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Abstract
The authoring of complex concepts or (instance) queries written in a description logic (DL) can be
a difficult task. An established approach is to generate such concepts from positive examples is to
employ the most specific concept (msc), which generalizes an ABox individual into a concept and the
least common subsumer (lcs), which generalizes a collection of concepts into a single concept. These
inferences are investigated for the EL, but so far there are no methods for the 2-dimensional case such
as temporalized DLs. We report in this abstract on our computation algorithms for the lcs and the msc
in a temporalized DL: EL extended by the LTL operators next and global. We sketch the computation
algorithms for both inferences—with and without the use of rigid symbols.
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Concepts written in a particular DL that occur in description logic knowledge bases or in
queries usually model a notion from the application domain. When DL KBs or complex query
concepts are built, it is necessary to formalize the intended meaning by authoring complex
concepts. These can then be used in TBox axioms or can serve as instance queries. It can be
difficult for users to come up with such a formalization. This task is even more difficult, if there
are temporal aspects to be formalized in the intended concept. Often it is easier for a user to
select example instances of a (temporalized) concept available in the data in the knowledge base.
An approach to automatically generate complex concepts from a set of selected examples is the
bottom-up approach [1] where the resulting concept is computed by applying two generalization
inferences. The first is the most specific concept (MSC), which computes from an ABox individual
a concept (in a given DL) that is the least w.r.t. subsumption. The second inference is the least
common subsumer (LCS), which computes from a set of input concepts a concept that subsumes
all input concepts and is the least concept w.r.t. subsumption. Applying the MSC to each example
selected by the user and then applying the LCS to all of the resulting concepts, yields a concept
description of the selected examples and is a first version of the intended (query) concept.

The inferences LCS and MSC are typically studied for DLs that do not admit disjunction,
since in the presence of this concept constructor the LCS is simply the disjunction of the
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input concepts and thus not informative. Both inferences, the LCS and the MSC, have been
investigated for unfoldable TBoxes. If a cyclic or even general TBox is used, the LCS need not
exist, since cyclic concepts cannot be expressed by finite concepts. For cyclic ABoxes the MSC
need also not exist, due to the same reason [2]. Conditions for the existence of the LCS (and the
MSC) in EL w.r.t. general TBoxes have been given in [3] and approximations that limit the role
depth in concepts have been studied in [2, 4, 5].

Here we report on our paper recently presented at the SAC conference [6], where we provide
a first study on the computation of the LCS and the MSC for temporalized DLs. Temporalized
DLs have been intensively investigated in the last decade mainly motivated by ontology-based
situation recognition, where the situation to be recognized is formalized as a temporal query.
The task of situation recognition then boils down to answer a temporal query over a classical
DL TBox and a sequence of ABoxes. For recent surveys on reasoning in this kind of settings see
[7, 8]. Temporalized DLs are a kind of two dimensional DL, where two logic formalisms are
combined [9, 10]. Two dimensional DLs usually have an object dimension, which corresponds
to classical DLs and a context dimension [11] or even temporal evolution of context-sensitive
domain [12]. Temporal DLs based on LTL have a linear context dimension.

Example-based learning for two dimensional DLs or temporalized DLs has so far not been
studied in the literature. In case of temporalized DLs automated support for authoring temporal
query concepts (or even temporal conjunctive queries) would be very helpful for situation
recognition applications.

In our paper, we lift the LCS and MSC to the temporal setting. More precisely, we consider the
logic LTLX,G

EL , which uses the temporal operators next (X) and global (G) from LTL “on top of”
EL constructors. Our choice of temporal operators is motivated by the fact, that the operators
until (U) and finally (F) imply a disjunction and would, if being used in the generalization
inferences, simply enumerate the variants found in the temporal data. LTLX,G

EL concepts are
defined by the following grammar:

C, D ::= A | C ⊓ D | ∃r.C | XC | GC | ⊤

LTLX,G
EL can express concepts that capture temporal aspects over the domain of interest. For

example, consider LTLX,G
EL concept:

Cex = Person ⊓ ∃isVaccinated.BioNTech ⊓ X(G(Vaccinated)) ⊓G(RiskGroup),

which describes persons that are vaccinated using BioNTech and that count from the next time
point on as always vaccinated. The last conjunct expresses that these persons are always in the
risk group from the initial time point on.

The semantics of LTLX,G
EL concepts is given using two dimensions: (1) an infinite temporal

sequence of (2) classical DL interpretations. The LTL operators express the evolution of objects
in the temporal dimension, while the EL constructors express relations to other elements within
the classical interpretation (at the same time point).

