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Abstract. In this paper we propose nonmonotonic extensions of low complexity
Description LogicsEL⊥ andDL-Litecore for reasoning about typicality and de-
feasible properties. The resulting logics are calledEL⊥

Tmin andDL-LitecTmin.
We summarize complexity results for such extensions recently studied. Entail-
ment inDL-LitecTmin is in Π

p

2 , whereas entailment inEL⊥
Tmin is EXPTIME-

hard. However, considering the known fragment of Left LocalEL⊥
Tmin, we

have that the complexity of entailment drops toΠ
p
2 . Furthermore, we present

tableau calculi forEL⊥
Tmin (focusing on Left Local knowledge bases) and

DL-LitecTmin. The calculi perform a two-phase computation in order to check
whether a query is minimally entailed from the initial knowledge base. The cal-
culi are sound, complete and terminating. Furthermore, they represent decision
procedures for Left LocalEL⊥

Tmin knowledge bases andDL-LitecTmin knowl-
edge bases, whose complexities match the above mentioned results.

1 Introduction
The family of description logics (DLs) is one of the most important formalisms of
knowledge representation. They have a well-defined semantics based on first-order
logic and offer a good trade-off between expressivity and complexity. DLs have been
successfully implemented by a range of systems and they are at the base of languages
for the semantic web such as OWL. A DL knowledge base (KB) comprises two com-
ponents: the TBox, containing the definition of concepts (and possibly roles), and a
specification of inclusion relations among them, and the ABox containing instances of
concepts and roles. Since the very objective of the TBox is tobuild a taxonomy of con-
cepts, the need of representing prototypical properties and of reasoning about defeasible
inheritance of such properties naturally arises.

Nonmonotonic extensions of Description Logics (DLs) have been actively investi-
gated since the early 90s, [15, 4, 2, 3, 7, 12, 10, 9, 6]. A simple but powerful nonmono-
tonic extension of DLs is proposed in [12, 10, 9]: in this approach “typical” or “nor-
mal” properties can be directly specified by means of a “typicality” operatorT en-
riching the underlying DL; the typicality operatorT is essentially characterised by
the core properties of nonmonotonic reasoning axiomatizedby preferential logic[13].
In ALC + T [12], one can consistently express defeasible inclusions and exceptions
such as: typical students do not pay taxes, but working students do typically pay taxes,
but working students having children normally do not:T(Student) ⊑ ¬TaxPayer ;
T(Student ⊓ Worker ) ⊑ TaxPayer ; T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑
¬TaxPayer . Although the operatorT is nonmonotonic in itself, the logicALC+T, as



well as the logicEL+
⊥

T [10] extendingEL⊥, is monotonic. As a consequence, unless
a KB contains explicit assumptions about typicality of individuals (e.g. that john is a
typical student), there is no way of inferring defeasible properties of them (e.g. that john
does not pay taxes). In [9], a non monotonic extension ofALC+T based on a minimal
model semantics is proposed. The resulting logic, calledALC+Tmin, supports typical-
ity assumptions, so that if one knows that john is a student, one can nonmonotonically
assume that he is also atypical student and therefore that he does not pay taxes. As an
example, for a TBox specified by the inclusions above, inALC + Tmin the following
inference holds: TBox∪ {Student(john)} |=ALC+Tmin

¬TaxPayer (john).
Similarly to other nonmonotonic DLs, adding the typicalityoperator with its minimal-

model semantics to a standard DL, such asALC, leads to a very high complexity
(namely query entailment inALC + Tmin is in CO-NEXPNP [9]). This fact has moti-
vated the study of nonmonotonic extensions of low complexity DLs such asDL-Litecore

[5] andEL⊥ of theEL family [1] which are nonetheless well-suited for encoding large
knowledge bases (KBs).

In this paper, we hence consider the extensions of the low complexity logicsDL-Litecore

andEL⊥ with the typicality operator based on the minimal model semantics introduced
in [9]. We summarize complexity upper bounds for the resulting logicsEL⊥

Tmin and
DL-LitecTmin studied in [11]. ForEL⊥, it turns out that its extensionEL⊥

Tmin is un-
fortunately EXPTIME-hard. This result is analogous to the one forcircumscribedEL⊥

KBs [3]. However, the complexity decreases toΠ
p
2

for the fragment ofLeft LocalEL⊥

KBs, corresponding to the homonymous fragment in [3]. The same complexity upper
bound is obtained forDL-LitecTmin.

We also present tableau calculi forDL-LitecTmin as well as for the Left Local
fragment ofEL⊥

Tmin for deciding minimal entailment inΠp
2 . Our calculi perform a

two-phase computation: in the first phase, candidate models(complete open branches)
falsifying the given query are generated, in the second phase the minimality of candi-
date models is checked by means of an auxiliary tableau construction. The latter tries
to build a model which is “more preferred” than the candidateone: if it fails (being
closed) the candidate model is minimal, otherwise it is not.Both tableaux constructions
comprise some non-standard rules for existential quantification in order to constrain the
domain (and its size) of the model being constructed. The second phase makes use in
addition of special closure conditions to prevent the generation of non-preferred mod-
els. The calculi are very simple and do not require any blocking machinery in order to
achieve termination. It comes as a surprise that the modification of the existential rule
is sufficient to match theΠp

2 complexity.

2 The typicality operator T and the LogicEL
⊥
Tmin

Before describingEL⊥
Tmin, let us briefly recall the underlying monotonic logicEL+

⊥

T

[10], obtained by adding toEL⊥ the typicality operatorT. The intuitive idea is that

T(C) selects thetypical instances of a conceptC. In EL+
⊥

T we can therefore dis-
tinguish between the properties that hold for all instancesof conceptC (C ⊑ D), and
those that only hold for the normal or typical instances ofC (T(C) ⊑ D).

Formally, theEL+
⊥

T language is defined as follows.



