put forward by Tim Berners-Lee, which allows generic Semantic Web reasoners
that take N3 as input to interpret RESTdesc descriptions directly. As a result,
RESTdesc-described APIS can easily be composed with the proof-based technique.

Listing 1 displays the RESTdesc description of the Restaurant API. RESTdesc
descriptions are N3 rules whose antecedent contains the preconditions and whose
consequent contains the request and postconditions . The hypermedia nature
of RESTdesc can be clearly seen: starting from a restaurant resource that has
a reservationList link to a reservations resource @, a client can posT @ reser-
vation details @ to attach a reservation to the restaurant resource @. RESTdesc
descriptions indeed focus on resources and the links between them, which makes
them an excellent fit to describe hypermedia APIs.

brg/restaurant#>.
g/2011/http#>.

@prefix resto: <http://ex:
efix http: <http://w

{

?restaurant resto:reservationList ?reservations. i’
?place resto:isOutside ?outside.
?day resto:hasDate ?date.

}
=>
{
_:request http:methodName "POST"; G’
http:requestURI ?reservations;

http:body (?date ?outside);
http:resp [http:body ?reservation].

?restaurant resto:hasReservation ?reservation. ‘,
?reservation resto:onDate ?date;
resto:place [resto:isOutside ?outside]

}.

Listing 1. This example REsTdesc description explains the part of the Restaurant API
that allows to make a reservation.

4.3 Reasoner

Since RESTdesc can be interpreted by generic N3 reasoners, we do not need to im-
plement a specific reasoner for RESTdesc composition. This offers a considerable
benefit in terms of portability and sustainability. Performance-wise, this choice is
also beneficial, because several implementations of N3 reasoners exist [5], giving
rise to an ongoing competition of reasoner developers who continue to improve
reasoner performance. Reusing the implementation efforts and experience of the
wider reasoning community is a faster and more durable decision than developing
and maintaining a specific composition algorithm from the ground up.

We have tested our implementation with the EYE [13] and cwm [3] reasoners,
both of which have the ability to generate a proof, such as the one we have crafted
manually in Subsection 3.3. This proof must be understood by the client, because
it represents the composition the executor will run.

Since the full proof of the example restaurant composition would be too
lengthy to discuss, we will use another example from the sensor domain.? In the
example, the background knowledge is that all temperature sensors are sensors,
and that MySensor is a temperature sensor. In N3, this is expressed as:
<MySensor> a s:TemperatureSensor.

{ ?something a s:TemperatureSensor. } => { ?something a s:Sensor. }.
The reasoner also needs a goal query. In this case, we will ask to find all sensors:
{ ?x a s:Sensor. } => { ?x a s:Sensor. }.

Note that this is not an inference, but a query similar to SPARQL CONSTRUCT.
The answer to this query is, after inference:

<MySensor> a s:Sensor.

To generate the proof, we invoke the reasoners with a command similar to:

eye sensors.n3 —--gquery query.n3
cwm sensors.n3 —-think --filter=query.n3 —--why

Qprefix s: sH#>.

@prefix var: e

@prefix r: <http://w 3.0rg/2000/10/swap/reason#>.
@prefix n3: <http:/ /06/rei#>.

[a r:Proof, r:Conjunction; Q

r:component
[a r:Inference;
r:gives {<MySensor> a s:Sensor.};
r:evidence (
[a r:Inference; e
r:gives {<MySensor> a s:Sensor};
r:evidence ([a r:Extraction;
r:gives {<MySensor> a s:TemperatureSensor.};
r:pbecause [a r:Parsing;
r:source <sensors.n3>]]);
:binding [r:variable [n3:uri "var#x0"];
r:boundTo [n3:uri "MySensor"]];
r:rule [a r:Extraction;
r:gives {@forAll var:x0.
{var:x0 a s:TemperatureSensor.} => {var:x0 a s:Sensor.}.};
r:because [a r:Parsing; r:source <sensors.n3>]1]);
r:binding [r:variable [n3:uri "var#x0"];
r:boundTo [n3:uri "MySensor"]];
r:rule [a r:Extraction;
r:gives {Q@forAll var:x0. {var:x0 a s:Sensor.}
=> {var:x0 a s:Sensor.}.};
r:because [a r:Parsing; r:source <query.n3>]]1];

H

r:gives {
<MySensor> a s:Sensor.

