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Abstract
We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word
problems involving addition/subtraction, represented partly by a textual description and partly by an
image illustrating the scenario. The text describes actions performed on the scene that is depicted in
the image. Since the question posed may not be about the scene in the image, but about the state of the
scene before or after the actions are applied, the solver envision or imagine the state changes due to
these actions. Solving these word problems requires a combination of language, visual and mathematical
reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering
on CLEVR-Math and empirically evaluate their performances. Our results show how neither method
generalise to chains of operations. We discuss the limitations of the two in addressing the task of
multi-modal word problem solving.
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1. Introduction

Math word problems are mathematical problems expressed in natural language. Solving these
problems requires one to be able to map the natural language text to a mathematical expression,
identifying the known and unknown quantities and the functions to be used. Since this is a task
that lies at the intersection of language understanding and reasoning, automatically solving
math word problems has been a research topic of interest in Natural Language Processing (NLP)
community. Consider the following math word problem,

Problem: Adam has three apples, and Eve has five. Eve gives Adam all her apples.
How many apples does Adam have, if he eats one?
Equation: 𝑋 = 3 + 5− 1

Minor changes in the text may result in large semantic changes, e.g. changing just one word
in the above problem - eats to finds, will change the equation to 𝑋 = 3 + 5 + 1. Most of the
recent efforts in automatic math word problem solving treat it as a translation task (from word
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problem to equation) and have employed sequence-to-sequence networks or sequence to tree
(generating the expression tree of the equation) networks ([1], [2],[3]).

Figure 1: CLEVR-Math example question Take
away 2 matte cylinders. How many
objects are left? with corresponding
mathematical equation 𝑋 = 9− 2.

While text-based math word math prob-
lems are a great setting for natural language
understanding, it would also be interesting
to consider word problems which are accom-
panied by a diagram, and the information re-
quired to derive the solution has to be cap-
tured from both its textual and visual repre-
sentations. That is, part of the problem sce-
nario description is expressed as text and the
other part is represented in the form of an im-
age. In this paper, we introduce such a multi-
modal math word problem dataset, CLEVR-
Math (since it is based on CLEVR dataset [4]),
where each problem has a textual and a vi-
sual description (image). Figure 1 shows an
example problem in CLEVR-Math dataset.

While each instance in CLEVR dataset has
an image and a natural language query about
the scene depicted in the image, in CLEVR-
Math, the natural language query may not be about the scene represented in the image, but
about the state of the scene after/before a sequence of actions are applied on the scene. The
actions in our case are addition/removal of specific type of objects to/from the original scene.
We believe this is an interesting problem setting as the ability to envision changes without them
being physically manifested is an important aspect of the human mind.

Our contributions are two-fold, we

• construct an open source multi-modal math word problem dataset, CLEVR-Math and

• analyse the performance of state-of-the-art neural and neuro-symbolic (NeSy) solutions
for solving such multi-modal problems.

Our results and analysis shows how both neural and NeSy methods are unable to compositionally
generalise to chains of operations.

2. Related Work

This section gives an overview of the existing datasets in math word problem solving, multi-
modal datasets for visual question answering and existing neural/neuro-symbolic approaches
to the tasks that require a combination of visual, language and logical reasoning.

Math Word Problem Solving - Datasets Math Word Problem Solving (MAWPS) [5] was one
of the earlier datasets introduced in the domain and collected around 3320 single/multi equation



word problems involving operators +, −, *, /. These word problems were annotated with
equations involved and the answer (solution of the equation). More recently, larger datasets
like Algebra Question Answering with Rationales (AQuA-RAT) [6] were introduced and it has
around 100𝐾 multiple choice questions annotated with equations and a textual explanation
for the rationale behind the equations. [7] illustrated the deficiencies in MAWPS dataset
by introducing another dataset named Simple Variations on Arithmetic Math word Problems
(SVAMP). SVAMP is created by making minor variations to problems in MAWPS. [7] showed
that state-of-the-art neural solvers trained on MAWPS performs poorly on the SVAMP dataset.

