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Abstract. The aim of reference model mining is to support the efficient 

execution of process instances. Social network analysis has a great potential for 

reference model mining as it reveals social and functional relations, which are 

critical for the efficiency of collaborative business processes. This study 

demonstrates and evaluates an approach to applying social network analysis to 

a human aspect of reference model mining. The approach is based on a dynamic 

performer network, which is an evolving social collaboration network in a 

knowledge-based organization. For this purpose, agent-based simulation is 

applied to a longitudinal dataset concerning researcher collaboration in an 

internationally renowned 'center of excellence' for industry-oriented research in 

the field of artificial intelligence. The resulting performer network can be used 

as a reference model for efficient researcher collaboration, and it is reusable for 

future process execution of similar organizations.  

Keywords: Reference Model Mining, Human Aspects of BPM, Researcher 

Collaboration. 

1 Introduction 

One important requirement for individuals who participate in a multitude of business 

processes is the availability of business process models which can be executed 

efficiently. A reference model should represent an efficient and reusable 

implementation of processes in an organization, simplifying internal structures to 

reduce the complexity and resources needed for business process mining [1], [2]. Our 

research community ignores the influence of social collaboration between people 

working on processes, called “performers” in the following. Since business processes 

entail social processes, it becomes essential to employ social network analysis for 

reference model mining in the knowledge work domain. Previous research on 

collaboration around knowledge-based processes in the field of business process 

management are the following: Tomasello and colleagues [3], [4] investigate the 

formation and performance of collaboration networks by evaluating over time the link 

formation events involving a knowledge flow between the collaborating parties. [5] 

introduce a method to interpret the workflow using social networks inferred by 

interviews and questionnaires with employees. The authors seek to identify gaps 

between the management view on processes and their actual execution. [6] introduce 

a concept for the derivation of a reference process model from knowledge-based 
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process models. Thereby, a performer network with topological success structures, 

holding for a corpus of given process models denotes a reference process model. [7] 

introduce the concept of "generated performer networks" for optimizing the efficiency 

of process models to determine "topological success properties" applying agent-based 

simulation on a given event-driven process chain.  

Originated on the static performer network concept of [6], we introduce a 

procedure to derive a reference model from a process execution observed in a 

knowledge-based organization. This reference model consists of a reference social 

collaboration topology that should be similar to a real organization, independent of an 

organization-specific performer assignment to process functions. The reference model 

is able to explain the evolvement of the past organization and to show its re-usability 

by predicting the organization’s future evolvement concerning social collaboration 

topology and efficiency. The paper is structured as follows: First, we describe 

fundamental terms and methods, then we explain our approach; this is followed by the 

evaluation of our concept with the experimental design, its evaluation and the 

discussion of our findings. Subsequently, a conclusion brings this work to a close. 

2 Performer Networks 

Social network analysis (SNA) investigates similar social structures in organizations, 

especially in the communication behavior between individuals, applying mainly 

methods of graph analysis [8]. SNA should be applied on aggregated data when 

increasing the observation scales [9]. In addition, structural network properties are to 

the fore towards the outcome of the actual human relationships [11]. Hence, the social 

topology of people has, traditionally, a greater impact on the result of their 

collaboration than certain aspects of their collaboration such as e-mailing frequency, 

sympathy or locations. Many SNA theories and studies are based on simplified but 

plausible and broadly examined social structures, particularly the formation of 

clusters/groups, the emergence of hierarchy, sparsity and short paths [9], [12]–[15]. 

A process model (short PM) is represented as an event-driven process chain. This 

is a directed graph structure, consisting of a set of edges that indicates an order 

between a set of process functions and operators. Each process function has a label, 

which is an expression in natural language and describes the action(s) to be done at 

this point in the process flow. Events and other (meta) information that might be 

provided is not considered. A performer network (short PN) extends a PM by a social 

network of collaborating performers. Performers are agents working on process 

functions with a set of capabilities in a PN. Capabilities for the purposes of this study 

are simplified as a set of mappings between a process function and a number 

indicating the extent of being capable/efficient to work at this function. Every 

mapping in [0;1] is possible, even mappings with nonexistent functions in order to 

represent ineffective performer/capability combinations. PNs are formalized as social 