.

Listing 2. This example proof illustrates the important proof concepts.

Listing 2 shows the resulting proof. As we can see, a Proof @ consists of
a Conjunction of components that gives the answer to our query. In this exam-
ple, the only component is an Inference @ that applies the query rule to the
statement “<MySensor> a s:TemperatureSensor.”, which is done by binding
the 2x variable to <Mysensor>. Then of course, the question is where this state-
ment came from. The evidence relation explains it as another Inference @,
for Whidlthe“{ ?s a s:TemperatureSensor. } => { ?s a s:Sensor. V’ruka
was applied to the statement “<MySensor> a s:TemperatureSensor.”, binding
the 2s variable to <MySensor>, and thereby leading to the desired result. The
proof then indicates that all further evidence are Extractions as from Parsing.

This explanation reveals the dependency-oriented nature of proofs: the valid-
ity of the proof depends on the validity of an inference, which in turn depends on
another inference, which ultimately depends on parsing an original source. This
perfectly aligns with the dependencies of compositions. Since every Web API in
the composition will be described by RESTdesc, which captures functionality in
inference rules, the inferences in the proof will correspond to API invocations.

2 The example is available at http://notes.restdesc.org/2012/sensors/.

http://notes.restdesc.org/2012/sensors/

Furthermore, the variable bindings detail the parameters that need to be used
for each invocation. Eventually, the parsed source will correspond to the Initial
state, and the result of the proof will be the Goal state. To create compositions,
it is therefore sufficient to start a reasoner with a command similar to:

eye initial.ttl descriptions.n3 —--query goal.n3

cwm initial.ttl descriptions.n3 —--think —--filter=goal.n3 —--why
Note that Web API calls do not have to be the only inferences in the proof:
traditional implications (such as ontological constructs) can be carried out, too.
This opens up the possibility to combine results from different API calls, and
to compose APIs that have been expressed in different ontologies.

4.4 Executor

In order to execute a composition, the executor does not only need to know
what APIS to execute, but also all details of what each HTTP request to these
APIs should like. Fortunately, by using RESTdesc descriptions as part of the
proof process, the variables in the descriptions will be instantiated with concrete
values. For example, as part of the proof, the description from Listing 1 will be
instantiated as in Listing 3.

As explained in Subsection 3.4, not all parameter values are known in ad-
vance. In Listing 3, we can see that the concrete URI of the restaurant and the
reservation list have been instantiated: the executor thus already knows that it
will have to perform a PoST request to the URI http://resto.example.org/
reservations/. It also know the date, which is part of the Initial state. How-
ever, it does not know yet the concrete value of ?outside, so it represents it as
a blank node instead. Because this blank node will be linked to blank nodes in the
instantiation of the Temperature and Pressure APIS, the executor understands
that it has to use the output of these APIs as the input of the Restaurant API.

Since at each step at least one API request will be fully instantiated, the
executor will always be able to proceed. Partially instantiated requests can be
completed with the result of executed API requests, either by the executor or by
performing subsequent reasoner runs with the new data.

<http://resto.example.org/> resto:reservationList
<http://resto.example.org/reservations/>.
_:placel resto:isOutside _:outsidel.

_:dayl resto:hasDate "2012/11/11".

_:requestl http:methodName "POST";
http:requestURI <http://resto.example.org/reservations/>;
http:body ("2012/11/11" _:outsidel);
http:resp [http:body _:reservationl].

<http://resto.example.org/> resto:hasReservation _:reservationl.
_:reservationl resto:onDate _:datel;
resto:place [resto:isOutside _:outsidel].