Visual Question Answering (VQA) and Visual Reasoning - Datasets One of the first
VQA datasets proposed was the DAQUAR dataset [8] based on real images of indoor scenes.
VQA is another widely used dataset [9] with images from MS-COCO dataset [10]. Questions
are manually created and answering these require commonsense knowledge and reasoning.
CLEVR dataset [4] is based on automatically generated scenes and questions. Such simulated
data gives great control over the distribution of instances. One can decide to generate a training
set with images having only a specific combination of objects (red cubes and blue cylinders),
and a test set with a different combination of objects (red cylinders and blue cubes), as done
in, e.g., CLEVR-Hans [11]. This control allows us to study various aspects like compositional
generalisation of systems. Based on these ideas, CLEVR-Math allows us to test the ability of the
system to generalise to unseen combinations of actions in the word problem, to e.g. train on
single mathematical operations, and test on chains of operations. Closely related is the CLEVRER
(Collision Events for Video Representation and Reasoning) dataset [12] and CLEVR-Hyp dataset
[13]. The questions on videos in CLEVRER requires reasoning about the state of objects after an
video event, instead of after actions in text as in CLEVR-Math. CLEVR-Hyp focus on VQA where
reasoning about effects of actions, and CLEVR-Math introduces an additional mathematical
reasoning dimension to the problem. GQA is another relevant dataset, where real world images
are annotated with rich scene graphs and a large set of relations and attributes, and focuses
on compositionality in visual reasoning [14]. Graph learning is a heavily studied area, with
applications in multimodal domains such as robotics [15, 16, 17, 18].

Experiments with Kandinsky patterns [19] show that neural networks are easily confounded
by visual reasoning tasks with shapes, colors, and patterns that can be difficult to distinguish but
follow clear rules. The Winoground dataset [20] shows similar results, where no state-of-the-art
visual reasoning method is able to distinguish between two confounding captions and images.

Existing Approaches to VQA Most of the earlier approaches in VQA were based on purely
neural models that first encoded the two inputs - the image and the accompanying question
into embeddings using networks like Convolutional Neural Networks (CNN) and Long Short
Term Memory (LSTM) networks and then the two embeddings were forwarded to a classifier
that would then predict the answer to the question ([21], [22]). Another category of approaches
are the attention mechanism-based approaches that identified the regions in the image that
were relevant to answering the associated question ([23], [24]). Graph neural networks [25]
have also been applied in VQA where both text and the image are represented as graphs
and a multi-modal vectorial representation is learned that captures the alignment of nodes



in the two graphs. [26] introduced the CLIP models where a representation of the image is
learned with natural language supervision by leveraging the already available huge datasets
for image captioning. More recently, neuro-symbolic approaches have been used in addressing
the task of VQA like Neuro Symbolic Concept Learner (NSCL) [27] and Neuro-Symbolic Visual
Question Answering (NS-VQA) [28]. These approaches convert the input image and text into
an intermediate semantic representation and then employ a quasi-symbolic program executor
to derive an answer from these semantic forms. We use CLIP and NS-VQA as baselines as they
are state-of-the-art on multimodal language modelling and on the CLEVR dataset, respectively.

3. CLEVR-Math

We construct the CLEVR-Math dataset as an extension of CLEVR by introducing three new
functions and 13 templates. Using the codebase provided with CLEVR, we generate new questions
based on the original scenes. We categorise the 13 templates into six types, all based on addition
and subtraction. The domain is restricted to numbers between 0− 10 to conform with CLEVR.

New CLEVR functions: The three functions that we implement are - subtraction and
addition to perform subtraction and addition, and choose to operate on subsets of objects.
Instead of removing all blue spheres, choose allows us to remove a random number of a specific
type of object, e.g. 2 blue spheres out of 4. The random number generated by choose replaces
a questions “X" placeholder during generation. Figure 2a shows three examples of subtraction,
and Figure 2b shows a question requiring multihop reasoning. Appendix A includes more
samples from the test set.

(a) (i) Remove all gray spheres. How many
spheres are there? (3), (ii) Take away 3
cubes. How many objects are there? (7),
(iii) How many blocks must be removed to
get 1 block? (2)

(b) Take away all large green metallic spheres.
Now remove all cyan objects. How many
objects are left? (4)

Figure 2: Example image-question pairs from CLEVR-Math, 2a showcase addition and subtraction, and
2b shows multihop reasoning. Answers in parenthesis.



