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Abstract

As software is getting more complex, the need
for thorough testing increases at the same
rate. Model-Based Testing (MBT) is a tech-
nique for thorough functional testing. How-
ever, MBT cannot perform non-functional se-
curity testing. Fuzzing is a technique for auto-
matically detecting vulnerabilities in software.
Many different fuzzing approaches have been
developed in the last years, ranging from ran-
dom black-box to grammar-based white-box
with structured input. In this research, we
conduct a systematic review of state-of-the-
art fuzzers and perform experiments where
we combine multiple fuzzing approaches with
MBT. Ultimately, we will choose the fuzzer
that performs best, and integrate it into an
MBT toolset.
We reviewed state-of-the-art fuzzing tech-
niques and implementations and composed a
list of candidate fuzzers that can be used
in combination with MBT. We developed
a generic wrapper that enables a model-
based System Under Test (SUT) to be fuzzed
with American Fuzzy Lop (AFL), a popular
general-purpose fuzzer. Additionally, we de-
veloped a dictionary generator, that extracts
basic model information and supplies it to
AFL.
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1 Introduction

As software is getting more complex, thoroughly test-
ing can be a time-intense and expensive task [Tre08].
Therefore, automating functional test generation is of
high relevance. Model-Based Testing (MBT) is an up
and coming technique for automating test generation,
based on formally defined models [ULB+15]. Mod-
els can be expressed in Symbolic Transition Systems
(STS) [FTW06], which allows the specification of data
on transitions in the model.

While MBT is well-suited for functional testing,
non-functional security testing is not covered in this
approach. Therefore, Model-Based Security Testing
(MBST) is introduced [SGS12], where model infor-
mation is used to enable automated security test-
ing. One technique that can be used in MBST is
fuzzing. Fuzzing is a popular automated security test-
ing approach where random, invalid, and/or unex-
pected input is supplied to the System Under Test
(SUT) [TDM08]. The SUT is then monitored for
crashes, memory leaks and/or inconsistencies. It is
an effective technique for automatically finding secu-
rity vulnerabilities and combines random testing with
fault-based testing [FZB+16]. There are many differ-
ent types of fuzzers, which can vary greatly on their
program awareness, input structure awareness, instru-
mentation, intended purpose, and algorithms used
[CCM+19].

While there are many fuzzers available, not all
fuzzers are well suited to combine with MBT. For in-
stance, when a fuzzer does not support some sort of in-
put structure definition, there will be no way to supply
it with model information. In this project, we will clas-
sify different state-of-the-art fuzzers, investigate how
we can combine fuzzing with MBT, and to what ex-
tent we can use information from a model to enable
more powerful fuzzing techniques. Using this informa-
tion, one or more existing fuzzers will be integrated

1



into an MBT toolset. Efficiency and effectiveness are
used as evidence measurements and commonly used in
fuzzing research [FZB+16]. These evidence measure-
ments qualify and quantify industrial applicability.

While MBST is considered a mature field
[BCD+19], and model-based fuzzing has high rele-
vance for industrial applications [SGS12, FZB+16], lit-
tle research in the past years yielded production-level
implementations of a model-based fuzzer. Moreover,
no research has been done on MBT with LTS or STS
in combination with fuzzing.

A proof of concept will be implemented using re-
sources from Axini B.V., an Amsterdam based com-
pany that is specialized in MBT, more specifically,
STS.

The following research questions are constructed.

RQ1: What is the most effective and efficient ap-
proach to integrate fuzz testing with STS?

RQ1.1: How much more efficient and effective
can a model-based fuzzer be, compared to
a random fuzzer?

RQ1.2: How can model information be used
to define a grammar for generation-based
fuzzers?

RQ1.3: Are generation-based fuzzers more ef-
fective and efficient than mutation-based
fuzzers when using STS?

RQ2: Which model information can be supplied to
the fuzzer and what are the limitations?

RQ3: How many person hours can be saved by com-
bining STS with fuzzing?

1.1 Contributions

Our research makes the following contributions:

1. Comparative analysis of fuzzers: in the form
of a matrix, containing their characteristics.

2. Benchmarks of different approaches: con-
taining efficiency, effectiveness, and coverage met-
rics.

3. Implementation: an integration of one or more
fuzzers into the Axini Modeling Suite (AMS).

2 Background

In this section, we explain the characteristics of
fuzzers, and the different techniques that have been
proposed over the last years. Then we explain
underlying techniques used for analysis and input
generation, and explain the differences.

Fuzzer types can be divided into categories based
on the following characteristics [TDM08, CCM+19]:

• Smart or dumb: this depends on whether or
not the fuzzer knows about the input structure.

• White-box, grey-box or, black-box: this de-
pends on whether or not the fuzzer knows about
the program structure and performs analysis.