Listing 3. The instantiation of the Restaurant API description by the reasoner.

http://resto.example.org/reservations/
http://resto.example.org/reservations/

Another important aspect of the executor is that it is not limited to a certain
content representation format. While the RESTdesc descriptions are expressed in
N3 or in RDF (when instantiated), the Web APIs do not have to produce or
consume RDF. The executor acts as a hypermedia client that negotiates content
types at runtime. This is why RESTdesc purposely does not describe the format
of the exchanged messages. Such flexibility enables the APIs to communicate in
any format the executor supports. For instance, the Temperature sensor could
interact using JSON, while the Location sensor could provide answers in GML [35].

5 Evaluation

The crucial statement in this paper is that generic reasoners are able to create
Web API compositions in an automated way. Our evaluation verifies whether
this concept works on a Web scale, i.e., with a large number of APIs and asso-
ciated descriptions, assuming that any given task will require a combination of
a relatively small subset of all available APIs. To this extent, we have developed
a benchmark framework?® that consists of two main components:

— a description generator, which is able to generate an arbitrary-length
chain of RESTdesc descriptions that can form a composition;

— an automated benchmarker, which tests a reasoner for compositions of
varying lengths and complexity.

These variations in complexity are obtained by modifying the number of depen-
dencies between different descriptions. In the simplest case, every API exactly
depends on one previous API in the chain. More complex cases involve multiple
dependencies. We have tested three scenarios for n going from 2 to 1024:

1. a chain of n APIs with 1 dependency between each of them;
2. a chain of n APIs with 2 dependencies between each of them;
3. a chain of n APIs with 3 dependencies between each of them.

Additionally, we looked at the composition of a 1-dependency chain of 32 APIs, in
presence of a growing number of “dummy” APIs that are meant to test how fast
the reasoner can discriminate between relevant and non-relevant descriptions.

It is important to understand that most real-world scenarios will be a mixture
of the above situations: compositions generally consist of API calls with a varying
number of dependencies, created in presence of a non-negligible number of de-
scriptions that are irrelevant to the composition under construction. Therefore,
by measuring these aspects independently, we can predict how well a reasoner
will perform in those situations.

The measurements have been split in parsing, reasoning, and total times.
Parsing represents the time during which the reasoner internalizes the input
into an in-memory representation. This was measured by presenting the inputs

3 The resTdesc composition benchmark suite is freely available for download at
http://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark.

http://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark

#descriptions (n) 2 4 8 16 32 64 128 256 512 1024
n ApPis (1 dep.)

parsing 53 53 54 55 58 64 78 104 161 266
reasoning 2 4 5 7 10 20 43 7 157 391
total 55 57 58 62 68 84 121 181 318 657
n APIs (2 deps.)
parsing 53 53 59 56 60 67 85 117 184 331
reasoning 3 6 69 41 45 56 84 174 461 1,466
total 56 59 128 97 104 123 169 292 645 1,797
n APIs (3 deps.)
parsing 53 53 68 56 61 70 90 129 208 371

reasoning 3 12 45 49 61 99 200 544 1,639 6,493
total 57 66 114 105 122 169 290 673 1,847 6,864
32 APIs, n dummies

parsing 59 60 62 64 65 72 88 134 170 278
reasoning 10 10 10 10 11 12 12 12 12 14
total 69 70 72 74 76 84 100 146 182 292

Table 1. The EYE reasoner manages to create even lengthy compositions in a timely
manner (average times of 50 trials, expressed in milliseconds).

to the reasoner, without asking for any operation to be performed on them.
Since the parsing step can often be cached and reused in subsequent iterations,
it is worthwhile evaluating the actual reasoning time separately. Parsing and
reasoning together make up for the total time.

Table 1 shows the benchmark results of the EYE reasoner, as generated on
a consumer computer (2.66 ¢hz Intel Core i7, 4GB RAM). The results in the first
column teach us that a start-up overhead of =~ 50ms is involved for starting the
reasoner. This includes process starting costs and is highly machine-dependent.
When looking at the parsing times for all 4 cases, we see that they increase
linearly with the number and size of the descriptions, as expected from any
parser. In each of the benchmarks for n APIs with 1 to 3 dependencies, we see
that the composition time increases linearly with the number of descriptions. As
a consequence, the total time also increases linearly.