Definition 1. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andR ∈ R, we define

C := A | ⊤ | ⊥ | C ⊓ C CR := C | CR ⊓CR | ∃R.C CL := CR | T(C)

A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions
(or subsumptions)CL ⊑ CR. ABox contains assertions of the formCL(a) andR(a, b),
wherea, b ∈ O.

The semantics ofEL+
⊥

T [10] is defined by enriching ordinary models ofEL⊥

by a preference relation< on the domain, whose intuitive meaning is to compare the
“typicality” of individuals:x < y, means thatx is more typical thany. Typical members
of a conceptC, that is members ofT(C), are the membersx of C that are minimal with
respect to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structure〈∆, <, I〉 where∆ is the
domain;< is an irreflexive and transitive relation over∆ that satisfies the following
Smoothness Condition: for all S ⊆ ∆, for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈
Min<(S) such thaty < x, whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z < u}.
Furthermore,< is multilinear: if u < z and v < z, then eitheru = v or u < v or
v < u. I is the extension function that maps each conceptC to CI ⊆ ∆, and each role
r to rI ⊆ ∆I × ∆I . For concepts ofEL⊥, CI is defined in the usual way. For theT
operator:(T(C))I = Min<(CI).

Given a modelM, I can be extended so that it assigns to each individuala of O a
distinct elementaI of the domain∆. We say thatM satisfies an inclusionC ⊑ D if
CI ⊆ DI , and thatM satisfiesC(a) if aI ∈ CI andaRb if (aI , bI) ∈ RI . Moreover,
M satisfies TBox if it satisfies all its inclusions, andM satisfies ABox if it satisfies all
its formulas.M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox.

The operatorT [12] is characterized by a set of postulates that are essentially a
reformulation of the KLM [13] axioms ofpreferential logicP. T has therefore all the
“core” properties of nonmonotonic reasoning as it is axiomatised byP. The semantics
of the typicality operator can be specified by modal logic. The interpretation ofT can
be split into two parts: for anyx of the domain∆, x ∈ (T(C))I just in case (i)x ∈ CI ,
and (ii) there is noy ∈ CI such thaty < x. Condition (ii) can be represented by means
of an additional modality�, whose semantics is given by the preference relation<

interpreted as an accessibility relation. Observe that by the Smoothness Condition,�

has the properties of Gödel-Löb modal logic of provability G. The interpretation of�
in M is as follows:(�C)I = {x ∈ ∆ | for everyy ∈ ∆, if y < x theny ∈ CI}. We
immediately get thatx ∈ (T(C))I if and only if x ∈ (C ⊓ �¬C)I . From now on, we
considerT(C) as an abbreviation forC ⊓ �¬C.

As mentioned in the Introduction, the main limit ofEL+
⊥

T is that it ismonotonic.
Even if the typicality operatorT itself is nonmonotonic (i.e.T(C) ⊑ E does not imply

T(C ⊓ D) ⊑ E), what is inferred from anEL+
⊥

T KB can still be inferred from any
KB’ with KB ⊆ KB’. In order to perform nonmonotonic inferences, as done in[9], we

strengthen the semantics ofEL+
⊥

T by restricting entailment to a class of minimal (or
preferred) models. We call the new logicEL⊥

Tmin. Intuitively, the idea is to restrict
our consideration to models thatminimize the non typical instances of a concept.



Given a KB, we consider a finite setLT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that thesetLT contains at least
all conceptsC such thatT(C) occurs in the KB or in the queryF , where aqueryF is
either an assertionC(a) or an inclusion relationC ⊑ D. As we have just said,x ∈ CI

is typical if x ∈ (�¬C)I . Minimizing the non typical instances ofC therefore means
to minimize the objects not satisfying�¬C for C ∈ LT. Hence, for a given model
M = 〈∆, <, I〉, we define:

M�
−

LT
= {(x,¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆, C ∈ LT}.

Definition 3 (Preferred and minimal models).Given a modelM = 〈∆ <, I〉 of a
knowledge base KB, and a modelM′ = 〈∆′, <′, I ′〉 of KB, we say thatM is preferred
to M′ with respect toLT, and we writeM <LT

M′, if (i) ∆ = ∆′, (ii) M�
−

LT
⊂

M′�
−

LT
, (iii) aI = aI′

for all a ∈ O. M is aminimal modelfor KB (with respect toLT)
if it is a model of KB and there is no other modelM′ of KB such thatM′ <LT

M.

Definition 4 (Minimal Entailment in EL⊥
Tmin). A queryF is minimally entailed

in EL⊥
Tmin by KB with respect toLT if F is satisfied in all models of KB that are

minimal with respect toLT. We write KB|=EL⊥Tmin
F .

Example 1. The KB of the Introduction can be reformulated as follows in EL+
⊥

T:
TaxPayer ⊓NotTaxPayer ⊑ ⊥; Parent ⊑ ∃HasChild .⊤; ∃HasChild .⊤ ⊑ Parent ;
T(Student) ⊑ NotTaxPayer ; T(Student ⊓ Worker) ⊑ TaxPayer ; T(Student ⊓
Worker ⊓Parent) ⊑ NotTaxPayer . LetLT = {Student,Student ⊓Worker ,Student

⊓Worker ⊓Parent}. Then TBox∪ {Student(john)} |=EL⊥
Tmin

NotTaxPayer(john),
sincejohnI ∈ (Student ⊓ �¬Student)I for all minimal modelsM = 〈∆ <, I〉
of the KB. In contrast, by the nonmonotonic character of minimal entailment, TBox
∪ {Student(john),Worker (john)} |=EL⊥

Tmin
TaxPayer (john). Last, notice that

TBox∪ {∃HasChild .(Student ⊓ Worker)(jack)} |=EL⊥Tmin
∃HasChild .TaxPayer

(jack). The latter shows that minimal consequence applies toimplicit individuals as
well, without any ad-hoc mechanism.