We consider in our paper the generalization inferences only for concepts (w.r.t. unfoldable
TBoxes and in case of the MSC also an ABox) as the LCS or MSC need not exist w.r.t. general
TBoxes due to cyclic axioms. This means we can rewrite the ABoxes to incorporate the
information from the TBox and then ignore the latter. Therefore, we can assume w.l.o.g.
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Figure 1: The LTLX,G
EL description tree that corresponds to normalized form of Cex.

that the input knowledge base consists of only a sequence of ABoxes. As usual for temporal
reasoning, we assume rigid domain and rigid individuals.

The bottom-up approach in our temporal setting means that the user selects a set of example
individuals from the sequence of ABoxes (possibly from different time points). The MSC is
applied to each of them and the resulting LTLX,G

EL concepts are generalized by the LCS into a
single LTLX,G

EL concept. Our computation algorithms for the LCS and the MSC in LTLX,G
EL extend

the approach from [1] to the temporal case. For ease of presentation we start with the LCS
inference. The LCS computation algorithm from [1] performs three steps:

1. transform each input concept into normal form, that makes the interaction among the
temporal operators explicit

2. represent each normalized concept as a tree-structure, called description tree,
3. build cross-product of all description trees and read-off the LCS concept from it.

The normalization of LTLX,G
EL concepts handles the interaction of X and G. More precisely,

it treats the temporal operators X and G as functional DL roles and therefore yields a one-
dimensional DL concept. This DL concept can then be transformed into a tree. Furthermore, in
order to obtain trees of equal height, the normalization performs tree padding. More precisely,
it extends the shorter tree by adding X successors and propagates the information from the
sub-tree rooted in the existential restriction for the G role onto the sub-tree (or rather the chain)
rooted in existential restrictions for the X role. Consider again Cex. This concept which is
not normalized, since the effect of G(RiskGroup) is not propagated to the next timepoint, i.e.
into the X-concept. Figure 1 depicts a description tree for Cex after normalization. Notice that
the G information such as RiskGroup and Vaccinated are propagated and made explicit. As it
turns out, the normalization can cause the concept to grow exponentially which is due to the
interaction of the temporal operators.

Once the description trees are computed, their cross-product is constructed as usual and the
LTLX,G

EL concept can be read-off from it. To be able to show correctness of the LCS computation
algorithm, we need to give a characterization of subsumption for LTLX,G

EL concepts which is
one of our main results of the paper. We show that a concept is subsumed by another concept
if there exists a homomorphism between their description trees, provided that the trees are
aligned. This alignment is crucial to make sure that the interaction between next and global are
captured. By using this characterization we show the soundness, completeness and termination
of our LCS computation algorithm for LTLX,G

EL .



To compute the MSC in EL, the procedure from [1] performs the following steps:

1. construct a description graph representing the relational structure in the ABox
(incorporating the TBox information),

2. tree-unravel the graph starting from the input individual to generate the description tree
and read-off the MSC concept from it.

The extension of this method to the temporal setting needs to construct a description graph
from a sequence of ABoxes. The re-occurrence of an individual in the next ABox of the temporal
sequence is modeled by connecting the individual and its re-occurrence by X reflecting the
temporal information. For cyclic ABoxes, an exact solution need not exist already for EL, but the
construction can be approximated by a bound on the role-depth. In that case, the tree-unraveling
the description graphs (up to the bound) can be done as in the case of EL.

In order to show the correctness of our MSC algorithm, we develop a characterization of the
instance relationship in LTLX,G

EL . In particular, we show that an individual is an instance of a
concept (at certain time point) if there exists a homomorphism between the description tree of
the concept and the graph by mapping the root of the tree to the individual in the graph. With
our graph construction, we can treat the two temporal operators as standard roles in the graph
representation when traversing. Using this characterization, we show that our MSC algorithm is
sound, complete, and terminating, if the MSC exists w.r.t. the given ABox. While the traversing
is linear in the size of the graph, it is possible that the size of the graph is exponentially larger
than the initial one due to normalization.

The algorithms for generalization inferences in LTLX,G
EL that we have described so far handle

non-rigid symbols only. In our paper [6], we also investigate the case of rigid concepts and roles.
While rigid names often cause an exponential blow-up for or even undecidability of reasoning
in two-dimensional DLs and temporal DLs, this is not the case in our lightweight temporal
DL. In fact, it is well-known that rigid concepts can be readily expressed by using G at the
initial time point. Although incorporating rigid roles is more complex, we show that they also
can be simulated. Consider there exists r(a, b) in the sequence of ABoxes and r is rigid. Then,
we have to introduce G ∃r.C where C is the G conjunct in the MSC of b. Since the process of
normalizing a concept might cause an exponential blow-up already, the computational cost of
simulating rigid concepts and roles is not adding to the overall complexity.
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