
OntoGrapher: a Web-based Tool for Ontological
Conceptual Modeling

Alice Binder, Petr Křemen

Faculty of Electrical Engineering, Czech Technical University

Abstract. Conceptual models have traditionally been tools for sharing
understanding of system’s structure and behaviour with others. Although
this is still the main use-case, some works have already shown usefulness
of their machine readable form to derive data schemata, system documen-
tation, as well as semantic vocabularies of the given system or domain.
In this work we present OntoGrapher, a visual web-based tool for con-
ceptual modeling based on the OntoUML conceptual modeling language.
The tool accepts and produces machine readable outputs in the form of
OWL ontologies and SKOS thesauri. We show its main features, benefits
as well as use-cases in which the tool has been successfully applied and
include a hands-on demo of the tool. Finally, we perform user testing
evaluating the tool. A roadmap for the tool’s future development is laid
out based on the testing results and already planned features.

1 Introduction

Conceptual modeling is a traditional discipline of system and data engineering.
Although there exist various languages for conceptual modeling (like E-R mod-
els [4], Archimate [5], or UML [13]), most of them are aimed at visual represen-
tation of the conceptualization to be shared among domain experts, IT experts
and other stakeholders. Complex conceptual models are prone to errors which
are difficult to detect (e.g. rigid types Person, Company being subtypes of anti-
rigid/contingent type PropertyOwner). To tackle such problems, OntoUML, an
ontology-based conceptual modeling language has been introduced [8]. Although
a few OWL serializations for OntoUML have been introduced [3], to the best of
our knowledge there is no tool allowing to create interlinked OntoUML models
using SKOS [10] and OWL [12] as their native formats. This significantly limits
the knowledge reuse by machines and integration into the current linked data
stack. Now, let’s briefly introduce the overall scenario where the need for such
tool a comes from.

1.1 Scenario: supporting public sector data management in Czechia

The Ministry of the Interior of the Czech Republic and the Department of the
eGovernment Chief Architect is responsible for the design and optimization of

sergioguerreiro
Typewritten Text
Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



2 Alice Binder, Petr Křemen

digital services as well as for the coordination of the design of the data and infor-
mation architecture across the Czech government. As part of its agenda, it main-
tains the necessary eGovernment legislation comprising thirteen key acts. These
include e.g. the Basic Registry Act No. 111/2009 Coll., the Act No. 365/2000
Coll., on information systems of the public administration, and Act No. 106/1999
Coll. on Free Access to Information. In 2018, they created a non-legal document
Information Concept of the Czech Republic, a vision of the Czech public sector
data and services, which is further detailed in several other documents – the
National Architecture Plan and the National Architecture Framework and also
the eGovernment vocabulary. The latter lists selected concepts from the afore-
mentioned laws, as well as from the Czech norms, together with custom concepts
defined by the Department of the Chief Architect.

The terminology in the public sector often stems from the legislation, which
contains many well defined terms. However many others are not well defined, yet
heavily used. Open data stand on the opposite side. Often, they are just selec-
tions of data existing in governmental information systems - yet the connection
between the open data, the data in the original information systems and the
requirements given by legislation is missing. This complicates checking how well
they reflect the legislation, whether there is a novel requirement to publish new
open data, or what is the correspondence to the data in the original information
systems.

To support answering such questions related to auditability of open data, a
data schema management process has been designed, as depicted in Figure 1.

Fig. 1. From legislation to data schemas.

The process is based on open semantic web standards, an obvious benefit
of which are the (linked) open data principles, so that institutions can commu-
nicate not only more efficiently, but also more transparently with citizens and
organizations. In order to do so, the meaning of open data (its entities, relations



OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 3

and attributes) needs to be conveyed to the consumers as well. Various legal
concepts, requirements, processes, and relationships or distinctions between the
aforementioned concepts have to be abided by.

The process expects involvement of domain experts who are able to identify
key concepts, knowledge modelers who are able to design a formal ontology on
their top, publish it as linked data and create data schemas out of it. Finally,
clerks help to fine-tune the automatically generated forms and curate the open
data collected through these forms.

For the rest of the paper, let’s zoom in to the details of the conceptual model
creation with OntoGrapher.