Theorem 1 (Complexity for EL⊥
Tmin KBs (Theorem 3.1 in [11])).The problem of

deciding whether KB|=EL⊥Tmin
α is EXPTIME-hard.

In order to lower the complexity of minimal entailment inEL⊥
Tmin, we consider a

syntactic restriction on the KB called Left Local KBs. This restriction is similar to the
one introduced in [3] for circumscribedEL⊥ KBs.

Definition 5 (Left Local knowledge base).A Left Local KB only contains subsump-
tionsCLL

L ⊑ CR, whereC andCR are as in Definition 1 and:

CLL
L := C | CLL

L ⊓ CLL
L | ∃R.⊤ | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no concept of the form
∃R.C with C 6= ⊤ occurs on the left hand side of inclusions. In [11] an upper bound
for the complexity ofEL⊥

Tmin Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small model polynomial is that we
reuse the same world to verify the same existential concept throughout the model. This
allows us to conclude that:



Theorem 2 (Complexity for EL⊥
Tmin Left Local KBs (Theorem 3.12 in [11])).If

KB is Left Local, the problem of deciding whether KB|=EL⊥Tmin
α is in Π

p
2 .

3 The Logic DL-LitecTmin

In this section we present the extension of the logicDL-Litecore [5] with theT operator.
We call the resulting logicDL-LitecTmin. The language ofDL-LitecTmin is defined
as follows.

Definition 6. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andr ∈ R, we define

CL := A | ∃R.⊤ | T(A) R := r | r− CR := A | ¬A | ∃R.⊤ | ¬∃R.⊤

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the formCL ⊑ CR. ABox contains assertions of the formC(a) andr(a, b),
whereC is a conceptCL or CR, r ∈ R, anda, b ∈ O.

As forEL⊥
Tmin, a modelM for DL-LitecTmin is any structure〈∆, <, I〉, defined

as in Definition 2, whereI is extended to take care of inverse roles: givenr ∈ R,
(r−)I = {(a, b) | (b, a) ∈ rI}.

In [11] it has been shown that a small model construction similar to the one for
Left LocalEL⊥

Tmin KBs can be made also forDL-LitecTmin. As a difference, in this
case, we exploit the fact that, for each atomic roler, the same element of the domain
can be used to satisfy all occurrences of the existential∃r.⊤. Also, the same element of
the domain can be used to satisfy all occurrences of the existential∃r−.⊤.

Theorem 3 (Complexity for DL-LitecTmin KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whether KB|=DL-LitecTmin

α is in Π
p
2 .

4 The Tableau Calculus for Left LocalEL
⊥
Tmin

In this section we present a tableau calculusTABEL
⊥
T

min for deciding whether a queryF
is minimally entailed from a Left Local knowledge base in thelogic EL⊥

Tmin. It per-

forms a two-phase computation: in the first phase, a tableau calculus, calledTABEL
⊥
T

PH1 ,
simply verifies whether KB∪ {¬F} is satisfiable in anEL⊥

T model, building candi-

date models; in the second phase another tableau calculus, calledTABEL
⊥
T

PH2 , checks
whether the candidate models found in the first phase areminimalmodels of KB, i.e.

for each open branch of the first phase,TABEL
⊥
T

PH2 tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. The whole procedureTABEL
⊥
T

min

is formally defined at the end of this section (Definition 8).

As usual,TABEL
⊥
T

min tries to build an open branch representing a minimal model
satisfying KB∪ {¬F}. The negation of a query¬F is defined as follows: ifF ≡ C(a),
then¬F ≡ (¬C)(a); if F ≡ C ⊑ D, then¬F ≡ (C ⊓ ¬D)(x), wherex does not
occur in KB. Notice that we introduce the connective¬ in a very “localized” way. This
is very different from introducing the negation all over theknowledge base, and indeed
it does not imply that we jump out of the language ofEL⊥

Tmin.



TABEL
⊥
T

min makes use of labels, which are denoted withx, y, z, . . .. Labels represent
either a variable or an individual of the ABox, that is to say an element ofO∪V . These

labels occur inconstraints(or labelled formulas), that can have the formx
R

−→ y or
x : C, wherex, y are labels,R is a role andC is either a concept or the negation of a
concept ofEL⊥

Tmin or has the form�¬D or¬�¬D, whereD is a concept.

Let us now analyze the two components ofTABEL
⊥
T

min , starting withTABEL
⊥
T

PH1 .

4.1 First Phase: the tableaux calculusTAB
EL

⊥
T

P H1

A tableau ofTABEL
⊥
T

PH1 is a tree whose nodes are tuples〈S | U | W 〉. S is a set of
constraints, whereasU contains formulas of the formC ⊑ DL, representing subsump-
tion relationsC ⊑ D of the TBox.L is a list of labels, used in order to ensure the
termination of the tableau calculus.W is a set of labelsxC used in order to build a
“small” model, matching the construction of Theorem 3.11 in[11]. A branch is a se-
quence of nodes〈S1 | U1 | W1〉, 〈S2 | U2 | W2〉, . . . , 〈Sn | Un | Wn〉 . . ., where each
node〈Si | Ui | Wi〉 is obtained from its immediate predecessor〈Si−1 | Ui−1 | Wi−1〉

by applying a rule ofTABEL
⊥
T

PH1 , having〈Si−1 | Ui−1 | Wi−1〉 as the premise and
〈Si | Ui | Wi〉 as one of its conclusions. A branch is closed if one of its nodes is an
instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all its branches
are closed.