• Mutation-based or generation-based: where
mutation-based takes a valid input and manip-
ulates the content, and generation-based uses a
given grammar to generate input.

Fuzzers are considered dumb when they are un-
aware of the SUTs input structure, and generate their
seeds randomly, or by using a specific set of mutation
algorithms. Smart fuzzers have some knowledge about
the input structure, this can be a grammar or a set of
keywords and possible values.

Fuzzers are considered white-box when they an-
alyze the source code, this has the advantage that
relevant tests are easily generated, and the program
can be monitored for code coverage [TDM08]. The
disadvantage is that monitoring and analysis can be
time-consuming. Black-box fuzzing is used on com-
piled versions of software, where analysis is not per-
formed by the fuzzer. This approach is faster but can
also generate more irrelevant tests. Moreover, black-
box fuzzers only scratch the surface of the application
[CCM+19, PZK+17]. Grey-box fuzzing is defined as
a blend of both techniques, typically a black-box is
used, plus some run-time information to improve test-
ing [TDM08]. In most cases, this includes code cover-
age metrics, to detect when a new branch is traversed,
without performing static analysis.

Mutation-based fuzzers outperform generation-
based fuzzers in terms of speed, because of its ran-
dom nature, no generation has to be performed. How-
ever, a large amount of invalid input is mutated, this
may cause the input being rejected early in the pro-
cess, because it deviates too much from the defined
structure. Therefore, mutation-based fuzzers almost
always have lower code coverage than generation-based
fuzzers [CCM+19]. Generation-based fuzzers, on the
other hand, generate more valid input, but genera-
tion of relevant input data can be time-consuming
[CCM+19].

Most industry-standard fuzzers are mutation-based
grey-box, because mutation-based fuzzers greatly out-
perform generation-based fuzzers in terms of speed.
Typically, smart algorithms like genetic algorithms are
used to manipulate the valid input [CCM+19].

2.1 Dynamic analysis

Dynamic analysis is used to acquire information about
the state of the SUT. This information is then used to
decide what input to use in the next cycle. There
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are mainly three types of dynamic analysis: cover-
age guided, dynamic symbolic execution and dynamic
taint analysis.

2.1.1 Coverage-Guided Fuzzing

The most popular dynamic analysis technique is
Coverage-Guided Fuzzing (CGF). CGF uses cover-
age metrics to detect when new interesting paths are
reached. It uses random changes, deletions, or addi-
tions to a given input and retains interesting inputs.
When a new path is discovered, the corresponding in-
put is saved and used in concurrent tests [CCM+19].
This approach is very effective in reaching high cover-
age in a reasonable time-frame. However, when fuzzing
programs that requires highly structured input, this
approach suffers from the random nature of the input
data and can get stuck at a certain coverage level.

2.1.2 Other techniques

Dynamic symbolic execution determines the possible
inputs for the SUT by using symbolic values as inputs,
and then constructing a path set. The main drawback
of this technique is path explosion, which results in
low efficiency, compared to CGF.

Similar to dynamic symbolic execution, dynamic
taint analysis infers structural properties from input
values. The main difference is that it keeps track of
inputs that did not result in desirable paths, by taint-
ing them.

2.2 Sample Generation

As mentioned before, fuzzers can either use a
generation-based or a mutation-based approach to
construct new inputs. There are two different strate-
gies for mutation: random mutation and scheduling
algorithms.

Random Mutation

The random mutation technique has no knowledge of
the input structure, and only mutates given seeds. It
has the advantage that it is easy to implement and
highly scalable, since they do not rely on heavy mon-
itoring or feedback. This approach is very ineffective
in finding complex bugs, since it has no knowledge of
program states and therefore does not know when a
new part of the code is reached.

Scheduling algorithms

In contrast to random fuzzing, scheduling algorithms
employ some optimization to maximize the outcome.
The way these seeds are chosen depends on the fuzzer,
and its goal. Scheduling algorithms can be combined

with other algorithms such as simulated annealing and
Markov, for further optimization.

Grammar representation

Grammar representation uses a grammar to constrain
the input data structure [CCM+19]. This approach is
most effective for fuzzing programs that require highly
structured input, since it can reach a high coverage
very quickly by using a grammar instead of completely
random input. The drawback, however, is that it re-
quires a grammar file that is typically written by hand,
which is time-consuming and error-prone.