Question Categories: The different question categories are shown in Table 1.

• Remove group: All objects belonging to a specific group are removed from the scene.

• Insertion: A specific number of objects are added to the scene.

• Count backwards: The query is about the change - that is the number of objects
added/removed from the scene to get a goal state.

• Remove subset: A specific number of objects are removed from the scene.

• Adversarial questions: These are trick questions where the actions may be performed
on one object, but the query is about an object that is not affected by the action. The
adversarial actions are always on objects that are seen in the image.

• Multi-hop: In contrast to the above questions, multi-hop questions perform sequences
of actions (insertion, removal) on the objects. Such questions with chained functions help
us test a model’s ability to generalise to infinite combinations of operations.

Type Templates
Remove group

"Remove all <C> <S>s. How many <S>s are there?"
"Take away all <Z> <C> <M> <S>s. How many <S>s are there?"
"Take away X <C> <S>s. How many objects are there?"
"Take away all <C> <S>s. How many objects are there?"

Insertion
"Add X <Z> <C> <M> <S>s. How many <Z> <C> <M> <S>s are here?"
"Add X <Z> <C> <M> <S>s. How many objects are there?"

Count backwards
"How many <C> <S>s must be removed to get X <C> <S>s?"
"Take away <C> <S>s. How many were removed if there are X <C> <S>s left?"

Multi-hop
"Take away all <Z> <C> <M> <S>s. Remove all
<Z2> <C2> <M2> <S2>s. How many objects are left?"

Remove subset
"Remove X <S>s. How many <S>s are there?"

Adversarial questions
"Remove all <C1> <S1>s. Remove all <C2> <S2>s. How many <S1>s are left?"
"Remove all <C1> <S1>s. How many <C2> <S2>s are left?"

Table 1
An overview of the different templates implemented by CLEVR-Math. <Z>, <C>, <M>, <S> are instanti-
ated to size, color, material, and shape during the question generation.

Each problem in the dataset is also annotated with it’s equivalent functional program based
on the CLEVR functions described in the previous section. For example, consider the question
from insertion category and it’s program (the arguments of an instruction refer to another
instruction - indicating it’s input is the output of the referred instruction):



Q: Add 3 blue cylinders. How many cylinders are there?
Program: 1. scene, 2. choose[3], 3. count(1), 4. filter_cylinder(1), 5. count(4),
addition(2, 5)

The program contains the choose function - choose[𝑖] operator returns 𝑖 (𝑖 = 3 in this case).

Question generation. To support greater linguistic variation, we add synonyms for addition
and subtraction to the template engine. Subtract can be replaced with remove, take away and
withdraw, and addition with introduce, and insert. We use the same training and validation
scenes as CLEVR, and generate 5000 new scenes as test data. Figure 3 show the distribution
of attributes, words, templates and answers in CLEVR-Math, aggregated over the training,
validation, and test data. The distribution is reflected in each of the splits.
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(d) Template distribution over categories of templates. Each bar corre-
sponds to a template in each respective category. We see that subset
subtraction (i.e., remove 2 blue cubes) is underrepresented.

Figure 3: The attributes are used evenly throughout the dataset, whereas the answers are biased
towards the smaller numbers. The numbers are aggregated over all splits.

There are 50 words in the CLEVR-Math vocabulary, where the narrow language puts focus
on the mathematical reasoning rather than advanced language capabilities. Figure 3c show that
most questions are 8-9 words long, with a second peak at 13 for the multihop questions.



Template Train Validation Test
Subtraction 229364 49149 3281

Addition 193641 41600 2752
Adversarial 65180 13900 950
Multihop 67897 14553 972

Table 2
Distribution of templates in each data split.

Table 2 shows the distribution of templates, with an approximately equal amount of questions
for subtraction and addition, and similarly for adversarial and multihop questions. The ratios
are consistent between splits. To test multihop reasoning and compositional generalisability
we generate train-validation-test with only singlehop questions in training and validation, and
only multihop questions in the test data. Thus, a model using the CLEVR-Math-multihop
configuration must solve the multihop questions in a zero-shot fashion.