2 OntoGrapher

With the requirements mentioned in section 1 in mind, we introduce OntoGra-
pher as a tool for clerks with background in conceptual modeling (or domain
experts keen to get it), but not necessarily versed in OWL1. In particular, On-
toGrapher has the following goals:

– offer a collaborative web-based conceptual modeling environment for domain
experts,

– accept SKOS terminologies on input and produce OWL ontologies on output
without requiring users to understand either of these standards,

– track the source of entities, relations and attributes in conceptual models
stemming from multiple vocabularies (e.g. laws).

As a result of these requirements, OntoGrapher is implemented as a web
application with the following key features:

Interaction with online services OntoGrapher uses and manipulates data
from triple stores with RDF4J APIs, authenticates the user with OpenID
Connect-compatible servers, and is designed to be an online application from
the ground-up. This streamlines the overall process of managing, sharing
and publishing vocabularies, since users don’t have to import them into a
dedicated desktop application and any changes are stored on a server - ready
to be published whenever the user is ready to do so.

Artifact export In addition to modifying thesauri and ontologies in-place, the
application is capable of exporting the view of the model (as arranged by
the user) in either PNG or SVG formats.

Customizable visualization options i.e. concepts can be visualized using
SKOS preferred or alternative labels. Also, diagrams can be visualized in
E-R model syntax or a more compact UML-like syntax.

1 see the web page of the acknowledged grant project,
https://data.gov.cz/english/ or the project’s GitHub repositories at
https://github.com/opendata-mvcr. An up-to-date Czech version is available at
https://data.gov.cz.

https://data.gov.cz/english/
https://github.com/opendata-mvcr
https://data.gov.cz


4 Alice Binder, Petr Křemen

OntoUML Support The tool supports categorization of concepts using On-
toUML [8] stereotypes to give basic ontological distinctions to the concepts.

Data validation To validate the model against OntoUML constraints and qual-
ity rules (e.g. presence of a label in a predefined language, minimal length
of definition, etc.), the user can take advantage of a validation service. The
service checks the vocabularies’ data consistency.

2.1 Workflow

Fig. 2. Example workflow of modifying the central repository’s vocabularies. First, the
user selects vocabularies they want to edit (or create). The selection is then passed to
OntoGrapher. After the desired changes have been made, the resulting data is intro-
duced as a PR to the repository, requiring manual review.

At its core, OntoGrapher takes SKOS thesauri (representing identified con-
cepts for which conceptual models do not exist yet) and OWL ontologies (rep-
resenting already created conceptual models), visualizes them, and manipulates
them. The changes that users make are saved in real-time to a triple store. In ad-
dition, OntoGrapher commits its own specific data (element positions within the
graph, diagram names, etc.). OntoGrapher reads the SKOS thesauri and OWL
ontologies from the central repository for Czech government vocabularies2. The
appendix talks about the vocabulary data structure in more detail.

OntoGrapher modifies these vocabularies in a workspace, which is a copy of
a selection of vocabularies, so that changes in the workspace do not modify the
original repository. Workspaces can have multiple vocabularies in them, which is
useful for modifying vocabularies and their complements together (for example a

2 https://slovnı́k.gov.cz



OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 5

Civil law vocabulary and a Marriage registry vocabulary). An example workflow
with workspaces is described in Figure 2.

3 UFO integration

Of particular note is the interplay between OntoGrapher and UFO (Unified
Foundational Ontology; the foundational ontology on which OntoUML is based)
[7]. This is manifested in the (types of) data OntoGrapher works with. More
specifically, all of the concepts created and managed in OntoGrapher are of types
equivalent to UFO types thanks to the basic top-level ontology the concepts are
ultimately subclasses of. OntoGrapher takes advantage of this by, for example,
distinguishing types visually by shape3.

OntoGrapher, as of the time of writing, supports concepts with at most two
stereotypes4, though at least one is required for the validity of the model (de-
pending on the stereotype) as determined by the validation server; (i) Type
stereotypes, which define the ontological nature of the concept - e.g. Object

Type, Event Type - and (ii) OntoUML stereotypes serving to validate the con-
ceptual model itself (e.g. rigidity). There are plans to support more stereotypes
with more varied inferences in the future (see the Future work section below).

To improve the modeling experience, OntoGrapher offers only valid types of
relationships to the user upon relationship creation, based on the stereotypes of
the concepts involved in the given relationship.

