
User-aware Explications of Ontology Consequences:

Levelling Technicality

Rafael Peñaloza1, Anni-Yasmin Turhan2

1University of Milano-Bicocca, Italy
2TU Dresden, Germany

Abstract
Explaining consequences obtained from ontological reasoning is an active research topic. Unlike the

computation of the cause of the consequence, the explication of the cause has received little attention so

far. However, as many ontologies are designed by experts, the terms and notions used in an explanation

need not be known to the user of the ontology-based system, before they can attempt to understand the

underlying logical process.

In this paper, we address the task of making an explanation of a consequence more comprehensible

to a variety of users by re-phrasing it in a vocabulary known to them. Assuming the existence of a

dictionary, we attempt to rewrite technical jargon into expressions using a simpler vocabulary. We show

that solving this problem requires taking several technical issues into account.

Keywords
Explications, Description Logics, user-awareness

1. Introduction

With the deployment of arti�cial intelligence (AI) approaches in industrial applications, there

is a growing need to explain the decisions made by arti�cial agents to external users who

might not be fully knowledgeable about the system and its internal mechanisms. This need has

given birth to the �eld of explainable AI (XAI) [1]. There are two main interpretations of XAI:

explain how the AI system reached its conclusions—more akin to debugging—or explain why

was the �nal conclusion reached. In this work, we consider the latter which, in the context of

logic-based knowledge representation and reasoning (KR), usually refers to enumerating the

logical constraints and the logical steps that yield a given consequence.

What constitutes a good explanation from the point of view of the social sciences was recently

summarized in by Miller in [2]. To build a useful explanation, one needs to solve two tasks. One

is to extract the information that we want to provide—what does the explanation say? This is

usually known as the attribution step [2]. The other is to identify how to express this information

to make it intelligible. This second step of developing an explication of the information to be

presented is at the heart of most XAI approaches in KR. During the attribution phase, most

methods identify a minimal portion of the knowledge base which yields the consequence (a

8th Workshop on Formal and Cognitive Reasoning, September 19, 2022, Trier, Germany

$ rafael.penaloza@unimib.it (R. Peñaloza); Anni-Yasmin.Turhan@tu-dresden.de (A. Turhan)

� https://rpenalozan.github.io (R. Peñaloza)

� 0000-0002-2693-5790 (R. Peñaloza); 0000-0001-6336-335X (A. Turhan)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

90

so-called justi�cation). The explication phase then transforms this justi�cation into a more

comprehensible version.

Some approaches generate logical proofs of di�erent shapes, to allow the user to understand

the derivation steps made [3]. A di�erent approach is to rewrite the logical statements from the

justi�cation into natural language [4]. While quite promising, these approaches su�er from

two main drawbacks: (i) they are user agnostic; that is, they generate the same explication

independently of the requirements of the explainee; and (ii) they are limited to the vocabulary

explicitly appearing in an ontology. The latter issue is specially important as �nding the right

words to use is a fundamental step of human explanations [5]. Indeed, the wrong terminology

may hinder understanding of otherwise simple notions. For example, a user of an ontology-based

biology application may be puzzled by the occurrence of notion “Zaglossus Bruijni”—which they

do not understand—in the explication provided to them. In particular, if the more familiar term

“Echidna” could be used instead. Importantly, we cannot expect knowledge bases or ontologies

(which are constructed and used by domain experts) to avoid technical jargon and, at the same

time, that di�erent users have similar expertise and explanatory needs.

We propose user-aware generation of explications for ontology consequences. This general

task poses two challenges to be addressed. The �rst is to use terminology that is appropriate

for the explainee in terms of being neither too complex nor overly simplistic. The second

challenge is to choose an appropriate structure for the explication that does not confuse the

explainee—neither by the use of complex logical expressions nor by its sheer length. We deem

the �rst challenge more fundamental and address it in this paper. Our approach for user-aware

generation of explications is based on a dictionary, which allows us to transform technical

jargon appearing in a justi�cation into logically equivalent, but easier to understand expressions.

Users can �ne-tune their explication by specifying a collection of terms that they understand,

representing their “level of technicality.” Intuitively, the dictionary is strati�ed according to

technicality levels for di�erent users. Our approach is orthogonal to proof generation and

translation to natural language. Indeed, an ideal explanation approach would combine all three

of them, adding further user-aware �exibility.