Open sourcing data. We open source CLEVR-Math as a Huggingface dataset 1 with two
configurations; CLEVR-Math and CLEVR-Math-multihop. The extended CLEVR source code
is available on Github 2. Table 3 shows the Huggingface dataset card for CLEVR-Math. The
template feature allows for filtering to perform, e.g., only singlehop training and multihop
testing.

Feature Type Example
template String subtraction-multihop

id String CLEVR_math_test_000010.png
question String Remove 5 spheres. How many objects are there?

image image path CLEVR_v1.0/images/train/CLEVR_new_000010.png
label int64, 0-10 5

Table 3
Huggingface dataset card for CLEVR-Math.

4. Experiments

CLIP [26] is used as a neural baseline. Questions and images are embedded using CLIP, and
an additional classification layer is added to predict the correct answer. Fine tuning CLIP
on CLEVR-Math as a masked language task before adding classification gave no significant
improvements, while consuming significantly more computational resources. CLIP and this
classification layer is trained jointly for 10 epochs with early stopping using a batch size of 64.

NS-VQA [28] is used as the neuro-symbolic baseline. Here, a mask-RCNN [29] is trained
independently to convert an image to a scene graph. In our experiments, we skip this step and
use the actual scene graphs associated with images. The question is parsed into a functional

1https://huggingface.co/datasets/dali-does/clevr-math
2https://github.com/dali-does/clevr-math

CLEVR_v1.0/images/train/CLEVR_new_000010.png
https://huggingface.co/datasets/dali-does/clevr-math
https://github.com/dali-does/clevr-math


program by a sequence to sequence (Seq2Seq) network based on Bi-LSTM. A quasi-symbolic
program executor executes the program generated on the scene graph of the image to return
an answer. The Seq2Seq network is pre-trained in a fully supervised fashion by providing it a
few examples (around 60 examples) of (𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚) pairs. The pre-trained network
is then trained further using REINFORCE algorithm that returns a reward based on whether
the program generated could derive the expected answer or not. Supervised pretraining and
REINFORCE were run for 1000 and 5000 iterations, respectively, with a batch size of 128. Both
CLIP and NS-VQA models were trained on a NVIDIA Tesla P100 GPU computing processor.

Each model is evaluated on each question category, and are trained on 2500, 5000, 10000, and
20000 samples to see the influence of the amount of data. For multihop, training and validation
sets with and without multihop questions are used, with the latter named multihop (0-shot).

4.1. Results

Table 4 shows the accuracy of CLIP and NS-VQA on the different categories as well as an
aggregated accuracy over the entire dataset. Both the models were trained on 10, 000 samples.
NS-VQA performs better than CLIP models for most templates apart from multihop. NS-VQA
performs better on subtraction and adversarial problems (both based on ‘subtraction’ CLEVR
function) than addition problems. This could be because the functional programs for addition
problems always contain a choose operator. It is important to identify the argument to choose
operator from the problem statement (which is mostly one of the numerical quantities in the
word problem) to arrive at the correct answer. Unlike this, there are subtraction and adversarial
problems (in remove group) that do not have a choose operator in the program. Neither of the

Model All Addition Subtraction Adversarial Multihop Multihop (0-shot)
NS-VQA 0.8840 0.9781 0.9948 0.9957 0.286 0.267

CLIP 0.3464 0.5699 0.3019 0.2848 0.272 0.238

Table 4
Accuracy on the CLEVR-Math dataset, shown for each template group and aggregated over all templates.

methods perform well on the multi-hop questions, with a clear degradation in the performance
for NS-VQA. This is because the question parser of NS-VQA relies on a Seq2Seq network that
does not generalize compositionally [30]. CLEVR focus on visual attribute compositionality,
and the multihop reasoning introduces higher demands on linguistic compositionality. When
multihop questions are included in the training and validation data, naturally both methods
improve their performance.

To gain further insight into CLIPs’ performance on CLEVR-Math, Appendix C shows a
confusion matrix from training CLIP on 20 000 samples and evaluating on all question categories.
These results show that most errors made by CLIP is off by ones. This reflects the generative
nature of such models, in how they can get the context correct but sometimes miss out on
details. We also see how CLIP focus on learning in the range 1-5, reflecting that these problems
represent a majority of the problems.