4 Demo and the User Interface

A demo instance of OntoGrapher can be run as described at
https://ontographer.github.io/ontographer-demo/. The website contains
instructions to build and run the example as well as a walk-through of the
prepared scenario. In this scenario, the user has been given a single vocabulary
to edit - a vocabulary representing a law regulating the operation of vehicles on
public roads. The aim of the editing effort is to clean up the vocabulary and fix
any inconsistencies that arise. At the end, they should have a vocabulary that
is visually legible, consistent, and comprehensive.

Figure 3 shows the main elements of the user interface. At all times, the user
is presented with the canvas where the concepts and relationships are visualized
along with a panel showing the vocabularies and concepts within the workspace
as well as any concept search results.

An important distinction of concepts is between write-enabled concepts and
read-only concepts. The editability of concepts is determined by the way their
vocabularies entered the workspace - vocabularies that the workspace itself was
created around are write-enabled, but the user can also search and introduce

3 An example of this is shown in Figure 4.
4 By stereotypes, we mean types defined in the aforementioned top-level ontology.

https://ontographer.github.io/ontographer-demo/


6 Alice Binder, Petr Křemen

Fig. 3. Screenshot of OntoGrapher with the ”Drivers and vehicles” workspace (from
the demo) open with Compact view selected. The left panel lists all vocabularies and
concepts in the model, while the right panel details a single selected concept. The
tabs above the work area list diagrams. Concepts are color-coded to their respective
vocabularies. The first vocabulary in order of appearance on the left panel is write-
enabled and the second is read-only (as depicted by pictographs next to their titles).

concepts from the central repository that are outside the workspace. The con-
sequence of the design of workspaces as described in section 2.1 is that these
concepts cannot be edited.

In typical usage, therefore, a given workspace has at least one vocabulary
designated as write-enabled (all its concepts are write-enabled) and can have
other vocabularies that are read-only (all their concepts can be pulled into the
model only as read-only). This means that they can be present in diagrams and
manipulated visually, but their details or relationships can only be viewed, not
edited. The demo uses this to find possibly redundant concepts that already
exist in another vocabulary.

In addition to manipulation of their visual representation, write-enabled con-
cepts allow editing of their various details, such as synonyms, and creation of
relationships originating from those concepts. Concepts can of course also be
deleted or created as part of a selected vocabulary.

The editing of concept and relationship attributes is done with clicking on
the given element, which brings up another panel detailing all information about
the element. The user can edit/view cardinalities, labels, display label (a selected
pref/altLabel that a concept/relationship is displayed under in OntoGrapher),
intrinsic tropes, stereotypes, and more. They can also see the list of all rela-
tionships involved with a concept (including outside the workspace) and filter
through them or select which concepts related to a concept should be shown.



OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 7

This enables showing only intrinsic tropes of a concept easily in the demo sce-
nario.

Model elements are arranged into one or more diagrams, which are distinct
”sections” of the entire model, containing some or all of the concepts and re-
lationships within. It is not necessary for a concept in the model to be in any
diagram; also, a single concept can be in multiple diagrams, as it is just an
OntoGrapher-specific construct. Multiple diagrams are used in the demo to or-
ganize the large and complicated model into smaller sections.

Fig. 4. Screenshot of OntoGrapher with the ”Drivers and vehicles” workspace open
with Full view selected. The data shown is the exact same as from Figure 3 - intrinsic
tropes and relators are presented as concepts of their own, reflecting faithfully the
underlying data structure.

There are two available views with which to visualize the diagram. Full view
shows all connections and concepts as they are present in the data; i.e. all con-
nections and concepts of all stereotypes. This is useful for experienced model-
ers, but may be undesirable to those who do not necessarily need the complete
”behind-the-scenes” description of the model and want to focus on more con-
ceptual modeling that OntoGrapher can provide. Compact view shrinks reified
relationships into individual edges and aggregates concept tropes into the con-
cepts themselves rather than displaying them as separate concepts connected to
the given concept. Figures 3 and 4 display the same model in Compact and Full
view, respectively.