As a �rst step to provide user-aware explications, we consider a setting where the user

provides the vocabulary they are able to understand, and the explanation should be restricted

to this vocabulary only. From an abstract point of view, this idea is very similar to the task of

forgetting (or uniform interpolation) [6, 7], where the goal is to construct a knowledge base

that “forgets” a class of symbols—in our case, the symbols that are not understood by the user.

Uniform interpolation tries to preserve all the information of the knowledge base that refers to

the wanted vocabulary, while completely removing any explicit reference to the vocabulary to

be forgotten. In our case, though, we want to preserve the knowledge of technical terms, but

express it through a simpler vocabulary. An important di�erence between these two problems,

which will become clear in Section 3, is that forgetting treats the whole vocabulary equally,

while in our case we do not want to oversimplify the explication. Thus, from di�erent potential

explications, we prefer one that is maximally “technical” while remaining understandable to

the user.

In this paper, we build the foundations needed to tackle this problem. Starting from a very

restricted �rst setting, based on concept equivalences, we show through a series of examples

that any available method should take into account some technicalities that may not seem

91

obvious at �rst sight. We thus show that solving the problem is not only useful for the area of

XAI, but also interesting from a technical point of view in its own right.

2. Approaching the Problem of User-aware Explications

An important aspect of explaining a consequence to a user, which is not yet addressed su�ciently

in the knowledge representation and reasoning �eld, is to take into account who the user is, and

how to better approach them. There is certainly no universal solution to this, as di�erent users

have varying levels of understanding and explanatory needs. This motivates our interest in

methods providing user-aware explanations; that is, methods to generate explanations targeting

di�erent user’s needs.

We consider the case where knowledge is encoded in an ontology using a description

logic (DL) [8]. In a nutshell, DLs use as building blocks two countable disjoint sets NC and NR

of concept names and role names, respectively. Complex concepts, which correspond to unary

predicates of �rst-order logic, are built with the help of di�erent constructors. As a prototypical

specimen we consider the light-weight DL EL [9] whose concepts are built according to the

grammar rule

C ::= > | A | C u C | ∃r.C ,

with A ∈ NC , r ∈ NR, and its sublogic L0 which disallows the ∃r.C constructor. Knowledge

in DLs is expressed through an ontology: a �nite set of axioms, of which the most common are

so-called general concept inclusions (GCIs) that are statements of the form C v D with C,D

concepts. The semantics of this logic is de�ned in terms of interpretations, which are pairs

I = (∆I , ·I)where∆I is a non-empty set called the domain and ·I is the interpretation function

that maps each concept name A ∈ NC to a set AI ⊆ ∆I and every role name r ∈ NR to a

binary relation rI ⊆ ∆I ×∆I . The interpretation function is extended to complex concepts by

setting >I := ∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {δ ∈ ∆I | ∃η ∈ CI .(δ, η) ∈ rI}.
An interpretation I is a model of the ontology O i� for every GCI C v D ∈ O it holds that

CI ⊆ DI . The GCI C v D is a consequence of the ontology O i� every model of O is also a

model of {C v D} and is denoted byO |= C v D. We often use the term “entailment” to refer

to consequences as well. For full details on DLs see [8].

GCIs in an ontology act as constraints on the class of relevant interpretations, i.e. on the

class of models. In particular, this means that consequences are monotonic; that is, if ϕ is a

consequence of the ontologyO, then ϕ is necessarily a consequence of any ontology containing

all the GCIs in O. In the following, we also use two special kinds of GCIs. A concept equivalence

is of the form C
.
= D where C,D are concepts. It abbreviates the two GCIs C v D,D v C

and hence is satis�ed whenever CI = DI . A concept de�nition is a concept equivalence A
.
= D

where A ∈ NC ; that is, the left-hand side consists of a concept name only.

Given a consequenceϕ of the ontologyO, a user may want to knowwhy this is a consequence.