The calculusTABEL
⊥
T

PH1 is different in two respects from the calculusALC+Tmin

presented in [9]. First, the rule(∃+) is split in the following two rules:

〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

〈S, u
R

−→ y1, y1 : C | U | W 〉 〈S, u
R

−→ ym, ym : C | U | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC | U | W 〉 . . .〈S, u
R

−→ y1, y1 : C | U | W 〉 〈S, u
R

−→ ym, ym : C | U | W 〉

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

When the rule(∃+)1 is applied to a formulau : ∃R.C, it introduces a new label
xC only when the setW does not already containxC . Otherwise, sincexC has been

already introduced in that branch,u
R

−→ xC is added to the conclusion of the rule
rather than introducing a new label. As a consequence, in a given branch,(∃+)1 only
introduces a new labelxC for each conceptC occurring in the initial KB in some∃R.C,
and no blocking machinery is needed to ensure termination. As it will become clear in
the proof of Theorem 4, this is possible since we are considering Left Local KBs, which
have small models; in these models all existentials∃R.C occurring in KB are made true
by reusing a single witnessxC (Theorem 3.12 in [11]). Notice also that the rules(∃+)1
and(∃+)2 introduce a branching on the choice of the label used to realize the existential
restrictionu : ∃R.C: just the leftmost conclusion of(∃+)1 introduces a new label (as

mentioned, thexC such thatxC : C andu
R
−→ xC are added to the branch); in all the

other branches, each one of the other labelsyi occurring inS may be chosen.
Second, in order to build multilinear models of Definition 2,the calculus adopts

a strengthened version of the rule(�−) used inTABALC+T

min [9]. We write S as an



abbreviation forS, u : ¬�¬C1, . . . , u : ¬�¬Cn. Moreover, we defineSM
u→y = {y :

¬D, y : �¬D | u : �¬D ∈ S} and, fork = 1, 2, . . . , n, we defineS
�

−k

u→y = {y :

¬�¬Cj ⊔ Cj | u : ¬�¬Cj ∈ S ∧ j 6= k}. The strengthened rule(�−) is as follows:

〈S, x : Ck, x : !¬Ck, SM

u→x
, S

!
−k

u→x
| U | W 〉

. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!
−k

u→ym
| U | W 〉

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

for all k = 1, 2, . . . , n, wherey1, . . . , ym are all the labels occurring inS andx is new.
Rule (�−) contains:n branches, one for eachu : ¬�¬Ck in S; in each branch a

newtypical Ck individual x is introduced (i.e.x : Ck andx : �¬Ck are added), and
for all otheru : ¬�¬Cj , eitherx : Cj holds or the formulax : ¬�¬Cj is recorded;
- othern × m branches, wherem is the number of labels occurring inS, one for each
label yi and for eachu : ¬�¬Ck in S; in these branches, a givenyi is chosen as a
typical instance ofCk, that is to sayyi : Ck andyi : �¬Ck are added, and for all other
u : ¬�¬Cj , eitheryi : Cj holds or the formulayi : ¬�¬Cj is recorded. This rule
is sound with respect to multilinear models. The advantage of this rule over the(�−)
rule in the calculusTABALC+T

min is that all the negated box formulas labelled byu are
treated in one step, introducing only a new labelx in (some of) the conclusions. Notice
that in order to keepS readable, we have used⊔. This is the reason why our calculi
contain the rule for⊔, even if this constructor does not belong toEL⊥

Tmin.
In order to check the satisfiability of a KB, we build itscorresponding constraint

system〈S | U | ∅〉, and we check its satisfiability. GivenKB=(TBox,ABox), its corre-
sponding constraint system〈S | U | ∅〉 is defined as follows:S = {a : C | C(a) ∈

ABox} ∪ {a
R

−→ b | R(a, b) ∈ ABox}; U = {C ⊑ D∅ | C ⊑ D ∈ TBox}.

Definition 7 (Model satisfying a constraint system).LetM = 〈∆, I, <〉 be a model
as in Definition 2. We define a functionα which assigns to each variable ofV an element
of ∆, and assigns every individuala ∈ O to aI ∈ ∆. M satisfies a constraintF under

α, writtenM |=α F , as follows: (i)M |=α x : C iff α(x) ∈ CI ; (ii) M |=α x
R

−→ y

iff (α(x), α(y)) ∈ RI . A constraint system〈S | U | W 〉 is satisfiable if there is a model
M and a functionα such thatM satisfies every constraint inS underα and that, for
all C ⊑ DL ∈ U and for allx ∈ ∆, we have that ifx ∈ CI thenx ∈ DI .

Given a KB=(TBox,ABox), it is satisfiable if and only if its corresponding constraint
system〈S | U | ∅〉 is satisfiable. In order to verify the satisfiability of KB∪ {¬F},

we useTABEL
⊥
T

PH1 to check the satisfiability of the constraint system〈S | U | ∅〉 ob-
tained by adding the constraint corresponding to¬F to S′, where〈S′ | U | ∅〉 is
the corresponding constraint system of KB. To this purpose,the rules of the calculus

TABEL
⊥
T

PH1 are applied until either a contradiction is generated (Clash) or a model sat-
isfying 〈S | U | ∅〉 can be obtained from the resulting constraint system.

Given a node〈S | U | W 〉, for each subsumptionC ⊑ DL ∈ U and for each label
x that appears in the tableau, we add toS the constraintx : ¬C ⊔ D: we refer to this
mechanism asunfolding. As mentioned above, each formulaC ⊑ D is equipped with
a list L of labels in which it has been unfolded in the current branch.This is needed to



〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C !∈ S

〈S | U,C ⊑ DL | W 〉

if x occurs in S and x !∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉

〈S, x : C, x : !¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬!¬C | U | W 〉
(T+) (T−)

(⊓+) (⊓−)

(cut)

x occurs in S

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉

〈S, x : C ⊓ D | U | W 〉 〈S, x : ¬(C ⊓ D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)
¬⊤

〈S, x : !¬C | U | W 〉〈S, x : ¬∃R.C, x
R

−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R

−→ y | U | W 〉
(∃−)

(Clash)

〈S, x : ¬!¬C | U | W 〉

〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬⊤ | U | W 〉

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉

〈S, x : C ⊔ D | U | W 〉
(⊔+)

〈S, u
R

−→ y1, y1 : C | U | W 〉

. . .〈S, u
R

−→ y1, y1 : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : !¬Ck, SM

u→x
, S

!
−k

u→x
| U | W 〉

. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!
−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != u, . . . , ym != u

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

Fig. 1. The calculusTABEL
⊥
T

PH1 .

avoid multiple unfolding of the same subsumption by using the same label, generating
infinite branches.