During the process of modeling, several concepts and relationships may have
been created, edited and deleted. To ensure validity of the conceptual models,
OntoGrapher uses a validation service to check for consistency of the result-



8 Alice Binder, Petr Křemen

ing model. The validation service uses SHACL[1] to check for consistency of
completeness of labels/definitions, etc. Furthermore, it evaluates the OntoUML
constructs by translating them to SHACL constraints. If there are any incon-
sistencies, OntoGrapher highlights the offending concepts so that the user can
easily remedy any issue. An example constraint t7 from [8]:

Example 1.
¬∃x, y(Rigid(x) ∧AntiRigid(y) ∧ x v y) (1)

is expressed by the rule

j-sgov-obecný:m6

a sh:NodeShape ;

sh:severity sh:Violation ;

sh:message "A Rigid type (e.g. Kind) must not be specialized

from an Anti-rigid one (e.g. Role)."@en ;

sh:targetClass z-sgov-pojem:rigid;

sh:property [ sh:path rdfs:subClassOf ;

sh:qualifiedValueShape

[ sh:class z-sgov-pojem:anti-rigid ] ;

sh:qualifiedMaxCount 0 ] .

Rigid(x) and AntiRigid(x) are expressed in the data as classes defined in the
z-sgov-pojem top-level ontology for the central repository, which describes all
basic classes for concepts as well as connections between concepts.

5 User testing

In order to systematically assess the user experience of OntoGrapher, user test-
ing has been devised. The test consists of three parts: first, an assessment of
the participant’s experience with OntoGrapher, Semantic Web technologies and
conceptual modeling, then, a short scenario (about 10-15 minutes; different to
the one in the Demo section) is presented in which participants complete tasks
that demonstrate a vertical slice of the application’s functions. Lastly, partici-
pants’ impressions are collected. The last part also contains questions through
which the System Usability Scale [2] can be computed.

Six participants have been recruited through notices in communication chan-
nels of the previously mentioned grant project’s members. The number of partic-
ipants who claimed to have at least some knowledge of OntoGrapher, Semantic
Web technologies, or conceptual modeling, is 4, 4, and 5 respectively.

The results of the testing gave OntoGrapher a System Usability Scale score
of 73; as the average SUS score is 68 [2], this means that according to this scale,
OntoGrapher is above average in user interface usability. All participants, with
the exception of one participant’s attempt to complete one task, managed to
complete all six tasks. 27 percent of task attempts were successful, but required
some help from the provided ”cheat sheet” of available actions or took what they
considered an unreasonable amount of time figuring out the process. The rest of



OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 9

the attempts were reported to have been successful without any issues. Table 1
describes the tasks and attempts in more detail.

Task description Done with
no difficulty

Done with
difficulty

Couldn’t do
it

Put concepts from the
selected vocabularies
on the canvas

6 0 0

Search for concepts
outside the selected
vocabularies

5 1 0

Create a relationship
and adjust cardinali-
ties

4 1 1

Create a concept and
adjust concept tropes

3 3 0

Save an image of the
canvas

6 0 0

Create a diagram and
find concepts through
a concept’s relation-
ships

4 2 0

Table 1. Results of the user testing. Each participant has been given a task, after
which they are asked if (and how easily) they completed them. The numbers refer to
the amount of participants (out of 6) that answered a given way for a given task.

The most mentioned issues were with the way the creation of concepts and
relations worked, which two thirds found unintuitive in their impressions after
the testing. Another problem was that participants weren’t absolutely sure what
was being asked of them in the testing. In terms of functions the participants
would have liked the most, the most requested one is the ability to undo changes.

Something to note is that this testing strategy only measures the usability of
the user interface without considering the usefulness of the application in real-life
scenarios - this testing strategy only measures the usability of the application
with regards to the creation of the OntoUML-based conceptual model over mul-
tiple vocabularies without considering the broader scenario of Figure 1. The
whole scenario is currently under testing - together with other tools in the stack
by the Ministry of Interior eGovernment department and other governmental
partners.

6 Related work

This application is not the first effort made to simplify the process of model-
ing OntoUML conceptual diagrams. A significant contribution in this field is



10 Alice Binder, Petr Křemen

by Guizzardi and his team at NEMO5 with the OntoUML lightweight editor
(OLED)6. The project was first released in 2015, along with an accompanying
paper [6].

In the paper, the authors describe the various features of OLED, such as
patterns and anti-pattern checking, OCL constraints[14], model verbalization,
code generation, and more. As far as capabilities, then, the toolset of OLED is
unparalleled compared to OntoGrapher, especially as OLED (and its offshoot,
Menthor Editor [11]) was published before OntoGrapher was ever conceived.

However, as the contributions in the repository mostly ended after 2016 and
the tool is incompatible with the latest Java version (our testing confirmed that it
runs on Java 8, but not 16), the tool seems to be all but abandoned. In addition,
while the number of features is impressive, the application’s user interface is
often unresponsive while using them and sometimes crashes entirely without an
error prompt (even with models with as little as two classes, our testing showed).