One early approach to answer this question was to provide a so-called justi�cation; that is, a

(subset) minimal sub-ontology of O from which ϕ still follows. The existence of one or more of

such minimal subsets is guaranteed by the monotonicity of the logic. The set of axioms forming

a justi�cation can be seen as a crude explanation for the entailment of ϕ. It provides su�cient

information about the derivation (the justi�cation still entails the consequence) and avoids any

92

super�uous information given by irrelevant GCIs. Importantly, a single consequence may have

several (even exponentially many) justi�cations [10].

However, by their de�nition, justi�cations are always built using axioms appearing in the

original ontology. Developed and maintained by experts and with di�erent agendas in mind,

the GCIs in an ontology tend to use a quite technical, or even private, terminology which might

not be intelligible to the user of the ontology requiring an explanation of the consequence.

Following the terminology that we used in the introduction of this paper, justi�cations realize

the attribution (or information extraction) step of explanation development. Our goal, instead,

is to provide an explication: a variant of such a justi�cation which is understandable by the user

and information preserving. In slightly more formal terms, we are interested in the following

problem.

Problem 1 (justi�cation explication). Given a justi�cation J and a user u, construct an

ontology E equivalent to J using only terms understandable by u.

Of course, the exact speci�cation of E depends on specifying what it means to be understandable

to a user u, their available terminology, and the capability of rewriting technical concept and

role names into more comprehensible ones. Depending on the speci�c scenario, an ontology E
as required by Problem 1 might not exist. This issue can be slightly alleviated by recalling that

a given consequence may have several justi�cations. Thus, we consider also a more general

version of the problem.

Problem 2 (consequence explication). Given an ontology O, a consequence ϕ, and a user u,

construct an ontology E , equivalent to some justi�cation ofϕ onO, using only terms understandable

by u.

Importantly, Problem 2 may still have no solution, if none of the available justi�cations can

be “explained” in terms understandable to the user. Hence, we are also interested in �nding

conditions where the problems are guaranteed to have a solution, or in e�ciently identifying

whether a solution exists.

A technically simple, but not necessarily optimal method for solving Problem 2 is to enumerate

all possible justi�cations, and try to solve Problem 1 on them, until an adequate ontology E is

found, or it is deduced that none exists. Such an approach introduces a polynomial overhead on

the number of justi�cations (which, as mentioned, may be exponential) in the case of L0. For

EL ontologies, an exponential overhead is unavoidable even in cases with only polynomially

many justi�cations [11]. In the following, we focus on Problem 1 only.

In the next section we provide a �rst full formalisation of this problem, starting from a formal

de�nition of our notion of “understandability”. We also show, through a series of examples, that

even in the limited scenario considered, one must pay careful attention to avoid sub-optimal or

plainly wrong solutions.

3. A First Solution

In order to solve the problems described in the previous section, we must �rst be able to express

variations of technical notions at di�erent levels of interpretability, along with the limits of

93

understandability of each individual user. In this way, adequate terms to present to the user

guaranteeing that they are understood can be selected automatically.

For this �rst solution, we classify users by means of their technical expertise, and in particular

of the vocabulary that they can understand. Hence, for example, depending on their expertise,

users may understand better or prefer to use the (equivalent) terms “monotremata,” “oviparous

mammals,” or “egg-laying, milk-producing animals.” We thus consider two sources of knowledge.

First, we have a domain ontology OD , which encodes all the knowledge of the domain. This

ontology, which is usual encountered in knowledge-aware applications, is maintained by experts

and hence assumed to use as precise and technical a terminology as needed for an adequate

modelling of the domain knowledge. Second, we have a technical ontology T , which models

relationships between more technical (or more complex) terms, and colloquial terms often used

at lower levels of expertise. Before formally de�ning the technical ontology, we need to specify

the technicality classes.

A vocabulary is a �nite set Voc ⊆ NC∪NR of concept and role names. A technical vocabulary

is a partially ordered vocabulary (Voc,�) where α � β expresses that α is at most as technical

as β. Thus, someone with greater expertise in the area would use terms that are larger w.r.t. �.