Before introducing the rules ofTABEL
⊥
T

PH1 we need some more definitions. First,
we define an ordering relation≺ to keep track of the temporal ordering of insertion of
labels in the tableau, that is to say ify is introduced in the tableau, thenx ≺ y for all
labelsx that are already in the tableau. Furthermore, ifx is the label occurring in the
queryF , thenx ≺ y for all y occurring in the constraint system corresponding to the

initial KB. The rules ofTABEL
⊥
T

PH1 are presented in Figure 1. Rules(∃+

1
) and (�−)

are calleddynamicsince they can introduce a new variable in their conclusions. The
other rules are calledstatic. We do not need any extra rule for the positive occurrences
of the� operator, since these are taken into account by the computation of SM

x→y of
(�−). The (cut) rule ensures that, given any conceptC ∈ LT, an open branch built

by TABEL
⊥
T

PH1 contains eitherx : �¬C or x : ¬�¬C for each labelx: this is needed

in order to allowTABEL
⊥
T

PH2 to check the minimality of the model corresponding to the
open branch.

The rules ofTABEL
⊥
T

PH1 are applied with the followingstandard strategy: 1. apply
a rule to a labelx only if no rule is applicable to a labely such thaty ≺ x; 2. apply



dynamic rules only if no static rule is applicable. In [8] it has been shown that the
calculus is sound and complete with respect to the semanticsin Definition 7 and it
ensures termination:

Theorem 4 (Soundness and completeness ofTABEL
⊥
T

PH1 [8]). If KB 6|=EL⊥
Tmin

F ,
then the tableau for the constraint system corresponding toKB ∪ {¬F} contains an
open saturated branch, which is satisfiable (via an injective assignment from labels to
domain elements) in a minimal model of KB. Given a constraintsystem〈S | U | W 〉, if

it is unsatisfiable, then it has a closed tableau inTABEL
⊥
T

PH1 .

Theorem 5 (Termination ofTABEL
⊥
T

PH1 [8]). Any tableau generated byTABEL
⊥
T

PH1 for
〈S | U | ∅〉 is finite.

Let us conclude this section by estimating the complexity ofTABEL
⊥
T

PH1 . Let n be the
size of the initial KB, i.e. the length of the string representing KB, and let〈S | U |
∅〉 be its corresponding constraint system. We assume that the size of F andLT is
O(n). The calculus builds a tableau for〈S | U | ∅〉 whose branches’s size isO(n).
This immediately follows from the fact that dynamic rules(∃+)1 and(�−) generate
at mostO(n) labels in a branch. Indeed, the rule(∃+)1 introduces a new labelxC for
each conceptC occurring in KB, then at mostO(n) labels. Concerning(�−), consider
a branch generated by its application to a constraint system〈S, u : ¬�¬C1 . . . , u :
¬�¬Cn | U | W 〉. In the worst case, a new labelx1 is introduced. Suppose also
that the branch under consideration is the one containingx1 : C1 andx1 : �¬C1.
The(�−) rule can then be applied to formulasu : ¬�¬Ck, introducing also a further
new labelx2. However, by the presence ofx1 : �¬C1, the rule(�−) can no longer
consistently introducex2 : ¬�¬C1, sincex2 : �¬C1 ∈ SM

x1→x2
. Therefore,(�−) is

applied to¬�¬C1 . . .¬�¬Cn in u. This application generates (at most) one new world
x1 that labels (at most)n − 1 negated boxed formulas. A further application of(�−)
to ¬�¬C1 . . .¬�¬Cn−1 in x1 generates (at most) one new worldx2 that labels (at
most)n − 2 negated boxed formulas, and so on. Overall, at mostO(n) new labels are
introduced by(�−) in each branch. For each of these labels, static rules apply at most
O(n) times: (Unfold) is applied at mostO(n) times for eachC ⊑ D ∈ U , one for each
label introduced in the branch. The rule(cut) is also applied at mostO(n) times for each
label, sinceLT contains at mostO(n) formulas. As the number of different concepts in
KB is at mostO(n), in all steps involving the application of boolean rules, there are at
mostO(n) applications of these rules. Therefore, the length of the tableau branch built
by the strategy isO(n2). Finally, we observe that all the nodes of the tableau contain
a number of formulas which is polynomial inn, therefore to test whether a node is an
instance of a (Clash) axiom has at most complexity polynomial in n.

Theorem 6 (Complexity ofTABEL
⊥
T

PH1 ). Given a KB and a queryF , the problem of

checking whether KB∪ {¬F} in TABEL
⊥
T

PH1 is satisfiable is inNP.

4.2 The tableaux calculusTAB
EL

⊥
T

P H2

Let us now introduce the calculusTABEL
⊥
T

PH2 which, for each open branchB built by

TABEL
⊥
T

PH1 , verifies whether it represents a minimal model of the KB. Given an open



(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U, C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

〈S, x : C ⊓ D | U | K〉

〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉
(T+)

(T−)

(⊓+) (⊓−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | K〉

〈S, x : ¬(C ⊓ D) | U | K〉

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉

〈S, x : C, x : !¬C | U | K〉

〈S, u : ¬!¬C1, . . . , u : ¬!¬Cn | U | K, u : ¬!¬C1, . . . , u : ¬!¬Cn〉

(Clash)⊥〈S, x : ¬⊤ | U | K〉 (Clash)
¬⊤ 〈S, x : ⊥ | U | K〉

(!−)

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | K〉

x ∈ D(B)

〈S, u
R

−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉

〈S, u
R

−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!