The NEMO team has largely moved on to making an OntoUML plugin for
the software engineering application Visual Paradigm7. This allows them to focus
on implementing OntoUML-specific features directly without having to create
a new modeling application base. As a result, the modeling experience is much
smoother and more stable than with OLED.

The plugin offers modeling assistance in UML diagrams, for example filtering
invalid stereotype relationships or validating models and diagrams. The models
can be imported from JSON or exported to JSON or gUFO (a Turtle ontology
file which imports and uses the gUFO base ontology to represent OntoUML con-
structs). Thanks to Visual Paradigm’s ability to store its projects in an online
database, users can collaborate on the model (the database contents are propri-
etary to Visual Paradigm - the aforementioned exports have to be generated by
the client locally).

Another plugin for OntoUML modeling is for the OpenPonk modeling plat-
form8, developed by the OpenPonk team itself. The plugin can be downloaded
directly with the application. While the application is competent with regards
to modeling other classes of diagrams, the OntoUML plugin is quite limited;
it offers the basic stereotypes and relationships with validity and anti-pattern
checking, but the model itself cannot be exported to a format that can then be
processed by anything other than OpenPonk.

OntoGrapher fulfills slightly different needs that the aforementioned solutions
currently cannot; perhaps two of the most important are that the application
should be connected to online services, where its results can be shared or pub-
lished directly without the need to export, and have the ability to receive and

5 Ontology and Conceptual Modeling Research Group - website at https://nemo.

inf.ufes.br/en/
6 The project’s repository is at https://github.com/nemo-ufes/

ontouml-lightweight-editor.
7 Visual Paradigm’s website is at https://www.visual-paradigm.com/. The plugin is

available at https://github.com/OntoUML/ontouml-vp-plugin/.
8 OpenPonk’s website is at https://openponk.org/.

https://nemo.inf.ufes.br/en/
https://nemo.inf.ufes.br/en/
https://github.com/nemo-ufes/ontouml-lightweight-editor
https://github.com/nemo-ufes/ontouml-lightweight-editor
https://www.visual-paradigm.com/
https://github.com/OntoUML/ontouml-vp-plugin/
https://openponk.org/


OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 11

manipulate vocabularies with the wider Czech eGovernment initiative’s speci-
fications, which are a expansion of OntoUML with SKOS thesauri and other
ontological categories.

7 Conclusions and future work

The user testing and general responses from the users of the application revealed
that there are still some issues with regards to the user experience. In addition, as
the tool is still in its prototyping phase, there are still many features to implement
and many design details to improve in order for the tool to progress to a beta
stage. Listed below are several examples of planned features for OntoGrapher:

Support for other formal ontologies The tool is currently tied in part to
the basic top-level ontology of the Czech government vocabularies’ reposi-
tory, which prevents it from being applied in other domains.

Ontology Design Patterns We are working towards implementing an Ontol-
ogy Design Pattern (ODP) language in OntoGrapher. ODPs help engineers
create models more quickly, avoid certain frequently made inefficiencies and
better prepare their models for any future extension or revision. The field of
ODP languages, however, only a few years old and thus support of ODP us-
age with methodological approaches, classification, categorization, standard-
ized distribution or implemented tools is still developing, so implementation
of a language requires development of rigorous theoretical foundations first.

Change tracking Seeing the changes made to the vocabularies in the applica-
tion in a clear and concise way would allow reviewers to work and identify
problems faster. In subsequent development, it could also allow rollback of
specific changes without affecting the rest of the vocabulary/vocabularies.

Modeling guidance While the application does feature validation with an ac-
companying SHACL constraint-checking server, the conflict-resolution and
user guidance features are limited to non-existent. In addition, the user has
to manually call the validation themselves in order to see possible violations.
Some of this could be covered by the implementation of ODPs, but a feature
wherein the validation errors can be resolved automatically/with a simple
wizard or the user is guided through modeling with automatically setting cor-
rect cardinalities/relationships or warning about semantically invalid/anti-
pattern sections (or closing the ability to create such sections in the first
place) would also prove useful.

We believe that OntoGrapher is worth deploying in other contexts, since it en-
ables a workflow in which domain experts do not have to worry themselves with
the specifics of SKOS or OWL, but can focus directly on the creation of concep-
tual models in their domain without extensive help from conceptual modeling
experts while keeping machine readability of the resulting models.