Importantly, the use of a partial order admits to have incomparable terms (where none is more

technical than the other) and terms that are equally technical. Each element α ∈ Voc de�nes a

technicality class

dαe := {β ∈ Voc | β � α}

containing all the terms from Voc which are at most as technical as α. The idea is that a

user capable of understanding α can also understand all terms in dαe. Given a concept C ,

the expression V(C) denotes the set of all concept and role names appearing in C; i.e., the

vocabulary of C . This notion is extended in the obvious manner to GCIs and ontologies: V(O)
is the set of all names appearing in the ontologyO. Since users need to understand all the terms

appearing in a GCI, justi�cation or ontology, we associate their expertise (or technicality level)

to technicality classes.

Example 3. Figure 1 depicts a Hasse diagram for a technical vocabulary. For instance,Mammal �
Oviparous means thatMammal is not more technical than Oviparous. Since these notions do not

appear together in the diagram. Mammal is in fact less technical. Animal andMilk are equally

technical, and incomparable to Egg. The technicality class ofMammal is

dMammale := {Mammal, EggLaying, Egg, MilkProducing, Animal, Milk}.

After these preliminaries, we can now de�ne the technical ontology.

De�nition 4 (technical ontology). Let (Voc,�) be a technical vocabulary. A technical ontol-

ogy T is a �nite set of concept de�nitions using only terms in Voc, such that for every concept

de�nition A
.
= C ∈ T it holds that V(C) ⊆ dAe.

A technical ontology provides de�nitions for some of the terms in the vocabulary Voc, which are

based on terms of lesser or equal technicality level. In simpler terms, T is a strati�ed dictionary

of concept names. The idea is that through those de�nitions, one can “rewrite” terms that a

user may not understand into expressions using a “simpler” vocabulary. Ideally, this rewriting

94

Monotreme

Oviparous, Endothermic

Mammal

EggLaying MilkProducing

Egg Animal, Milk

Figure 1: A technical vocabulary including incomparable and equivalent terms.

should contain expressions which use only concept and role names intelligible for the user,

while preserving equivalence.

Example 5. Using the technical vocabulary from Example 3, we can de�ne the technical ontology

T := { Monotreme
.
= Oviparous uMammal,

Mammal
.
= Animal uMilkProducing,

Oviparous
.
= Animal u EggLaying },

which expresses that monotremata are oviparous mammals; mammals are milk-producing animals;

and oviparous are egg-laying animals. Note that the condition of decreasing technicality is satis�ed

by these de�nitions.

With the technical ontology in place, we can now formalise the general problems introduced

in Section 2. To specify the level of technicality, we use the technicality classes de�ned by the

technical ontology. That is, a user selects a term α ∈ Voc such that they understand all terms

in dαe.

Problem 6. Let J be a justi�cation, (Voc,�) a technical vocabulary, T a technical ontology,

and α ∈ Voc. Construct an ontology E such that

1. E ∪ T and J are equivalent, i.e. have the same models and

2. V(E) ⊆ dαe.

If it exists, the ontology E is called an α-bounded explication of J .

As de�ned, Problem 6 leaves quite some liberty on its solutions: the resulting ontology E may

have nothing in common with the original justi�cation J , as long as it is logically equivalent,

modulo T . To make it more tractable, we note that it su�ces to manipulate the concept names

to an understandable form.

95

Proposition 7. Let J be a justi�cation, (Voc,�) a technical vocabulary, T a technical ontology,

and α ∈ Voc. There exists an α-bounded explication of J if

• every role name r ∈ V(J) is such that r � α, and

• for every concept name A ∈ V(J) there exists a concept C such that T |= A
.
= C and

V(C) ⊆ dαe.

The proof of this proposition is straightforward, and hence left out of this paper. The explication

can be constructed by simply substituting every concept name in J by their equivalent C . Note

that the converse is not necessarily true: there could exist α-bounded explications which are

not constructed through substitutions of concept names, but by substituting complex concepts.

Taking advantage of this proposition, we now focus on the simpler problem of �nding a concept

explication.

De�nition 8 (concept explication). Let A ∈ NC , (Voc,�) a be technical vocabulary, T a

technical ontology, and α ∈ Voc. A concept C such that T |= A
.
= C and V(C) ∈ dαe is called

an α-bounded explication of A.

Returning to our running example, we see that

Animal uMilkProducing u EggLaying

is indeed an Oviparous-bounded explication of Monotreme—in fact, it is even a Mammal-

bounded explication. However, for a user who understands the term Oviparous, expanding out

the de�nitions to the point of EggLaying may be counterproductive as it makes the explication

verbose. Not to mention the possibility of taking o�ence from an overly simplistic explanation.