3 Review of State of the Art Fuzzers

We conducted a systematic review of state of the art
fuzzers, we scanned Github repositories and searched
the following digital libraries: IEEE, ACM, ScienceDi-
rect, Springer, Wiley. We filtered on papers that
were published in security proceedings since 2010,
and used the following keywords: (”fuzz testing” OR
”fuzzing”). Furthermore, we applied snowballing to
find additional sources. Ultimately, we composed a
list of fuzzers that can be combined with MBT. We
filtered the list of fuzzers based on the following crite-
ria:

• Production level, not a prototype or proof of con-
cept

• Free to use, preferably open source
• Well maintained, the latest release should not be

more than two years old
• Should support input structures
• Target programs should be general-purpose
• Should support Ruby

3.1 American Fuzzy Lop

American Fuzzy Lop (AFL) is the most popular state-
of-the-art coverage guided fuzzer at the moment. AFL
is considered dumb because it is not aware of the input
structure, and only uses coverage metrics and genetic
mutation algorithms to mutate given inputs, without
using a grammar. AFL uses multiple scheduling al-
gorithms to choose new seeds. Even though AFL is
optimized for small inputs, it can be supplied with a
dictionary. A dictionary is simply a list of keywords
that can be used as inputs (e.g., for SQL database soft-
ware this could include: INSERT, *, ;, %, etc). AFL
uses this to construct new inputs, reducing its random-
ness and therefore, the amount of invalid input.

3.1.1 American Fuzzy Lop Extensions

The source code of AFL is publicly available and can
be extended. Even though AFL is a general-purpose
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fuzzer, it is not necessarily effective for all use cases.
Therefore, in recent years, a substantial amount of re-
search has been conducted, where AFL is used as a
base and then extended to enhance performance in
specific use cases. [KRC+18] These extensions add
other algorithms to the sample generator, or com-
pletely replace it, while maintaining the other features.

AFLFast [BPN+16] uses a modified seed selection
algorithm that is aimed to improve the efficiency of
AFL. It uses power schedules to regulate the number
of time spent on a single seed.

To overcome the inherent randomness of AFL’s de-
fault implementation, a few extensions have been de-
veloped to increase the performance when dealing with
programs that take more complex inputs.

Superion [WCW+17] adds the ability to supply a
grammar to AFL, by using ANTLR 1. A grammar
file is converted to a parser, which is then used as a
mutation strategy to choose the next input value. The
mutation process consists of parsing the input into an
abstract syntax tree, and then randomly manipulating
its subtrees.

Driller [SGS16] is a supplementary tool for AFL
that monitors the amount of time when AFL gets
stuck, that is, not finding any new paths. When this
occurs, Driller performs symbolic execution using angr
2 to find new valid inputs.

Similar to Driller, Skyfire [WCW+19] is a tool that
can be used together with AFL. It focuses on programs
that take highly structured inputs, and generates seeds
that pass both syntax and semantic checks.

3.2 Other Coverage-Guided Fuzzers

Similar to AFL, Angora [CC18], libFuzzer 3 and hong-
gfuzz 4 use the same CGF strategy with scheduling
algorithms, but are less widely used and extended.

Nautilus [AFH+19] is a coverage-guided grammar-
based fuzzer that focuses on efficiently fuzzing pro-
grams that require complex input structures. The au-
thors state that most grammar-based fuzzers do not
use coverage-guidance and therefore, lack the feed-
back on interesting paths, while most coverage-guided
fuzzers use small mutations that lead to inefficiency
when fuzzing programs with complex input structures.

4 Metrics

To define the optimal approach of the integration
of a fuzzer into STS, we use the following metrics,
proposed in [FZB+16]:

1https://www.antlr.org
2https://angr.io
3http://llvm.org/docs/LibFuzzer.html
4https://github.com/google/honggfuzz

Effectiveness: in the context of this project, effec-
tiveness can be measured by the number of faults
found, possibly in relation to the amount of tests exe-
cuted.
Efficiency: can be measured by relating artifacts such
as faults and test cases to the time taken and costs.
Code coverage: quantifies the number of lines and
methods that are traversed, this gives insight in the
possibly hard to reach pieces of software that are not
reached by the fuzzer.

4.1 Hypothesis

Using model information, we can implement a dictio-
nary generator that extracts labels, and put this in
a dictionary file that can be read by AFL (or other
mutation-based fuzzers).

We hypothesize that when we generate a dictionary
and feed this to a mutation-based fuzzer, the effec-
tiveness will be increased, compared to fuzzing with-
out a dictionary. Furthermore, we hypothesize that a
grammar-based fuzzer can be useful when combined
with MBT. However, we need to make sure that a
grammar-based fuzzer will not only fuzz with valid in-
puts, but also generates test cases that range from
completely invalid, to almost valid input. This way,
we can cross the boundaries of the functional (and ex-
pected) behavior of the SUT.

5 Evaluation Setup

5.1 Benchmark

In an evaluation study on fuzz testing [KRC+18], 32
experiments have been evaluated and compared. This
study shows that it is considered a common, and well-
accepted practice to compare a new implementation
against an AFL baseline. More specifically, it should
use the same input seeds (since this can make a sig-
nificant difference on the performance) and standard
configuration parameters. For the benchmark, we use
AFL and supply it with a dictionary that will be
generated from a model, which converts labels into
keywords. Additionally, we create a set of initial in-
put seeds by hand, including a few paths through the
model that are significantly different. The results of
this test run will be compared to a baseline AFL run
that is not supplied with a dictionary, but with the
same input seeds. This way, we can quantify the ef-
ficiency, effectiveness, and code coverage of our ap-
proach, using the metrics stated in Chapter 4.