networks which contain performers as nodes having a unique ID, social connections, 

capabilities and the ability to work at a process function to which he is assigned to; 

and two kinds of edges: social edges that connect performers and functional edges 

that connect performers with process functions (assigned_nodes). The other arrows 
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are process edges, connecting process nodes. Additional definitions: A path is a 

sequence of edges that connects two nodes. The degree of a node is the number of 

directly connected neighbors. The mean degree of a PN is the averaged degree over 

all performers. The average clustering coefficient is the actual number of edges 

between an agent’s neighbors divided by its possible number, averaged over all 

performers. A PN’s density is defined as 
2𝑚

(𝑛(𝑛−1))  
 with n the number of performers 

and m the number of social edges in the PN. 

[16] see process efficiency as time and money saving potential for the process 

execution. [16] require, all processes to follow a sequence of tasks over time 

timepoints. From a resource-oriented perspective, efficiency can be seen as the 

minimal use of resources for a certain goal. A comparable definition for the efficiency 

of an organization is summarized by [17], defining the term "organizational 

effectiveness" as more than a financial profit but also as an efficient work of 

employees and managers for the outcome of the organization. Social collaboration is a 

resource in the scope of organizational structure. In the context of process execution 

in an organization, a goal is the completion of a sequence of tasks that is based on the 

process design. The time needed for the goal to be reached depends on the 

coordination of the actors participating in the effort to complete the tasks. Other 

resources that cannot (inter)act autonomously such as inanimate goods (steel, paper 

etc.) can be assumed to have a constant influence on the goal achievement as they can 

only be used and not contribute an effort. This means that only actors can influence 

their utilization. Actors in turn need collaboration to utilize resources, especially if 

different resources require different capabilities to deal with them. As an indicator for 

the impact of hierarchy on a PN, we measure the number of key performers for each 

year. A key performer is, adopted from the hub definition by [18], defined as an 

individual with a degree over three standard deviations above the mean degree. 

Hierarchy is constituted by a very small minority of key performers, standing against 

a vast majority of performers with a degree around the mean degree. This structure is 

often observed in real social networks [13]. 

A formal and quantitative effort/efficiency definition of a PN is introduced and 

explained in detail by [7] and [6] as an algorithm based on social network analysis 

and agent-based simulation: The efficiency of a PN can be computed and optimized 

only in combination with a PM or a set of PMs. Efficiency in this formal context 

means how little effort the performers need to undertake to complete one or several 

tasks simulated simultaneously through a given PM. The effort for the performers to 

complete the tasks is the sum of capabilities needed by the performers to reach the 

tasks effort function by function following the process control flow. Neighboring 

performers help each other with half their common capability. PN effort describes the 

sum of effort for the whole PN to complete all tasks. The efficiency of a PN in 

combination with a PM, called “PN efficiency”, is defined on the basis of [7] as 1-

PNeffort/(max_effort) with max_effort as the maximal possible PN effort referring to 

a PN consisting of only one incompetent performer, who has a universal capability of 

0.1, assigned to all process functions. The PN efficiency definition punishes a PN 

with many capable performers. A different definition of efficiency, which we outline 

as activity intensity, comes from [3], [4] as the number of collaboration events (tasks 
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in our context) on which an agent worked in a time window in ratio to the total 

number of collaboration events involving all agents in the network in the same time 

window, averaged over all agents. Finding an efficient PN around PM(s) requires 

finding an efficient combination of social topology, functional topology and 

capability distribution. We establish a social topology using the power cluster 

network generator by [19] which is an extended version of the Barabasi-Albert model 

[12] that replicates all of the plausible social structures mentionned above. This 

network generator was tested by [7] to be very effective for generating efficient PNs 

around a variety of process models. 