Thus, rather than presenting the user with an arbitrary α-bounded explication, we want to

�nd one which is as technical as possible, while remaining understandable. In our example, a

more adequate explication (from this point of view) of Monotreme is Oviparous uMammal. In

general, we will prefer optimal explications that are as technical as possible within the selected

technicality class.

De�nition 9 (optimal explication). We extend the ordering � to complex concepts by setting

C � D i� for every term v ∈ V(C) there is a w ∈ V(D) such that v � w. C is more technical

than D (denoted C ≺ D) i� C � D but D 6� C .

An α-bounded explication D of C is optimal if there exists no α-bounded explication D′ of C

which is more technical than D.

A �rst idea to try to �nd (optimal) explications of concepts would be to follow a term rewriting

approach [12]. Indeed, each concept de�nition A
.
= C in the technical ontology can be seen

as a rewriting rule which substitutes the concept name A with a complex expression using

the symbols from C . These symbols may be further rewritten with other complex expressions,

using other concept de�nitions from the technical ontology. Under this view, all symbols

in dαe are terminals; that is, terms that cannot not be further rewritten using the technical

ontology T . Such terminals are already understandable to the user. All other symbols in Voc

are non-terminals, and should be rewritten into simpler, potentially more understandable terms.

This idea, while tempting, cannot work due mainly to three properties of the technical

ontology and the rewriting:

96

1. concept de�nitions may be cyclic;

2. concepts may have multiple de�nitions; and

3. the equivalence in concept de�nitions works on both directions.

The �rst issue can be solved by requiring that technical ontology is acyclic or by implementing

a cycle detection method. The other two issues are worth exploring further.

3.1. Non-determinism Induced by Multiple Definitions

Since one concept name may have more than one associated de�nition in the technical ontology,

it is not clear a-priori which de�nition should be used in the rewriting of a concept. Indeed, a

wrong choice may result in a concept that is not an α-bounded explication, but which cannot

be further simpli�ed, even in cases where adequate explications exist.

Example 10. Suppose that the technical ontology from Example 5 contains also the concept

de�nition Monotreme
.
= Oviparous u Endothermic. If we want to �nd a Mammal-bounded

explication of the concept name Monotreme, we can substitute the name Monotreme by either

(i) the term Oviparous uMammal or (ii) the term Oviparous u Endothermic. In the former case,

further expanding the de�nition of Oviparous yields an understandable concept at theMammal

level of technicality. The latter case, however, yields the concept Oviparous u Endothermic which

contains a concept name (Endothermic) that does not belong to the technicality class dMammale,
nor has an associated concept de�nition. Hence no adequate explication can be derived from it.

At the same time, it is unfeasible to preserve all possible expansions in the hope of deriving

at least one α-bounded explication. A naive construction of all possibilities would generate

exponentially many such concepts, thus requiring exponential time and space to �nd such an

explication (or decide that it does not exist).

This issue can be at least partially solved with the help of a non-deterministic algorithm,

which guesses, for every substitution step, which de�nition to use. This means that we can

decide whether an α-bounded explication exists—and, indeed, construct it—in non-deterministic

polynomial time. While this solves the issue of multiple-de�nitions, it does not guarantee that

the constructed explication is optimal.

3.2. Sub-optimality by Limited Use of Concept Equivalences

All concept de�nitions in the technical ontology are required to have, in the right-hand side,

only terms that are at most as technical as the concept name in the left-hand side. However,

beyond this requirement there is no restriction about the ordering of the terms in di�erent

de�nitions. Moreover, we are ultimately interested in constructing equivalent concepts, for

which the semantics of concept de�nitions need to be carefully considered.

Recall that the semantics of A
.
= C guarantee that A and C are equivalent. So far, we have

used this as a unidirectional “rule” to substitute an occurrence of A by the concept C . However,

logical equivalences also hold in the converse direction: substituting the concept C by the

concept name A would be equally correct. At �rst, this may seem as an irrelevant insight as

it implies increasing—rather than decreasing—the technicality level of the resulting concept;

97

we are substituting a simple description with technical jargon. Still, optimal solutions might

require such an interplay of technicality decrease and increase.