−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != u, . . . , ym != u

Fig. 2. The calculusTABEL
⊥
T

PH2 . To save space, we omit the rule(⊔+).

branchB of a tableau built fromTABEL
⊥
T

PH1 , letD(B) be the set of labels occurring on
B. Moreover, letB�

−

be the set of formulasx : ¬�¬C occurring inB, that is to say
B�

−

= {x : ¬�¬C | x : ¬�¬C occurs inB}.

A tableau ofTABEL
⊥
T

PH2 is a tree whose nodes are tuples of the form〈S | U | K〉,
whereS andU are defined as in a constraint system, whereasK contains formulas

of the formx : ¬�¬C, with C ∈ LT. The basic idea ofTABEL
⊥
T

PH2 is as follows.

Given an open branchB built by TABEL
⊥
T

PH1 and corresponding to a modelMB of

KB ∪ {¬F}, TABEL
⊥
T

PH2 checks whetherMB is a minimal model of KB by trying to
build a model of KB which is preferred toMB. To this purpose, it keeps track (inK)
of the negated box used inB (B�

−

) in order to check whether it is possible to build

a model of KB containing less negated box formulas. The tableau built byTABEL
⊥
T

PH2

closes if it is not possible to build a model smaller thanMB, it remains open otherwise.
Since by Definition 3 two models can be compared only if they have the same domain,

TABEL
⊥
T

PH2 tries to build an open branch containing all the labels appearing onB, i.e.
those inD(B). To this aim, the dynamic rules use labels inD(B) instead of introducing

new ones in their conclusions. The rules ofTABEL
⊥
T

PH2 are shown in Fig. 2.

More in detail, the rule(∃+) is applied to a constraint system containing a formula

x : ∃R.C; it introducesx
R

−→ y andy : C wherey ∈ D(B), instead ofy being a new
label. The choice of the labely introduces a branching in the tableau construction. The
rule (Unfold) is applied toall the labels ofD(B) (and not only to those appearing in
the branch). The rule(�−) is applied to a node〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U |
K〉, when{u : ¬�¬C1, . . . , u : ¬�¬Cn} ⊆ K, i.e. when the negated box formulas



u : ¬�¬Ci also belong to the open branchB. Even in this case, the rule introduces
a branch on the choice of the individualyi ∈ D(B) to be used in the conclusion. In
case a tableau node has the form〈S, x : ¬�¬C | U | K〉, andx : ¬�¬C 6∈ K, then

TABEL
⊥
T

PH2 detects a clash, called (Clash)�− : this corresponds to the situation where
x : ¬�¬C does not belong toB, while the model corresponding to the branch being
built containsx : ¬�¬C, and hence isnot preferred to the model represented byB.

The calculusTABEL
⊥
T

PH2 also contains the clash condition (Clash)∅. Since each ap-
plication of(�−) removes the negated box formulasx : ¬�¬Ci from the setK, when
K is empty all the negated boxed formulas occurring inB also belong to the current

branch. In this case, the model built byTABEL
⊥
T

PH2 satisfies the same set ofx : ¬�¬Ci

(for all individuals) asB and, thus, it is not preferred to the one represented byB.

Theorem 7 (Soundness and completeness ofTABEL
⊥
T

PH2 [8]). Given a KB and a
queryF , let 〈S′ | U | ∅〉 be the corresponding constraint system ofKB, and 〈S |
U | ∅〉 the corresponding constraint system ofKB ∪ {¬F}. An open branchB built by

TABEL
⊥
T

PH1 for 〈S | U | ∅〉 is satisfiable by an injective mapping in a minimal model of

KB iff the tableau inTABEL
⊥
T

PH2 for 〈S′ | U | B�
−

〉 is closed.

TABEL
⊥
T

PH2 always terminates. Termination is ensured by the fact that dynamic rules
make use of labels belonging toD(B), which is finite, rather than introducing “new”
labels in the tableau.

Theorem 8 (Termination of TABEL
⊥
T

PH2 ). Let 〈S′ | U | B�
−

〉 be a constraint system

starting from an open branchB built by TABEL
⊥
T

PH1 , then any tableau generated by

TABEL
⊥
T

PH2 is finite.

It is possible to show that the problem of verifying that a branchB represents a minimal

model for KB inTABEL
⊥
T

PH2 is in NP in the size ofB.
The overall procedureTABALC+T

min is defined as follows:

Definition 8. Let KB be a knowledge base whose corresponding constraint system is
〈S | U | ∅〉. LetF be a query and letS′ be the set of constraints obtained by adding to

S the constraint corresponding to¬F . The calculusTABEL
⊥
T

min checks whether a query
F is minimally entailed from aKB by means of the following procedure:(phase 1)the

calculusTABEL
⊥
T

PH1 is applied to〈S′ | U | ∅〉; if, for each branchB built byTABEL
⊥
T

PH1 ,

either (i) B is closed or (ii)(phase 2)the tableau built by the calculusTABEL
⊥
T

PH2 for
〈S | U | B�

−

〉 is open, thenKB |=LT

min F , otherwiseKB 6|=LT

min F .

Theorem 9 (Soundness and completeness ofTABEL
⊥
T

min [8]). TABEL
⊥
T

min is a sound
and complete decision procedure for verifying if KB|=LT

min F .

The complexity ofTABEL
⊥
T

min matches the results of Theorem 2. Consider the com-
plementary problem: KB6|=LT

min F . This problem can be solved according to the proce-
dure in Definition 8: by nondeterministically generating anopen branch of polynomial

length in the size of KB inTABEL
⊥
T

PH1 (a modelMB of KB ∪ {¬F}), and then by



calling an NP oracle which verifies thatMB is a minimal model of KB. In fact, the
verification thatMB is not a minimal model of the KB can be done by an NP algo-

rithm which nondeterministically generates a branch inTABEL
⊥
T

PH2 of polynomial size
in the size ofMB (and of KB), representing a modelMB′

of KB preferred toMB.