3 Approach 

Our goal is to optimize the efficiency of the social collaboration topology, measured 

by means of PN efficiency [7], to let a set of performers collaborate to accomplish all 

pregiven tasks over a period of time. Our approach is based on agent-based simulation 

[20] and social network analysis [21], [22]. For the subsequent experimental design, 

we make the following assumptions for the approach, which are also limitations: 
1. All performers work 100 percent on all of their tasks. They have a constant 

minimal competence for other tasks. 
2. An organization is reduced to performers, tasks, social- and functional assignments. 
3. All tasks follow the same process model; the model topology implies serial and 

parallel work. 
4. All tasks have the same effort of 1.0, simulated or not. 
5. An organization grows at a linear pace in terms of number of tasks and performers. 
6. The efficiency of social collaboration is measured with activity intensity [4] and 

PN efficiency [7]. 
7. Time periods are discrete and equidistant, independent of the exact effort needed. 
Algorithm 1.  Simulates a Timeline of Performer Networks (PNT[t : timepoint]) to 
Fulfill a Given Set of Tasks 

With simulateTimeline(initial_Pnumber,tasks) the evolvement of the social links 

between the performers, the distribution of their capabilities and process assignments 

are simulated. initial_Pnumber is the number of performers in initial_timepoint. tasks 

is a set of tasks where a task is a process instance or, in other words, one complete 

execution of a process model. As many performers are created as in the observed 

organization at initial_timepoint. The tasks to do here are those that were done by the 

observed organization at initial_timepoint (tasks[1988]). The procedure of simulating 

the evolvement of social edges is based on the extension of the BA model by [19].  

Now, the particular tasks are simulated through the generated PN following the 

approach of [7]. Therefore nesesary capabilities are distributed over the performers 

(distributeCapabilities). Every performer’s capability for a process function is normal 

distributed with N(0.5,1) and constrained co-domain to [0;1]. This gives every 

performer a chance of 65.5 percent to be more competent than the minimum 

competence of 10 percent. The assumption here is that every employee has always a 

minimal knowledge of all process functions. Thus, the flexibility of employees in 

organizations to substitute other colleagues is taken into account. Next, the performers 
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are assigned to the process functions (assignPerformers). Thus, a performer can pick 

his process assignment according to his best capability and other assignments with the 

probability proportional to the extent of the corresponding capability. With 

distributeTasks(tasks, performers), now the tasks are uniformly distributed over the 

performers, so that each task is assigned to 
|𝑡𝑎𝑠𝑘𝑠|

|𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟𝑠|
 performers. Then, 

optimizeEfficiency determines and optimizes/minimizes the PN effort of the PN at that 

time point with the implementation of [7] and [6]. The optimization reestablishes the 

social edges by tuning the network generation parameters from [19]. In the next step, 

the algorithm continues with the next time point (initial_timepoint + 1) in which a 

new performer network is generated. 

4 Experimental Design 

We implemented our approach into a Java-based research prototype. The hardware 

configuration for the execution of the evaluation scenario comprises 64 AMD 

Opteron(TM) 6272 processors @ 1.40GHz and 16GB of RAM. As an evaluation 

scenario, we employ all scientific publications of the German Research Center for 

Artificial Intelligence from its foundation with 12 authors in 1988 until 31.12.2017. 

The organization is the biggest research center in the area of artificial intelligence 

worldwide, both in terms of number of employees and of external funds; it belongs to 

Germany’s prestigious "Centers of Excellence". According to the most recent data, it 

has 480 highly qualified researchers and 376 graduate students from more than 60 

countries; they are working on 180 research projects. Many of those research projects, 

which produced a total of 7520 scientific publications, written by a total of 6704 

authors, are co-operations with industry.  

The number of publications rose from 8 in 1988 to 370 in 2017, with an annual 

average increase of 12.48 (standard deviation: 41.82). The PM in figure 1 describes 

the minimal requirements for the typical publishing research papers process which are 

explicitly documented in the organization. Only authors are performers. Each 

Fig. 1.  Process Model for Research Publication 
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publication is a task for the performers to fulfill. With simulateTimeline(12,tasks), for 

each publication, a PN is derived from the present co-authorship data (not with the 

social network generator) consisting of the authors involved and the year of 

publication. The set tasks corresponds to all 6904 publications mentionned above. The 

first PN has 12 performers as there were 12 authors in 1988. For each year, 

performers are connected if they are co-authors. As a result, we have a timeline of 

PNs consisting of one PN of all co-authorships for each year. In the following, this 

timeline is called “observed PNT”. simulateTimeline(12,tasks) is also executed in the 

same parameterization but with generating the social edges. The result is referred to 

as reference PNT. To pronounce the design implication again, both PNTs are 

simulated with simulateTimeline, each with the same assumptions. 