Finally, if we look at the composition of 32 APIs in presence of dummy APIs,
we can see that the influence of the dummies on the reasoning time is mini-
mal. Compared to the case where 32 APIs with one dependency were composed
without dummies, we see that most overhead is introduces by the parsing of the
extra descriptions, which can be cached. The reasoning time remains fairly close
to the original time, even in presence of a large number of dummies.

6 Conclusion and Future Work

In this paper, we presented a novel approach to compose Web APIs, integrat-
ing sensors APIs with others. We showed how the description format RESTdesc
enables functionality-based compositions, which are automatically created us-
ing the proof-generating capabilities of a generic Semantic Web reasoner. We
described the architecture and implementation of a platform that is able to
compose and execute these Web API compositions. It features a client that ac-
cepts API descriptions, an Initial state and a Goal, which a reasoner then uses
to create a composition that is carried out by an executor.

Based on the results of our evaluation, we can say that proof-based composi-
tion of Web APIs by generic reasoners is a feasible approach, even on a Web scale
where thousands of sensors could be involved. Reasoning time evolves linearly
with the number and size of the descriptions, with response times far below
one second for typical composition sizes, even in presence of a large amount of
descriptions. Moreover, the reasoner-based approach is much more sustainable
than composition methods that are tied to a specific description method.

If we situate RESTdesc composition in the Semantic Web Stack [9] in Fig. 3,
we see it is based on the fundamental elements. As a light-weight Web API
description method, RESTdesc strives to express the functionality of APIs with
the goal of integration and composability, maximizing technology reuse. In that
way, we hope to put one of the steps required to bring Web APIs towards the high
level of integration and composability of today’s Linking Open Data cloud [6].

In the future, we want to improve composition further by taking optimization
strategies into account. If several compositions can provide similar solutions, we
need a mechanism to select the optimum, given a specified set of constraints.
Our work on defining quality parameters of APIs and compositions [41] shows
part of our progress in this field. An important challenge is dealing with the
heterogeneity of Web APIs and the many different representations they offer.
While RESTdesc is not tied to a specific representation format, the executor must
be able to deal with a variety of formats across the Web. We strongly believe in
content type negotiation, since the Web has been and always will be a diverse
environment. Finally, we aim to improve the client so that it becomes usable by
a wide audience. We consider browser-based implementations for computers and
mobile devices, to bring the power of Web API composition to everyone.

User Interface and Applications

Trust

SPARQL

Fig. 3. Proof-based Web API composition, based on RESTdesc functional descriptions,
maximizes technology reuse in the Semantic Web Stack.

Crypto

Acknowledgments The authors would like to thank Maria Maleshkova for
proofreading this paper thoroughly and providing us with invaluable suggestions.

The described research activities were funded by Ghent University, the In-

terdisciplinary Institute for Broadband Technology (1BBT), the Institute for the
Promotion of Innovation by Science and Technology in Flanders (TwT), the
Fund for Scientific Research Flanders (Fwo Flanders), and the European Union.
This work was partially supported by the European Commission under Grant
No. 248296 FP7 (I-SEARCH project). Joaquim Gabarro is partially supported by
TIN-2007-66523 (FORMALISM), and SGR 2009-2015 (ALCOM).

References

1.

10.

11.

12.

13.

14.

Alarcon, R., Wilde, E.: REsTler: crawling REsTful services. In: Proceedings of the
19" international conference on World Wide Web. pp. 1051-1052. AcM (2010),
http://doi.acm.org/10.1145/1772690.1772799

. Alarcon, R., Wilde, E., Bellido, J.: Hypermedia-driven RESTful service composition.