12 Alice Binder, Petr Křemen

Appendix: Vocabulary description

As mentioned in section 2.1, the two main elements representing the model
are (i) SKOS concepts (more specifically, skos:Concept instances9) and (ii)
relationships (compiled as OWL restrictions on certain concepts with a certain
relationship type and of a certain cardinality, when applicable).

All concepts and all connections also should have a type that is from or is
a subclass of the basic top-level ontology to obey validity rules. This ontology
mirrors OntoUML’s classes and extends it with connections and other classes.

The following examples clarify the details of this arrangement. All of the ex-
amples will be represented in Turtle, with syntax highlighting for owl, skos and
the z-sgov-pojem basic top-level ontology, which mirrors OntoUML’s classes
and relationship types.

Example 2. Let’s start with one concept, a Record of birth, which will be defined
in the Birth registry vocabulary.

gov-birth-registry:record-of-birth a skos:Concept,

z-sgov-pojem:typ-objektu;

skos:inScheme gov-birth-registry:scheme;

rdfs:subClassOf gov-registry-offices:registry-record;

skos:prefLabel "Record of birth"@en;

skos:description "A record of a birth of a person

stored in the birth registry office."@en.

This describes the concept as an Object type (with z-sgov-pojem:typ-objektu)
and as belonging to the gov-birth-registry vocabulary (with a
gov-birth-registry:scheme SKOS scheme). The concept is a subclass of Reg-
istry record - another concept10.

Example 3. We could assign a trope to this concept, like so:

gov-birth-registry:record-of-birth

z-sgov-pojem:má-vlastnost

gov-birth-registry:datetime-of-birth.

gov-birth-registry:datetime-of-birth is an Intrinsic trope type class con-
cept connected to our working concept via z-sgov-pojem:má-vlastnost (has
intrinsic trope) - a connection defined in the basic ontology z-sgov-pojem.

Example 4. However, we would also like to describe a more complex connection,
with cardinalities and detailed information about the nature of the connection.
This is a common pattern with these vocabularies, and is expressed with Relator
types and OWL restrictions in the following way:

9 skos: prefix denotes the namespace http://www.w3.org/2004/02/skos/core#
10 All concepts must have at least a preferred label, a SKOS scheme, and a skos:Concept

type to be recognized as a concept. Anything else is, from the standpoint of OntoG-
rapher, optional. Note that having these required attributes does not make a concept
or its connections inherently valid with respect to the validation rules.



OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 13

# "Documents birth event" Relator type

gov-birth-registry:documents-birth-event a skos:Concept,

z-sgov-pojem:typ-vztahu;

skos:inScheme gov-registry-office:scheme;

skos:prefLabel "documents birth event"@en;

skos:altLabel "documents"@en.

# Connection from "Documents birth event" to "Record of birth"

gov-birth-registry:documents-birth-event rdfs:subClassOf

[rdf:type owl:Restriction;

owl:onProperty z-sgov-pojem:má-vztažený-prvek-1;

owl:allValuesFrom gov-birth-registry:record-of-birth],

[rdf:type owl:Restriction;

owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-1];

owl:allValuesFrom gov-birth-registry:documents-birth-event],

[rdf:type owl:Restriction;

owl:onProperty z-sgov-pojem:má-vztažený-prvek-1;

owl:onClass gov-birth-registry:record-of-birth;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],

[rdf:type owl:Restriction;

owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-1];

owl:onClass gov-birth-registry:documents-birth-event;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger].

# Connection from "Documents birth event" to "Birth of person"

gov-birth-registry:documents-birth-event rdfs:subClassOf

[rdf:type owl:Restriction;

owl:onProperty z-sgov-pojem:má-vztažený-prvek-2;

owl:allValuesFrom gov-civil-law:birth-of-person],

[rdf:type owl:Restriction;

owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-2];

owl:allValuesFrom gov-birth-registry:documents-birth-event],

[rdf:type owl:Restriction;

owl:onProperty z-sgov-pojem:má-vztažený-prvek-2;

owl:onClass gov-civil-law:birth-of-person;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],

[rdf:type owl:Restriction;

owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-2];

owl:onClass gov-birth-registry:documents-birth-event;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger].

