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Abstract. An approach to entity recognition and event annotation in synthetic 

chemistry text, by recognising such text using grammars, is described. 

LeadMine is used to recognize chemicals and physical quantities using a gram-

mar. These entities are used with ChemicalTagger’s phrase grammar to deter-

mine the relationship between chemicals and reaction properties. Finally chem-

ical structure information is used to assign chemical role information, by in-

spection of the individual compounds and through whole reaction analysis 

techniques like NameRxn and atom-atom mapping. Our approach obtained an 

F1-score of 0.898 for both the named entity recognition and event annotation 

tasks. 
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1 Introduction 

The extraction of reaction content from unstructured text plays an important part in 

the population of the reaction databases that expedite the work of synthetic chemists. 

The increasing size of both the patent and non-patent literature mean that there is a 

growing demand for automated solutions for extracting this data, although attempts to 

automate this task date back to 1980s [1, 2]. 

ChEMU proposed two tasks, the first being a named entity recognition (NER) task, 

and the second being an entity relationship task. The entities in question are chemi-

cals, with different types being assigned to chemicals having different roles in a reac-

tion, as well as reaction properties e.g. yield. The second task was to define the rela-

tionship between reaction actions and chemicals or reaction properties. A complete 

description of the task is present in the task paper [3].  

Our approach builds upon an open source reaction extraction tool [4, 5] in combi-

nation with NextMove Software’s entity recognition tool, LeadMine [6]. Our process 

has already been applied to millions of patent documents with the resulting extracted 

reactions made available through public [7] and commercial datasets [8]. The quantity 

of reactions extracted and CC-Zero licensing on the public dataset has resulted in 



wide use for analysis of reaction trends [9], and as a data source for retrosynthesis 

[10] and reaction prediction [11]. 

In this work we adapt our process (Fig. 1) to the tasks proposed by ChEMU. 

 

Fig. 1. Example of output of reaction extraction process 

2 Background to the approach 

The reaction extraction process employs ChemicalTagger [12] to annotate chemical 

entities, chemical properties, trigger words indicating reaction actions and assign part 

of speech tags. ChemicalTagger uses the rule-based tokenization from OSCAR4 [13] 

to transform the input into a sequence of tokens. Taggers are then run sequentially 

with the result from the first tagger that matched being used. These taggers are a 

chemical entity tagger, regular expression-based trigger word tagger and a part of 

speech tagger. The tags assigned to trigger words also indicate the part of speech e.g. 

VB-STIR is a verb associated with the action of stirring. An Antlr [14] grammar rec-

ognizes a sequence of these tags and according to the rules matched transforms this 

sequence into a parse tree (Fig. 2) with nesting corresponding to: sentence, phrases 

and “concepts”. An example concept is a MOLECULE, which contains a chemical 

name but also may contain one of more QUANTITY concepts within which are the 

tokens for each physical quantity. In a subsequent step further nesting is added to the 

parse tree by grouping noun and verb phrases into “action phrases” based on the tag 

indicating the presence of an action term. This term is typically a verb e.g. 

elute/eluting, but can also be a noun e.g. elution.  The contents of an action phrase 

describe an experimental action that occurred e.g. add, stir, dissolve, yield. Com-

pounds in dissolve phrases are assigned as solvents. 

 



 

 

 

 

Fig. 2. Example of ChemicalTagger parse trees with action phrases 

In the Patent Reaction Extraction project [5] this parse tree, in combination with 

chemical structure information (from chemical name to structure), and heuristics is 

used to assign the role of each compound. These roles are: product, reactant, solvent 

and catalyst.  If the parse tree indicates that a chemical is involved in a workup action 

the chemical is ignored. The system assigns compounds as reactants if no clear indi-

cation is given to the contrary. Anaphora resolution is also used to resolve references 

to chemical structures defined in preceding experimental sections. Finally atom map-

ping is used to sanity check the results and typically reactions for which an atom 

mapping cannot be established are rejected. A solvent may be reclassified as a reac-

tant to obtain a successful atom mapping. The atom mapping is used to determine the 

stoichiometry of the chemicals in the reaction. 

A more complete description of the outlined process is available in [4], which also 

covers how experimental chemistry text is distinguished from other text, which is a 

task that is not addressed by ChEMU, where instead all input contains a chemical 

reaction. 