In order to validate, the results of our experimental evaluation scenario must be 

reproducible (reliability), must explain the model quality (internal validity) and must 

produce a result that is generalizable/transferable (ecological validity) [23]. The 

reliability is reached by test-retest, the repetition of all PN efficiency simulations 

within the approach. The model quality is quantified by the statistical effect between 

the starting parameters and the model parameter evolvement. For proofing the 

generalizability of the approach, the significant correlation between both efficiency 

measures (see section 2) of the observed PNT and the generated reference PNT has to 

be shown. We also predict the organization’s future evolvement by the same 

procedure as the reference PNT is developed. For the prediction, the observed PNT 

from 2010 until 2017 forms the basis for the reference PNT to be evolved from. The 

prediction is limited to 2022 as our memory capacity is reached at this point of 

computation effort. 

5 Evaluation 

The scenario described above yields two simulation results, observed- and the 

reference PNT, both covering the timespan in which the evolved organization existed. 

As stated in section 1, we want to explain the evolvement of efficiency in the 

observed organization with a reference PNT, generated by the simulation described in 

section 3. Figure 2 compares activity intensity, PN effort and PN efficiency between 

reference (ref) and observed (obs) PNT over time. Topological properties (average 

clustering, density and mean degree) between reference and observed PNT are also 

compared. The average slopes of all efficiency values and the topological properties 

have, over all years, the same sign. The PN effort for the task execution correlates 

with the number of tasks over time (r = 0.97, p < 0.01) for both PNTs. The PN effort 

increases for both PNTs but is much greater for the observed PNT. In the observed 

PNT, density and PN efficiency correlate with r = −0.99 (p < 0.01). This correlation 

for the reference PNT amounts to r = −0.91 (p < 0.01). The correlation between 

activity intensity and PN efficiency in the observed PNT amounts to r = 0.49 (p < 

0.01). The same correlation for the reference PNT amounts to r = 0.35 (p < 0.05). The 

independence of the PN efficiency from individual time windows has to be ensured 

because we want to show that the efficiency of performer collaboration depends on 

the social collaboration structure and not on the arrangement of single time windows. 
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Fig. 2.  Reference (ref) vs Observed (obs) Performer Network Timeline with Fit Line 

Therefore, we tested hypothesis that the mean of all PN efficiency values for each 

time point is significantly different to the rolling mean over all possible time windows 

of a 3-years width. The hypothesis was rejected with p < 0.05. The number of key 

performers evolve almost linearly over time in the observed and the reference PNT. 

On average per year, the number of key performers grows by 0.21 (standard 

deviation: 9.6) in the observed PNT. In the reference PNT, 0.1 key performers 

supervene as a mean (standard deviation: 1.74). The more tasks are to be done, the 

more key performers appear in both PNTs. For both PNTs, the following variables 

have an impact on the number of key performers (in descending order): tasks, PN 

effort, activity intensity. All influences are strongly positive r > 0.7 (p < 0.05). The 

PN efficiency has no significant influence of r = 0.25 (p < 0.1) on the number of key 

performers for the observed and the reference PNT. This insignificance is caused by 

the PN efficiency to suddenly and over-linearly increasing with more than 2 key 

performers. 

We predict the organization’s future evolvement from 2010 until 2022 and 

compare it to the observed evolvement in the same time window. The observed PN 

efficiency stays almost constant at 0.9999 between 2010 and 2017. Our predicted 

PNT becomes 0.0003 percent more efficient over time. The activity intensity 

increases linearly over time for the observed and the predicted PNTs. The absolute 
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values however are different. In our prediction, the activity intensity is always greater 

than 0.93, whereas the observed activity intensity lies between 0.0003 and 0.0007. 

The PN effort decreases from 6384 to 4905 in our prediction. In the observed PNT, 

the PN effort ranges from 25096 to 36756. The average clustering coefficient in the 

predicted PNT is on average 123 percent higher than in the observed PNT between 

2010 and 2017. Density is falling from 0.0061 to 0.0057 in the predicted PNT and 

increasing from 0.02 to 0.03 in the observed PNT. The average mean degree increases 

by 0.002 percent for the predicted PNT and 33 percent for the observed PNT. 