Example 11. Consider once again the technical vocabulary from Example 3, but now using the

technical ontology

T := { Monotreme
.
= EggLaying uMilkProducing u Animal,

Mammal
.
= Animal uMilkProducing,

Oviparous
.
= Animal u EggLaying };

that is, we have modi�ed the �rst concept de�nition. Note that there is no non-determinism

here, since every concept name is de�ned only once. If we want to produce a Mammal-bounded

explication for the concept name Monotreme, we expand its de�nition, obtaining the complex

concept EggLaying u MilkProducing u Animal. This is already an explication on the right level of

technicality and can be understood by a user who understandsMammal. However, it is not optimal.

To �nd an optimal explication, observe that MilkProducing u Animal is equivalent toMammal

in T . Thus, we can simplify the previously constructed concept into EggLaying uMammal, which

is in fact an optimal explication for Monotreme.

The issue is more complex. Even after �nding a (potentially sub-optimal) α-bounded explication,

it may still be impossible to �nd an optimal explication simply by increasing the technicality

through a “converse” concept rewriting. As the following example shows, it may be necessary

to further decrease the technicality of a concept, before it can be rewritten into an optimal

explication.

Example 12. Consider again the technical vocabulary from Example 3, along with the technical

ontology

T := { Monotreme
.
= EggLaying uMammal,

Mammal
.
= Animal uMilkProducing,

Oviparous
.
= Animal u EggLaying },

and suppose that we want now an Oviparous-bounded explication of Monotreme. We �rst have no

choice but to expandMonotreme to its unique de�nition. The resulting concept EggLayinguMammal

is already an understandable explication to the desired level of technicality, but as we shall see, it is

not optimal. In contrast to the previous example, it is not possible to substitute part of the explication

with the concept Oviparous yet: although we have the conjunct EggLaying, we are still missing the

term Animal in it. Notice thatMammal can be substituted by AnimaluMilkProducing yielding the

(less technical) explication EggLaying u Animal uMilkProducing, which can now be equivalently

rewritten into the optimal explication (at the requested level of technicality) Oviparous uMammal.

These simple examples highlight a very general limitation of the approach that uses TBox axioms

as rewrite rules to �nd explications. In order to guarantee optimality of the resulting concept, it

may be necessary to cycle through several rounds of increased and decreased technicality. It is

98

also possible to encounter cases where the technicality of a concept needs to be increased beyond

the user-speci�ed technicality level before it is later rewritten into an adequate explication; we

leave the construction of such an example to the interested reader.

Example 12 implicitly showcases another issue that we have so far ignored, which refers to

the idempotency of the conjunction. Note that in the last step of Example 12, we used the fact

that Animal and AnimaluAnimal are equivalent, in order to construct the two terms Oviparous

andMammal; each of them requires a mention of Animal in their de�nition. This means that

some terms may need to be “recalled” after being used in a rewriting step to allow for another

rewriting. The following example makes the issue explicit.

Example 13. Using the technical vocabulary from Figure 1, suppose that we are interested in

explaining the concept name Monotreme to the technicality degree of Oviparous based on the

technical ontology

T := { Monotreme
.
= EggLaying uMammal,

Monotreme
.
= Animal,

Oviparous
.
= EggLaying u Animal }.

Using these de�nitions, we can transformMonotreme either to EggLaying uMammal or to Animal.

At this point, no other rewriting step is possible. However, since Monotreme is equivalent to

EggLayinguMammal, the latter concept is also equivalent toMonotremeu EggLayinguMammal

which can now be rewritten as Animal u EggLaying uMammal, yielding the optimal explication

Oviparous uMammal.

4. Conclusions

Our goal is to explain to non-expert users the reasons why a consequence follows from a domain

ontology. In contrast to other approaches where the emphasis is in the presentation of the

axioms and explanation of the logical steps followed, we are more interested in explicating

given justi�cations using terms that are understandable to the user. To this end, we assume

the existence of a dictionary, which de�nes technical jargon through equivalent, less technical

expressions. Even at the restricted setting of this work, we have seen that �nding optimal

explications requires specialised techniques, which still need to be developed.