Table 5 shows how different training sizes influence the accuracy. We can see that NS-VQA
achieves high accuracy from relatively few examples and plateaus, which is consistent with



Model 2500 5000 10000 20000
NS-VQA 0.6283 0.8840 0.6795 0.6118

CLIP 0.2918 0.3184 0.3528 0.3464

Table 5
Accuracy over all templates for different dataset sizes.

the original results on CLEVR. It also seems like NS-VQA is overfitting with more data given,
and one hypothesis is that more emphasise is put on the program, but that they are similar
enough to confound NS-VQA. In CLEVR, the different questions were more distinguishable from
a program perspective. CLIP scales with the number of samples, but plateaus at a much lower
accuracy. We note that a larger number of samples could lead to similar performance for CLIP,
but at the cost of more computational resources.

(a) Subtract all small purple matte blocks.
Subtract all blocks. How many objects
are left? was answered by CLIP with 3
instead of 2.

(b) Subtract all red metallic objects. Sub-
tract all yellow objects. How many ob-
jects are left? was answered with 9 in-
stead of 5 by NS-VQA.

Figure 4: Examples of when CLIP and NS-VQA fails on multihop questions.

We randomly sample 20 correct and 20 incorrect answers from the multihop test data for both
CLIP and NS-VQA. Appendix B contains a subset of those samples, and Figure 4 illustrates two
incorrect answers. There are no clear patterns of failures, such as only performing one of the
actions, but we notice multiple instances where CLIP fails to perform overlapping subtraction,
or subtraction when no objects match the description. Another observation is that half of the
20 incorrect answers from CLIP, where on images with only three objects. Scenes with few
objects have a much smaller possible action space associated to it, meaning that there is less
room for error. In Figure 4a, there are no purple matte blocks to remove, so the corresponding
equation is 3− 0− 1 = 2.

5. Conclusions and Future Work

We introduced a new dataset, CLEVR-Math, containing word math problems about visual scenes.
Our results show that the state-of-the-art NeSy model, NS-VQA, achieves higher accuracy on



CLEVR-Math with less data and computational resources, than the neural model, CLIP. This
is further evidence that neural methods, such as CLIP, are lacking in reasoning capabilities,
even after fine tuning. Given that NS-VQA uses perfect scene graphs, the comparison is not
completely fair. We still expect the results of learning end-to-end to be consistent with the
current results in alignment with the original results on CLEVR for NS-VQA.

CLEVR-Math successfully introduces a focused benchmark for learning and reasoning in
multimodal data. There are a few natural extensions to this work, both on further development
of the dataset and on evaluation. Extending the benchmark to answers outside of the range
0-10 would provide a more challenging domain, and providing scene graphs for each step of the
reasoning chain could open up for other methods. The empirical results show that neither of
the models could generalize to chained actions. Hence, it is also of research interest to design
neuro-symbolic models where language perception is tackled in a more generalizable manner.
Focus should lie on the representations (symbols) that are learned. Other interesting directions is
to introduce a representation that is manipulated internally according to the actions as they are
read. Adding longer chains of operations, or chains with alternating subtraction and addition,
would put even more emphasise on the reasoning capabilities. Finally, there is an opportunity
to add confounding information to test the robustness, e.g. by associating each shape with a
fixed color during training and randomise it during testing.
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A. Examples

Figure 5c show some examples of questions from different templates in CLEVR-Math.

(a) Subtract all gray cylin-
ders. Subtract all gray
cubes. How many
cylinders are left? (3)

(b) How many cyan cubes
must be subtracted to
get 1 cyan cubes? (1)

(c) Subtract all purple
cylinders. Subtract all
yellow blocks. How
many cylinders are
left? (1)

(d) Add 2 large cubes.
How many objects
exist? (5)

(e) Subtract 4 cylinders.
How many cylinders
are left? (0)

(f) Subtract 0 brown
blocks. How many
objects are left (8)

Figure 5: Samples from the test set of CLEVR-Math.



B. Incorrect answers on multihop questions

B.1. CLIP

Figure 6 shows random samples of when CLIP fails to answer multihop questions correctly.

(a) Subtract all small purple matte blocks.
Subtract all blocks. How many objects
are left? was incorrectly answered
with 3 instead of 2 by CLIP.