6 Discussion 

Activity intensity and effort increase almost linearly for the observed and reference 

PNT which means that the reference PNT reaches, for each point in time, an equal or 

even higher efficiency reached by a lower effort than the observed PNT. All topology 

parameters, as they are plotted in figure 2, indicate the same slope over time for the 

observed and reference PNT. The mean degree for the observed PNT increases 

linearly over time while its reference counterpart reaches its maximum already after 

10 years. For both PNTs, the density decreases over time and correlates with the 

increasing PN efficiency. The density in the observed PNT is much greater than in the 

reference PNT for all time points while the density within the observed clusters is 

much higher than in the reference clusters. The reference PNs have sparse clusters, 

which are but densely inter-connected. Because of the significant correlation between 

density and PN efficiency, the density of inter-connection between clusters drives the 

collaboration efficiency, more than the intra-connectivity of teams. The significant 

correlation between activity intensity and PN efficiency speaks for the 

generalizability of our approach as both efficiency measures indicate an increase of 

effective collaboration effort. That means, processes in a knowledge-based 

organization can be modelled efficiently based on the connection of social and 

functional reference topologies found by this approach.We predict the organization’s 

future evolvement until 2022. The positive evolvement of activity intensity and PN 

efficiency over time indicates the evolvement of an efficient social topology around 

the publication process based on the observed PN in 2017. During the same period, 

the PN effort decreases in the predicted PNT, in contrast to the observed PNT.  

Our explanation for this contrast is the PNs in the predicted PNT to have much 

more social edges between clusters than the observed organization has. Meanwhile, in 

the observed organization, on average, more key performers appear than in our 

reference PNT. That implies the observed performers reached their tasks with a 

similar efficiency but with more PN effort and more densely connected key 

performers. Our reference PNT, including the predicted PNT, reaches a smaller PN 

effort by more social edges between clusters. That way, less collaboration effort 

respectively fewer social edges are needed between the performers at a common 

process function to be efficient. The key performers seem to play an important role in 

the organization’s collaboration coordination. Most key performers are managers, for 

example research group leaders, which means that the team-overarching cooperation 

between managers is a critical structure for efficiency. This means, that the social link 
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generation from our PNT simulation procedure (see algorithm 1) can be used to 

reproduce an efficient collaboration topology in an evolving knowledge-work 

organization. Our PN simulation can thus be seen as a reference for the efficient 

placement of personal around a process to be executed in an evolving organization. 

Translated into a recommendation for modelling efficient collaboration, a performer 

network should attract more team members around managers and become less dense 

over time. This evolvement is supposed to lower the costs for social communication 

by shorting paths in a growing organization. 

Our assumptions for the PN efficiency simulation, the simplification of the co-

authorship process and the constrained generalizability of the co-authorship towards 

knowledge-based business processes in general entail limitations of our PN model and 

our findings. The social environment of the authors, their resource/knowledge 

allocation and transfer are not taken into account. In addition, our approach has no 

explicit time limit for the end of the PNT. This means that the simulated organization 

can take a longer or a shorter time to complete all given tasks. 

7 Conclusion 

In this paper, the performer network concept of [7] is applied on a set of tasks 

executed by real collaborative knowledge workers in order to generate a dynamic 

performer network that completes the given tasks efficiently. By the comparison of 

the performer network efficiency to a different measure of collaboration efficiency, 

the activity intensity [4], topology structures of collaboration, similar to the observed 

over time, were replicated. We tend to regard the performer networks replicating this 

topology as generalizable references, which may be used by practitioners as 

guidelines for inferring efficient performer networks around process models of other 

knowledge working organizations. Furthermore, our approach can quantify the trade-

off between team size vs density vs hierarchy vs efficiency-critical social links for the 

(re)design of processes in such organizations. In particular, this includes the practical 

issue of determining the number and position of team/division leaders and 

knowledge/information transfer hubs necessary for a certain process. Applying our 

"reference topology", this issue can be resolved before the process is even established. 

Thus, the risks and costs for the process execution become more transparent and 

controllable. 

In future work, we aim to compare our results to further real-world performer 

networks by using a larger and more diverse data set such as evaluating event logs of 

the execution of business processes. In particular, we want to understand how exactly 

process model topologies affect the performance of the assigned performers.  
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