All our examples are based on the very simple logic L0. Clearly, additional issues arise if we

extend the language to EL or beyond. For instance, it should be clear that deciding whether a

given concept C is an optimal α-bounded explication of A is in co-NP for L0: if it is not, simply

guess another concept D (which is a conjunction of concept names in dαe) and verify that it

is equivalent to A, and that C ≺ D. This method does not work in EL because, due to the

potentially nested existential restrictions, we have no guarantee that optimal explications are

even of polynomial length.

As future work, we intend �rst to fully understand the properties of these problems in

L0. Beyond �nding tight complexity bounds for the decision problem and deriving e�ective

algorithms for constructing one or all optimal explications, we will consider a more precise

notion for a concept to be “more technical” than another. Another problem to consider is

99

related to user education: if a term cannot be explained to the user’s level of technicality, we

want to propose a vocabulary—as close as possible to the user’s own—which will allow them

to understand it. Afterwards, we will look at EL and beyond to expressive DLs and other KR

formalisms and entailments.

Another road of generalisation which is worth exploring is to relax the notion of explication

and give up the requirement that it is equivalent to the original concept, but that it is similar

enough. For instance, some of the conjuncts in the explication could approximate the original

ones from above while others could be approximated from below. Finding out how to deal with

such similarity will require to explore several alternatives.

Acknowledgments

This work was partially supported by the Italian MUR under the PRIN project PINPOINT

Prot. 2020FNEB27, CUP H45E21000210001 and partially by the AI competence center ScaDS.AI

Dresden/Leipzig.

References

[1] D. Doran, S. Schulz, T. R. Besold, What does explainable AI really mean? A new conceptual-

ization of perspectives, CoRR abs/1710.00794 (2017). URL: http://arxiv.org/abs/1710.00794.

arXiv:1710.00794.

[2] T. Miller, Explanation in arti�cial intelligence: Insights from the social sciences, Arti�cial

Intelligence 267 (2019) 1–38. doi:10.1016/j.artint.2018.07.007.

[3] C. Alrabbaa, F. Baader, S. Borgwardt, P. Koopmann, A. Kovtunova, Finding good proofs for

description logic entailments using recursive quality measures, in: A. Platzer, G. Sutcli�e

(Eds.), Proceedings of the 28th International Conference on Automated Deduction (CADE-

28), volume 12699 of Lecture Notes in Computer Science, 2021, pp. 291–308. doi:10.1007/

978-3-030-79876-5_17.

[4] I. Androutsopoulos, G. Lampouras, D. Galanis, Generating natural language descriptions

from OWL ontologies: the naturalowl system, J. Artif. Intell. Res. 48 (2013) 671–715. URL:

https://doi.org/10.1613/jair.4017. doi:10.1613/jair.4017.

[5] M. Bolognesi, Where Words Get their Meaning: Cognitive processing and distributional

modelling of word meaning in �rst and second language, John Benjamins, 2020. URL:

https://www.jbe-platform.com/content/books/9789027260420.

[6] T. Eiter, G. Kern-Isberner, A brief survey on forgetting from a knowledge represen-

tation and reasoning perspective, Künstliche Intell. 33 (2019) 9–33. doi:10.1007/

s13218-018-0564-6.

[7] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expres-

sive description logics, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint

Conference on Arti�cial Intelligence, IJCAI/AAAI, 2011, pp. 989–995. doi:10.5591/

978-1-57735-516-8/IJCAI11-170.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description

100

Logic Handbook: Theory, Implementation, and Applications, second ed., Cambridge

University Press, 2007.

[9] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proceedings of IJCAI’05,

Professional Book Center, 2005, pp. 364–369.

[10] F. Baader, R. Peñaloza, B. Suntisrivaraporn, Pinpointing in the description logic EL+,

in: Proc. of KI’07, volume 4667 of LNCS, Springer, 2007, pp. 52–67. doi:10.1007/

978-3-540-74565-5_7.

[11] R. Peñaloza, B. Sertkaya, Understanding the complexity of axiom pinpointing in lightweight

description logics, Arti�cial Intelligence 250 (2017) 80–104. doi:10.1016/j.artint.

2017.06.002.

[12] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

101