(b) Subtract all tiny balls. Subtract all big
matte blocks. How many objects are
left? was incorrectly answered with 3
instead of 2 by CLIP.

(c) Subtract all spheres. Subtract all big
green shiny cubes. How many objects
are left? was incorrectly answered
with 4 instead of 5 by CLIP.

(d) Subtract all tiny shiny balls. Subtract
all purple objects. How many objects are
left? was incorrectly answered with 4
instead of 8 by CLIP.

(e) Subtract all tiny rubber blocks. Subtract
all big cyan rubber things. How many
objects are left? was incorrectly an-
swered with 5 instead of 4 by CLIP.

(f) Subtract all gray balls. Subtract all
small cylinders. How many objects are
left? was incorrectly answered with 3
instead of 2 by CLIP.

(g) Subtract all gray balls. Subtract all
small cylinders. How many objects are
left? was incorrectly answered with 3
instead of 2 by CLIP.

(h) Subtract all large cyan objects. Subtract
all small rubber blocks. How many
objects are left? was incorrectly an-
swered with 3 instead of 1 by CLIP.

(i) Subtract all spheres. Subtract all cyan
things. How many objects are left? was
incorrectly answered with 3 instead of
2 by CLIP.

(j) Subtract all big green cylinders. Subtract
all big blue cubes. How many objects are
left? was incorrectly answered with 5
instead of 8 by CLIP.

(k) Subtract all brown things. Subtract all
large red spheres. How many objects are
left? was incorrectly answered with 3
instead of 1 by CLIP.

(l) Subtract all gray objects. Subtract all
big green objects. How many objects are
left? was incorrectly answered with 4
instead of 6 by CLIP.

Figure 6: Sampling of incorrect answers by CLIP on multihop.



B.2. NS-VQA

Figure 7 shows random samples of when NS-VQA fails to answer multihop questions correctly.

(a) Subtract all large purple objects. Re-
move all green metallic objects. How
many objects are left? was incorrectly
answered with 7 instead of 8 by NS-
VQA.

(b) Subtract all red metallic objects. Sub-
tract all yellow objects. How many
objects are left? was incorrectly an-
swered with 9 instead of 5 by NS-VQA.

(c) Subtract all tiny green metallic cubes.
Subtract all large brown blocks. How
many objects are left? was incorrectly
answered with 0 instead of 2 by NS-
VQA.

(d) Subtract all small red objects. Subtract
all tiny metal cylinders. How many
objects are left? was incorrectly an-
swered with 6 instead of 8 by NS-VQA.

(e) Subtract all cylinders. Subtract all pur-
ple objects. How many objects are left’?
was incorrectly answered with 7 in-
stead of 3 by NS-VQA.

(f) Subtract all blue metal cylinders. Sub-
tract all gray objects. How many ob-
jects are left? was incorrectly answered
with 1 instead of 2 by NS-VQA.

(g) Subtract all large rubber spheres. Sub-
tract all blue blocks. How many objects
are left? was incorrectly answered
with 3 instead of 2 by NS-VQA.

(h) Subtract all big gray blocks. Subtract all
large cylinders. How many objects are
left? was incorrectly answered with 4
instead of 6 by NS-VQA.

(i) Subtract all tiny blocks. Subtract all
small balls. How many objects are left?
was incorrectly answered with 4 in-
stead of 3 by NS-VQA.

(j) Subtract all small purple blocks. Sub-
tract all matte objects. How many ob-
jects are left? was incorrectly answered
with 7 instead of 3 by NS-VQA.

(k) Subtract all tiny red rubber objects. Sub-
tract all small blue balls. How many
objects are left? was incorrectly an-
swered with 2 instead of 1 by NS-VQA.

(l) Subtract all cyan cylinders. Subtract all
small rubber objects. How many objects
are left? was incorrectly answered with
6 instead of 5 by NS-VQA.

Figure 7: Sampling of incorrect answers by NS-VQA on multihop.



C. CLIP confusion matrix

Figure 8 shows a confusion matrix indicating that CLIP is learning something for all labels. It
also shows that when an answer is wrong, it is off by one. The confusion matrix also reflects
the distribution over answers, showing that most answers are considered by CLIP to lie in the
range 1-5.

Figure 8: Confusion matrix for CLIP trained on 20 000 samples.
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