2.1 Differences from open source implementation 

In this work ChemicalTagger was adapted to use LeadMine for chemical entity 

recognition and physical quantity recognition. ChemicalTagger’s tokenization is ad-

justed accordingly such that all LeadMine entities were treated as single tokens e.g. 

“50 °C”. ChemicalTagger’s parse tree data structure was also enhanced with refer-

ences back to the source tokens allowing character offsets of entities to be easily re-

trieved while navigating the parse tree. 

In preference to atom-mapping NextMove Software’s NameRxn [15] was used to 

identify the chemical reaction and assign an atom mapping. NameRxn is a pattern-

based reaction classifier that has high precision but lower recall than an Maximum 

Common Substructure based atom-mapper. If a reaction is not recognized by 



NameRxn we fall-back and use the Atom-Atom Mapper from the Indigo toolkit [16]. 

Normally if a reaction cannot be mapped by either NameRxn or Indigo we would not 

consider the extraction “complete” and exclude it from the output. As this task only 

concerns annotating entities and events we include reactions that we normally would 

consider incomplete. 

3 Methodology 

3.1 Named Entity Recognition 

Each input experimental section is provided as one or more lines of text. These were 

split into headings and paragraphs, by considering lines containing fewer than 200 

characters to be headings until the first paragraph of the experimental section was 

identified. It should be noted that in actual patent XML this sort of heuristic is typical-

ly not required as headings and paragraphs are distinguished by having different tags. 

Instead of using our existing procedure for extracting reaction we instead based our 

submission primarily on the parse tree from ChemicalTagger, with the output of our 

reaction extraction process used to assist in chemical role assignment. The reasoning 

behind this was to overcome some of the significant mismatches between the output 

of the reaction extraction procedure and what was required for the ChEMU tasks: 

• Exact character offsets are not recorded 

• When a chemical appears alongside a synonym or way of referring it, only one 

instance of the chemical is recorded 

• Workup compounds are intentionally ignored 

From ChemicalTagger’s parse tree some entities such as times, temperatures and 

yields were directly extractable (Table 1). The role of a chemical compound was set 

to match those from the extracted reactions with some significant corrections to ac-

count for the different definition of catalyst used. ChEMU allows a “catalyst” to con-

tribute non-carbon atoms to a reaction, meaning that the catalyst may in fact be con-

sumed by the reaction. This difference was accounted for by inspecting the reaction’s 

computed atom mapping if available, additionally any “reactant” not contributing 

atoms to the product was assumed to be a catalyst. Any compound identified by 

ChemicalTagger, but that did not appear in an extracted reaction was assumed to be a 

workup compound. All chemicals matching the structure of a product were assigned 

the role product. 

The role assignment for non-products was improved by using statistics from the 

training data. Chemical names were converted and indexed by structure (InChI), for 

each structure the entity type occurrence and incidence recorded. When annotating, 

these statistics were then used to improve the entity type assignment based on whether 

a structure is always a given type (i.e. must be catalyst) or never a given type (i.e. 

never a catalyst). If the second case was detected the most frequent assignment was 

used instead. 



 

We cannot map all PROCEDURE tags directly to the EXAMPLE_LABEL entity 

types since only definitions and not references are required by the annotation guide-

lines. Definitions normally appear in the heading while references are found in the 

body of the text e.g. “prepared in the same manner as Synthesis Example 5”. 

Solvent mixtures are normally handled by both the Antlr grammar and more re-

cently a dedicated grammar and resolver. The dedicated grammar will tag and resolve 

the terms “aqueous sodium chloride”, “aqueous hydrochloric acid”, “aqueous sodium 

hydrogen carbonate” as a whole to generate either a Mixfile [17] or MOL-

file/SMILES with relevant Sgroups [18]. The gold standard requires these mixtures to 

be recognized as two separate entities and so the grammar and resolver was disabled 

and the term “aqueous” was matched in isolation. 

Additional logic was added to the yield detection to increase recall in two situa-

tions. Percentage yields may only be loosely associated with the entities to which they 

refer. We handle this case by identifying a single unknown percentage quantity in the 

paragraph and “promoting” it to a YIELD_PERCENT. Some yields specified as an 

amount or mass were missed if they were not grouped with a compound by the 

grammar. We supplement this by searching close to known percentage yields for a 

mass or amount and “promoting” these to YIELD_OTHER. 