5.2 Proof of Concept

We developed an adapter to be able to communicate
with SUTs. All the SUTs at our disposal are devel-
oped in Ruby, therefore, the adapter is also developed
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in Ruby, to maintain coverage guidance. To make
AFL work with Ruby, an extension called Kisaten
5 is used. This extension enables instrumentation,
coverage guidance and converts exceptions into AFL-
detectable crashes. We created a generic AFL wrap-
per that connects to a given SUT over the command
line, takes arguments, and runs them on the SUT. Ev-
ery SUT that is modeled in AMS has the same inter-
face, which means that, theoretically, any SUT can be
fuzzed using this wrapper. To test the hypothesis in
Sec. 4.1, we created a dictionary generator that parses
all possible labels from a model and puts it in an AFL
dictionary format file.

Unfortunately, fuzzing using the generated dictio-
nary did not yet result in a significant improvement
over fuzzing without a dictionary.

6 Discussion

The experiment guidelines proposed by [KRC+18]
show that comparisons which run for less than 24 hours
are not thorough enough, since results can significantly
change within this time frame. Furthermore, because
of the random nature of fuzzing, multiple runs with the
same configurations can vary greatly, therefore, multi-
ple runs have to be performed. Additionally, the size
of the target corpus should be large, or at least a rep-
resentative set. This is a big challenge and it is likely
that not all of these guidelines can be followed prop-
erly, due to limited resources. However, ultimately, we
will strive to deliver results that are statistically sound
and significant.

Botella et al. claim that model-based fuzzing can
only be used for robustness testing [BCD+19], and
it is not possible to formalize security properties and
provide evidence for the test strategy. However, this
only means that security properties can not be defined
in models, but the fuzzer will still be able to use its
own set of security properties. Therefore, when imple-
menting a model-based fuzzer, no security properties
will be compromised.

6.1 Threats to Validity

The prototype of the model-based fuzzer will make
use of the Axini Modeling Suite, which is not publicly
available and thus, the benchmarks can not be repli-
cated. However, Axini can be contacted for further
details.

7 Related Work

Manès et al. conducted a survey [MHH+19] including
a comparison, but used selection criteria that differ

5https://github.com/twistlock/kisaten

from ours (presented in Chapter 3). The purpose of
their survey is to supply an overview of all fuzzing
approaches and tools, presented in proceedings from
January 2008 to February 2019.

Li et al. also conducted a survey [LZZ18], high-
lighting recent advances in fuzzing, which improves ef-
ficiency and effectiveness. This survey, however, only
focuses on highlights in new techniques, including ex-
amples. These selection criteria do not focus on com-
pleteness and therefore do not cover all possible fuzzers
that could be used in our research.

Schneider et al. [FZB+13] designed a model-based
behavioral fuzzing approach where UML sequence di-
agrams are mutated by fuzzing operators. This results
in invalid data which can then be fed to the SUT. In
their approach, they eliminate overhead in the fuzzing
process, by generating test cases at run-time, instead
of generating all tests beforehand, and restarting the
SUT after each test. Since this research, multiple
fuzzers (including AFL) have implemented persistent-
mode features, where fork() system calls are used to
overcome the same unnecessary restart issue.

T-Fuzz [JSL+14] is a generation-based fuzzing
framework for telecommunication protocols. It is in-
tegrated in a conformance testing environment, and
extracts already existing model information which is
then used for fuzzing. The results show that high code
coverage can be reached, and once a new protocol in-
cluding model is available, it can be fuzzed without
much implementation effort.

8 Conclusion and Next Steps

We reviewed the recent developments regarding
model-based fuzzing, fuzzing techniques, and imple-
mentations of fuzzers. Based on this knowledge, we
composed a list of candidate fuzzers that will be in-
vestigated further. We created a generic wrapper for
AFL, along with a dictionary generator. This enables
SUTs that are modeled in AMS to be fuzzed with AFL,
and automates the process of defining a dictionary,
which can be a time-consuming process. These are
the first steps towards a model-based fuzzer.

The next step is to repeat the same experiment with
dictionaries on other mutation-based fuzzers, with a
large test corpus. Additionally, we will use the MBT
test case generator, extract interesting paths through
the model, and convert these into input seeds. This
process eliminates the manual work of creating input
seeds and ensures a high model coverage. After that,
we will implement a grammar generator and feed it to
generation-based fuzzers. Ultimately we will compare
the results and reach a verdict on the most effective
approach.
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