In: Service-Oriented Computing, Lecture Notes in Computer Science, vol. 6568, pp.
111-120. Springer (2011), http://dx.doi.org/10.1007/978-3-642-19394-1_12
Berners-Lee, T.: cwm. Semantic Web Application Platform (2000-2009), available
at http://www.w3.0rg/2000/10/swap/doc/cwm.html

Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. w3c Team
Submission (Mar 2011), http://www.w3.org/ TeamSubmission/n3/

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming
8(3), 249-269 (2008), http://arxiv.org/abs/0711.1533

Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LoD cloud (2011), http://www4.
wiwiss.fu-berlin.de/lodcloud/state

Bizer, C., Heath, T., Berners-Lee, T.: Linked Data — The Story So Far. Inter-
national Journal On Semantic Web and Information Systems 5(3), 1-22 (2009),
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler,
U., Smith, M.: owL 2 Web Ontology Language. w3c Recommendation (Oct 2009),
http://www.w3.org/TR/owl2-syntax/

Bratt, S.: Semantic Web, and other technologies to watch. INCOSE Inter-
national Workshop (Jan 2007), available at http://www.w3.org/2007/Talks/
0130-sb-W3CTechSemWeb/#(24)

Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema.
w3c Recommendation (Feb 2004), http://www.w3.org/TR/rdf-schema/

Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the Semantic Web recommendations. In: Proceedings of the
13" international World Wide Web conference. pp. 74-83. ACM (2004), www.hpl.
hp.com/techreports/2003/HPL-2003-146.pdf

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WsDL). w3c Note (Mar 2001), http://www.w3.org/TR/wsdl
De Roo, J.: Euler proof mechanism (1999-2012), available at http://eulersharp.
sourceforge.net/

Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol — HTTP/1.1 (Jun 1999), http://www.ietf.org/
rfc/rfc2616.txt

http://doi.acm.org/10.1145/1772690.1772799
http://dx.doi.org/10.1007/978-3-642-19394-1_12
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/TeamSubmission/n3/
http://arxiv.org/abs/0711.1533
http://www4.wiwiss.fu-berlin.de/lodcloud/state
http://www4.wiwiss.fu-berlin.de/lodcloud/state
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
http://www.w3.org/TR/rdf-schema/
www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf
www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf
http://www.w3.org/TR/wsdl
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.
Transactions on Internet Technology 2(2), 115-150 (May 2002), http://dl.acm.
org/citation.cfm?id=514185

Gomadam, K., Ranabahu, A., Sheth, A.: SA-REST: Semantic Annotation of
Web Resources. w3c Member Submission, http://www.w3.org/Submission/
SA-REST/

Guinard, D., Trifa, V., Wilde, E.: A resource-oriented architecture for the Web of
Things. In: Internet of Things (Dec 2010), http://ieeexplore.icee.org/xpl/freecabs_
all.jsp?arnumber=5678452

Hashemian, S., Mavaddat, F.: A graph-based approach to Web services compo-
sition. In: Proceedings of the 2005 Symposium on Applications and the Inter-
net. pp. 183-189 (2005), http://www.cin.ufpe.br/~redis/intranet/bibliography/
middleware/hashemian-composition05.pdf

Hristoskova, A.; Volckaert, B., De Turck, F.: Dynamic composition of semantically
annotated Web services through Qos-aware HTN planning algorithms. In: Fourth
International Conference on Internet and Web Applications and Services. pp. 377—
382. IEEE (2009), http://dl.acm.org/citation.cfm?id=1586263

Kjernsmo, K.: The necessity of hypermedia RDF and an approach to achieve it.
In: Proceedings of the Linked ApP1s workshop at the 9" Extended Semantic Web
Conference (May 2012), http://lapis2012.linkedservices.org/papers/1.pdf

Klyne, G., Carrol, J.J.: Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. w3c Recommendation (Feb 2004), http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML microformat for describ-
ing RESTful Web services. In: Proceedings of the International Conference on Web
Intelligence and Intelligent Agent Technology. pp. 619-625. IEEE Computer Society
(2008), http://dx.doi.org/10.1109/WIIAT.2008.379

Kopecky, J., Vitvar, T.: MicrowsMo. wsMo Working Draft (Feb 2008), http://
www.wsmo.org/ TR/d38/v0.1/

Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Semantic Annotations for wsDL
and XML Schema. IEEE Internet Computing 11, 60-67 (2007), http://cms-wg.sti2.
org/doc/IEEEIC2007-KopeckyVBF.pdf

Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WsMmo).
w3C Member Submission (Jun 2005), http://www.w3.org/Submission/WSMO/
Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating Web APIs on the
World Wide Web. In: Proceedings of the 8" European Conference on Web
Services. pp. 107-114. 1EEE (2010), http://sweet-dev.open.ac.uk/war/Papers/
mmaWebAPISurvey.pdf

Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantic annotation of Web APIs
with SWEET (May 2010), http://oro.open.ac.uk/23095/

Maleshkova, M., Pedrinaci, C., Li, N., Kopecky, J., Domingue, J.: Lightweight
semantics for automating the invocation of Web APpis. In: Proceedings of the 2011
IEEE International Conference on Service-Oriented Computing and Applications
(Dec 2011), http://sweet.kmi.open.ac.uk/pub/SOCA.pdf

Maleshkova, M., Kopecky, J., Pedrinaci, C.: Adapting sawsDL for semantic an-
notations of REsTful services. In: Proceedings of the On the Move to Meaningful
Internet Systems Workshops, Lecture Notes in Computer Science, vol. 5872, pp.
917-926. Springer (2009), http://dx.doi.org/10.1007/978-3-642-05290-3_110
Manna, Z., Waldinger, R.: A deductive approach to program synthesis. Trans-
actions on Programming Languages and Systems (ToOPLAs) 2(1), 90-121 (1980),
http://dl.acm.org/citation.cfm?id=357084.357090

http://dl.acm.org/citation.cfm?id=514185
http://dl.acm.org/citation.cfm?id=514185
http://www.w3.org/Submission/SA-REST/
http://www.w3.org/Submission/SA-REST/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5678452
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5678452
http://www.cin.ufpe.br/~redis/intranet/bibliography/middleware/hashemian-composition05.pdf
http://www.cin.ufpe.br/~redis/intranet/bibliography/middleware/hashemian-composition05.pdf
http://dl.acm.org/citation.cfm?id=1586263
http://lapis2012.linkedservices.org/papers/1.pdf
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dx.doi.org/10.1109/WIIAT.2008.379
http://www.wsmo.org/TR/d38/v0.1/
http://www.wsmo.org/TR/d38/v0.1/
http://cms-wg.sti2.org/doc/IEEEIC2007-KopeckyVBF.pdf
http://cms-wg.sti2.org/doc/IEEEIC2007-KopeckyVBF.pdf
http://www.w3.org/Submission/WSMO/
http://sweet-dev.open.ac.uk/war/Papers/mmaWebAPISurvey.pdf
http://sweet-dev.open.ac.uk/war/Papers/mmaWebAPISurvey.pdf
http://oro.open.ac.uk/23095/
http://sweet.kmi.open.ac.uk/pub/SOCA.pdf
http://dx.doi.org/10.1007/978-3-642-05290-3_110
http://dl.acm.org/citation.cfm?id=357084.357090

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Martin, D., Burstein, M., Hobbs, J., Lassila, O.: owL-s: Semantic Markup for Web
Services. w3c Member Submission (Nov 2004), http://www.w3.org/Submission/
OWL-S/

Milanovic, N., Malek, M.: Current solutions for Web service composition. Internet
Computing, IEEE 8(6), 51-59 (2004), http://ieeexplore.ieee.org/iel5/4236/29773/
01355922.pdf

Norton, B., Krummenacher, R.: Consuming dynamic Linked Data. In: Proceedings
of the 1°* International Workshop on Consuming Linked Data (Nov 2010), http:
//ceur-ws.org/Vol-665/NortonEtAl_ COLD2010.pdf

Page, K., Frazer, A., Nagel, B., Roure, D.D., Martinez, K.: Semantic access to sen-
sor observations through Web apis. In: 5" IEEE International Conference on Se-
mantic Computing. IEEE (September 2011), http://eprints.soton.ac.uk/272695/
Page, K., De Roure, D., Martinez, K., Sadler, J., Kit, O.: Linked sensor data:
REsTfully serving RDF and ¢ML. In: Semantic Sensor Networks (Oct 2009), http:
//eprints.soton.ac.uk/271743/

Parsia, B., Sirin, E.: Pellet: An owL DL reasoner. In: Proceedings of the Third In-
ternational Semantic Web Conference (2004), http://iswc2004.semanticweb.org/
posters/PID-ZWSCSLQK-1090286232.pdf