Hence, the problem of verifying that KB6|=LT

min F is in NPNP, i.e. in Σ
p
2 , and the

problem of deciding whether KB|=LT

min F is in CO-NPNP, i.e. inΠ
p
2
.

Theorem 10 (Complexity ofTABEL
⊥
T

min ). The problem of deciding whetherKB |=LT

min

F by means ofTABEL
⊥
T

min is in Π
p
2 .

5 A Tableau Calculus forDL-LitecTmin

In this section we present a tableau calculusTABLitecT

min for deciding query entailment
in the logicDL-LitecTmin. The calculus is similar to the one forEL⊥

Tmin in the
previous section, however it contains a few significant differences. Let us analyze in

detail the two components ofTABLitecT

min .

5.1 First Phase: the tableaux calculusTAB
LitecT

P H1

The calculusTABLitecT

PH1
is significantly different in three respects from the calculus

for EL⊥
Tmin. We try to explain such differences in detail. First of all, given a set of

constraintsS and a roler ∈ R, we definer(S) = {x
r

−→ y | x
r

−→ y ∈ S}.
1. The rule(∃+) is split in the following two rules:

y new

〈S, x : ∃r.⊤ | U〉

〈S, x
r

−→ y | U〉
(∃+)r

1

〈S, x : ∃r.⊤ | U〉
(∃+)r

2

〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . . 〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . .

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S

if r(S) != ∅if r(S) = ∅

As in the calculusTABEL
⊥
T

PH1 , the split of the(∃+) in the two rules above reflects the
main idea of the construction of a small model at the base of Theorem 4.5 in [11]. Such
small model theorem essentially shows thatDL-LitecTmin KBs can have small models
in which all existentials∃R.⊤ occurring in KB are made true in the model by reusing a
single witnessy. In the calculus we use the same idea: when the rule(∃+)r

1 is applied
to a formulax : ∃r.⊤, it introduces a new labely and the constraintx

r
−→ y only

when there is no other previous constraintu
r

−→ v in S, i.e.r(S) = ∅. Otherwise, rule
(∃+)r

2 is applied and it introducesx
r

−→ y. As a consequence,(∃+)r
2 does not introduce

any new label in the branch whereas(∃+)r
1 only introduces a new labely for each role

r occurring in the initial KB in some∃r.⊤ or ∃r−.⊤, and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two further rules for existential for-
mulas are introduced:

(∃+)r
−

1

〈S, x : ∃r
−

.⊤ | U〉〈S, x : ∃r
−

.⊤ | U〉

〈S, y
r

−→ x | U〉 〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉

y new

. . . 〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉. . .
(∃+)r

−

2

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if r(S) = ∅ if r(S) != ∅



These rules work similarly to(∃+)r
1 and (∃+)r

2 in order to build a branch repre-
senting a small model: when the rule(∃+)r−

1 is applied to a formulax : ∃r−.⊤, it
introduces a new labely and the constrainty

r
−→ x only when there is no other con-

straintu
r

−→ v in S. Otherwise, since a constrainty
r

−→ u has been already introduced
in that branch,y

r
−→ x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, but only having the form
(i) x : ¬∃r.⊤ or (ii) x : ¬∃r−.⊤. (i) means thatx has no relationships with other
individuals via the roler, i.e. we need to detect a contradiction if both (i) and, for some
y, x

r
−→ y belong to the same branch, in order to mark the branch as closed. The

clash condition (Clash)r is added to the calculusTABLitecT

PH1
in order to detect such a

situation. Analogously, (ii) means that there is noy such thaty is related tox by means
of r, then (Clash)r− is introduced in order to close a branch containing both (ii)and,
for somey, a constrainty

r
−→ x. These clash conditions are as follows:

(Clash)r
(Clash)r−〈S, x

r

−→ y, x : ¬∃r.⊤ | U〉 〈S, y
r

−→ x, x : ¬∃r−.⊤ | U〉

The rules ofTABLitecT

PH1
are presented in Figure 3. The calculusTABLitecT

PH1
is sound,

complete and terminating.

(Clash)〈S, x : C, x : ¬C | U〉

〈S, x : C, x : !¬C | U〉

〈S, x : ¬!¬C | U〉〈S, x : ¬C | U〉
(Unfold)

〈S | U,C ⊑ DL〉

(T+)
〈S, x : T(C) | U〉

(T−)
〈S, x : ¬T(C) | U〉

if x occurs in S and x !∈ L

(Clash)r (Clash)r−
〈S, x

r

−→ y, x : ¬∃r.⊤ | U〉 〈S, y
r

−→ x, x : ¬∃r−.⊤ | U〉

〈S, x : ¬!¬C | U〉〈S, x : !¬C | U〉

〈S | U〉
(cut)

x occurs in S

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

y new

〈S, x : ∃r.⊤ | U〉

〈S, x
r

−→ y | U〉

(∃+)r

1

〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . .

〈S, x : ∃r.⊤ | U〉
(∃+)r

2

〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . .

y new

(∃+)r
−

1
〈S, x : ∃r

−

.⊤ | U〉

〈S, y
r

−→ x | U〉 〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉. . .

〈S, x : ∃r
−

.⊤ | U〉

〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉. . .

(∃+)r
−

2

(!−)

k = 1, 2, . . . , n

〈S, y : Ck, y : !¬Ck, SM

x→y, S
!

−k

x→y | U〉

〈S, x : ¬!¬C1, . . . ,¬!¬Cn | U〉

y new

〈S, y1 : Ck, y1 : !¬Ck, SM

x→y1
, S

!
−k

x→y1
| U〉 〈S, ym : Ck, ym : !¬Ck, SM

x→ym
, S

!
−k

x→ym
| U〉. . .