The example expresses its cardinalites and relationships through OWL restric-
tions, using a Relator type Documents birth event concept mediating between
the two involved concepts. The z-sgov-pojem:typ-vztahu type (Relator) mir-
rors the relator class from OntoUML. The Birth of person concept is from the
Civil law vocabulary. Figure 5 show the model from these examples as presented



14 Alice Binder, Petr Křemen

in OntoGrapher in Compact mode (more on this in section 4). The concepts are
color-coded based on their vocabulary.

Fig. 5. Model from examples 2, 3, 4 in OntoGrapher’s Compact view.

Note that the design of these vocabularies predate OntoGrapher entirely and
the application’s development does not influence the core nature of the vocab-
ularies’ architecture in any way; it is merely adapted to it. More details about
the structure and the reasoning behind choosing it are described in a dedicated
paper [9].

References

1. Shapes constraint language (SHACL). Tech. rep., W3C (Jul 2017), https://www.
w3.org/TR/shacl/

2. Affairs, A.S.f.P.: System usability scale (sus) (Sep 2013), https://www.usability.
gov/how-to-and-tools/methods/system-usability-scale.html

3. Barcelos, P.P.F., dos Santos, V.A., Silva, F.B., Monteiro, M.E., Garcia, A.S.:
An automated transformation from ontouml to owl and swrl. In: Bax, M.P.,
Almeida, M.B., Wassermann, R. (eds.) ONTOBRAS. CEUR Workshop Proceed-
ings, vol. 1041, pp. 130–141. CEUR-WS.org (2013), http://dblp.uni-trier.de/
db/conf/ontobras/ontobras2013.html#BarcelosSSMG13

4. Chen, P.P.: The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst. 1(1), 9–36 (1976), http://dblp.uni-trier.de/db/
journals/tods/tods1.html#Chen76

5. Group, T.: ArchiMate® 3.0 Specification. Van Haren Publishing (2016), https:
//books.google.cz/books?id=SmxpDAAAQBAJ

6. Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: Ontouml lightweight ed-
itor: A model-based environment to build, evaluate and implement reference on-
tologies. 2015 IEEE 19th International Enterprise Distributed Object Computing
Workshop pp. 144–147 (2015)

7. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (Oct 2005)

8. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales,
T.P.: Endurant types in ontology-driven conceptual modeling: Towards ontouml
2.0. In: Trujillo, J., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.
(eds.) Conceptual Modeling - 37th International Conference, ER 2018, Xi’an,
China, October 22-25, 2018, Proceedings. Lecture Notes in Computer Science,
vol. 11157, pp. 136–150. Springer (2018). https://doi.org/10.1007/978-3-030-00847-
5 12, https://doi.org/10.1007/978-3-030-00847-5_12

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://dblp.uni-trier.de/db/conf/ontobras/ontobras2013.html#BarcelosSSMG13
http://dblp.uni-trier.de/db/conf/ontobras/ontobras2013.html#BarcelosSSMG13
http://dblp.uni-trier.de/db/journals/tods/tods1.html#Chen76
http://dblp.uni-trier.de/db/journals/tods/tods1.html#Chen76
https://books.google.cz/books?id=SmxpDAAAQBAJ
https://books.google.cz/books?id=SmxpDAAAQBAJ
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-030-00847-5_12


OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling 15

9. Kremen, P., Necasky, M.: Improving discoverability of open government
data with rich metadata descriptions using semantic government vocabulary.
https://doi.org/10.2139/ssrn.3303148, https://papers.ssrn.com/abstract=

3303148

10. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system refer-
ence. W3C recommendation, W3C (Aug 2009), https://www.w3.org/TR/2009/

REC-skos-reference-20090818/

11. Moreira, J.L.R., Sales, T.P., Guerson, J., Braga, B.F.B., Brasileiro, F., So-
bral, V.: Menthor editor: An ontology-driven conceptual modeling platform. In:
JOWO@FOIS (2016)

12. Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax. W3c recommendation, W3C (oct
2009), http://www.w3.org/TR/2009/REC-owl2-syntax-20091027

13. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1 (August 2011), http://www.omg.org/spec/UML/2.4.1

14. OMG: About the Object Constraint Language Specification Version 2.4 (February
2014), https://www.omg.org/spec/OCL/2.4/

https://doi.org/10.2139/ssrn.3303148
https://papers.ssrn.com/abstract=3303148
https://papers.ssrn.com/abstract=3303148
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027
http://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/OCL/2.4/

	OntoGrapher: a Web-based Tool for Ontological Conceptual Modeling