Pedrinaci, C., Domingue, J., Krummenacher, R.: Services and the Web of Data: An
unexploited symbiosis. In: Proceedings of the AAA1 Spring Symposium on Linked
Data Meets Artificial Intelligence (2010), http://people.kmi.open.ac.uk/carlos/
wp-content/uploads/downloads/2010/09/linkedServices- AAAI pdf
Prud’hommeaux, E., Seaborne, A.: sSPARQL Query Language for RDF. w3C Recom-
mendation (Jan 2008), http://www.w3.org/ TR/rdf-sparql-query/

Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data
Services. In: The Semantic Web: Research and Applications, Lecture Notes in
Computer Science, vol. 6643, pp. 170-184. Springer (2011), http://people.aifb.kit.
edu/aha/2012/sms/lids-eswc2011.pdf

Stirbu, V.: Towards a rRESTful plug and play experience in the Web of Things. In:
IEEE international Conference on Semantic Computing. pp. 512-517. IEEE (2008),
http://ieeexplore.ieee.org/xpl/freeabs_ all.jsp?arnumber=4597240

Verborgh, R., Steiner, T., Gabarr6 Vallés, J., Mannens, E., Van de Walle, R.:
A social description revolution—describing Web APIs’ social parameters with
REsTdesc. In: Proceedings of the AAA1 2012 Spring Symposia (Mar 2012), http:
//www.aaai.org/ocs/index.php/SSS/SSS12/paper/download/4283/4665
Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Gabarr6 Vallés, J., Van de
Walle, R.: Functional descriptions as the bridge between hypermedia ApPIs and the
Semantic Web. In: Proceedings of the Third International Workshop on RESTful
Design. AcMm (Apr 2012), http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R.,
Gabarr6 Vallés, J.: Capturing the functionality of Web services with functional de-
scriptions. Multimedia Tools and Applications (2012), http://www.springerlink.
com/index/d041t268487gx850.pdf

Verborgh, R., Steiner, T., Van de Walle, R., Gabarré Vallés, J.: The missing links—
How the description format rRESTdesc applies the Linked Data vision to connect hy-
permedia APIs. In: Proc. of the Linked APIs workshop at the 9" Extended Semantic
Web Conference (May 2012), http://lapis2012.linkedservices.org/papers/3.pdf
Waldinger, R.: Web agents cooperating deductively. In: Formal Approaches to
Agent-Based Systems, Lecture Notes in Computer Science, vol. 1871, pp. 250-262.
Springer (2001), http://dx.doi.org/10.1007/3-540-45484-5_20

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://ieeexplore.ieee.org/iel5/4236/29773/01355922.pdf
http://ieeexplore.ieee.org/iel5/4236/29773/01355922.pdf
http://ceur-ws.org/Vol-665/NortonEtAl_COLD2010.pdf
http://ceur-ws.org/Vol-665/NortonEtAl_COLD2010.pdf
http://eprints.soton.ac.uk/272695/
http://eprints.soton.ac.uk/271743/
http://eprints.soton.ac.uk/271743/
http://iswc2004.semanticweb.org/posters/PID-ZWSCSLQK-1090286232.pdf
http://iswc2004.semanticweb.org/posters/PID-ZWSCSLQK-1090286232.pdf
http://people.kmi.open.ac.uk/carlos/wp-content/uploads/downloads/2010/09/linkedServices-AAAI.pdf
http://people.kmi.open.ac.uk/carlos/wp-content/uploads/downloads/2010/09/linkedServices-AAAI.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://people.aifb.kit.edu/aha/2012/sms/lids-eswc2011.pdf
http://people.aifb.kit.edu/aha/2012/sms/lids-eswc2011.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4597240
http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/download/4283/4665
http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/download/4283/4665
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://www.springerlink.com/index/d041t268487gx850.pdf
http://www.springerlink.com/index/d041t268487gx850.pdf
http://lapis2012.linkedservices.org/papers/3.pdf
http://dx.doi.org/10.1007/3-540-45484-5_20

	Functional Composition ofSensor Web apis