∀

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != x, . . . , ym != x

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x〉

〈S, x : C ⊔ D | U〉

〈S, x : C | U〉 〈S, x : D | U〉
(⊔+)

if r(S) = ∅ if r(S) != ∅

if r(S) = ∅ if r(S) != ∅

Fig. 3. The calculusTABLitecT

PH1
.

Theorem 11 (Soundness and completeness ofTABLitecT

PH1
). If KB 6|=DL-LitecTmin

F , then the tableau for the constraint system corresponding to KB∪ {¬F} contains an
open saturated branch, which is satisfiable (via an injective assignment from labels to
domain elements) in a minimal model of KB. Given a constraintsystem〈S | U〉, if it is

unsatisfiable, then it has a closed tableau inTABLitecT

PH1
.

Theorem 12 (Termination ofTABLitecT

PH1
). Any tableau generated byTABLitecT

PH1
for

〈S | U〉 is finite.
Reasoning as we have done forTABEL

⊥
T

PH1 , we can show that:



(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U,C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

(T+) (T−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S | U | K〉

〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉

〈S, x : C, x : !¬C | U | K〉

(!−)

x ∈ D(B)

(Clash)r
(Clash)r−〈S, y

r

−→ x, x : ¬∃r−.⊤ | U | K〉〈S, x
r

−→ y, x : ¬∃r.⊤ | U | K〉

〈S, x : ¬!¬C1, . . . , x : ¬!¬Cn | U | K, x : ¬!¬C1, . . . , x : ¬!¬Cn〉

〈S, x : ∃r.⊤ | U | K〉

〈S, x
r

−→ y1 | U | K〉 . . . 〈S, x
r

−→ yn | U | K〉 〈S, y1

r

−→ x | U | K〉 . . . 〈S, yn

r

−→ x | U | K〉

〈S, x : ∃r
−

.⊤ | U | K〉
(∃+)r

−(∃+)r

〈S, ym : Ck, ym : !¬Ck, SM
x→ym

, S
!

−k

x→ym
| U | K〉〈S, y1 : Ck, y1 : !¬Ck, SM

x→y1
, S

!
−k

x→y1
| U | K〉 . . .

k = 1, 2, . . . , n∀

〈S, ym
r

−→ x | U | K〉〈S, x
r

−→ ym | U | K〉

if D(B) = {y1, . . . , ym}if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != x, . . . , ym != x

〈S, x : C | U | K〉 〈S, x : D | U | K〉

〈S, x : C ⊔ D | U | K〉

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | K〉
(⊔+)

Fig. 4. The calculusTABLitecT

PH2
.

Theorem 13 (Complexity ofTABLitecT

PH1
). Given a KB and a queryF , the problem of

checking whether KB∪ {¬F} in TABLitecT

PH1
is satisfiable is inNP.

5.2 The tableaux calculusTAB
LitecT

P H2

Let us now introduce the calculusTABLitecT

PH2
. Exactly as forTABEL

⊥
T

PH2 , for each

open saturated branchB built by TABLitecT

PH1
, it verifies whether it represents a min-

imal model of the KB. The rules ofTABLitecT

PH2
are shown in Figure 4. The rules(∃+)r

and(∃+)r−

introducex
r

−→ y andy
r

−→ x, respectively, wherey ∈ D(B), instead of
y being a new label.

Theorem 14 (Soundness and completeness ofTABLitecT

PH2
). Given aKB and a query

F , let 〈S′ | U〉 be the corresponding constraint system ofKB, and〈S | U〉 the cor-
responding constraint system ofKB ∪ {¬F}. An open saturated branchB built by

TABLitecT

PH1
for 〈S | U〉 is satisfiable by an injective mapping in a minimal model of

KB iff the tableau inTABLitecT

PH2
for 〈S′ | U | B�

−

〉 is closed.

Theorem 15 (Termination of TABLitecT

PH2
). Let 〈S′ | U | B�

−

〉 be a constraint sys-

tem starting from an open saturated branchB built by TABLitecT

PH1
, then any tableau

generated byTABLitecT

PH2
is finite.

By reasoning exactly as done forTABEL
⊥
T

min , we prove that:

Theorem 16 (Complexity ofTABLitecT

min ). The problem of deciding whetherKB |=LT

min

F by means ofTABLitecT

min is in Π
p
2 .



6 Conclusions
We have proposed a nonmonotonicextension of low complexityDLsEL⊥ andDL-Litecore

for reasoning about typicality and defeasible properties.We have summarized com-
plexity results recently studied for such extensions [11],namely that entailment is EX-
PTIME-hard forEL⊥

Tmin, whereas it drops toΠp
2 when considering the Left Local

Fragment ofEL⊥
Tmin. The sameΠp

2 complexity has been found forDL-LitecTmin.
These results match the complexity upper bounds of the same fragments in circum-
scribed KBs [3]. We have also provided tableau calculi for checking minimal entailment
in the Left Local fragment ofEL⊥

Tmin as well as inDL-LitecTmin. The proposed
calculi match the complexity results above. Of course, manyoptimizations are possible
and we intend to study them in future work.

As mentioned in the Introduction, several nonmonotonic extensions of DLs have
been proposed in the literature [15, 4, 2, 3, 7, 12, 10, 9, 6] and we refer to [12] for a sur-
vey. Concerning nonmonotonic extensions of low complexityDLs, the complexity of
circumscribedfragments of theEL⊥ and DL-lite families have been studied in [3].
Recently, a fragment ofEL⊥ for which the complexity of circumscribed KBs is poly-
nomial has been identified in [14]. In future work, we shall investigate complexity of
minimal entailment and proof methods for such a fragment extended withT and possi-
bly the definition of a calculus for it.
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