Table 1. shows the relationship between ChemicalTagger’s tags, or groups of tags and the 

ChEMU entity types, that was empirically determined. 

ChemicalTagger tag/concept ChEMU entity type Notes 

PROCEDURE EXAMPLE_LABEL Number or identifier 

inside a 

PROCEDURE 

Chemical name (within 

MOLECULE) 

UNNAMEDMOLECULE 

REFERENCETOCOMPOUND 

(within MOLECULE) 

REACTION_PRODUCT Role determined from 

parent action phrase 

and/or structure’s role 

in atom-atom mapped 

reaction 

STARTING_MATERIAL 

Chemical name (within 

MOLECULE) 

 

REAGENT_CATALYST 

SOLVENT 

OTHER_COMPOUND 

NN-TEMP 

VB-HEAT 

TEMPERATURE VB-HEAT only for 

the verb reflux 

NN-TIME TIME “overnight” ignored 

as this isn’t annotated 

in gold standard 

NN-CHEMPROPERTY YIELD_PERCENT Yields with unit Per-

cent. Qualifiers like 

“about” truncated 

NN-CHEMPROPERTY YIELD_OTHER Yields with other 

units. Qualifiers like 



“about” truncated 

VB-ADD 

NN-ADD 

VB-CHARGE 

VB-DROP 

VB-FILL 

VB-TREAT 

VB-DISSOLVE 

NN-DISSOLVE 

VB-HEAT 

VB-INCREASE 

VB-STIR 

VB-YIELD 

VB-IRRADIATE 

NN-IRRADIATE 

VB-SUSPEND 

VB-SYNTHESIZE 

REACTION_STEP The training set was 

used to identify addi-

tional words 

VB-DEGASS 

NN-DEGASS 

VB-DRY 

VB-EXTRACT 

NN-EXTRACT 

VB-FILTER 

NN-FILTER 

VB-PARTITION 

NN-PARTITION 

VB-PHCHANGE 

VB-PRECIPITATE 

NN-PRECIPITATE 

VB-PURIFY 

NN-PURIFY 

VB-QUENCH 

VB-WASH 

NN-WASH 

VB-DILUTE 

VB-COOL 

WORKUP The training set was 

used to identify addi-

tional words 

 

3.2 Event Extraction 

The ChemicalTagger tag was used to initially assign a trigger word as being either 

REACTION_STEP or WORKUP (Table 1). However if the phrase contained more 

workup compounds than non-workup compounds this was changed to WORKUP. 

Conversely in the case where more non-workup compounds were within the phrase 

the role was switched to REACTION_STEP, but only for VB-COOL related trigger 

words. 



 

The event annotation task required annotations of two types of event be assigned: 

ARG1 and ARGM. The former is used to indicate a relationship between a trigger 

word and chemical compound  e.g. washed with water. The latter is used to indicate 

a relationship between a trigger word and a temperature, time or yield e.g. stirred at 

room temperature. In simple terms this means relationships with chemical entities 

are one type, while relationships with reaction properties are another type. Assign-

ment of relationships were achieved by associating all entities in a ChemicalTagger 

action phrase with the trigger word responsible for the action phrase, with the follow-

ing exceptions: 

• Product chemicals were not associated with workup trigger words 

• If a product is expected in the phrase the relationship could not involve a workup 

trigger word or workup compound (OTHER_COMPOUND) 

• Yield entities were not associated with workup trigger words 

Precision/recall of trigger words was enhanced by using the training set to identify all 

trigger words that appeared as false positives or false negatives and for each in turn 

determining whether always recognizing that word as REACTION_STEP, WORKUP 

or not a trigger word, improved performance on the training set. This yielded 46 

words to be classified as REACTION_STEP, 26 to be classified as WORKUP and 23 

that should not be trigger words. Many of these are likely to prove useful for improv-

ing ChemicalTagger’s action phrase assignment, although the specific type of action 

phrase these correspond to would still need to be manually assigned as ChemicalTag-

ger classifies reaction actions into more than 2 categories.  

3.3 Patent Context 

As our approach depends on atom mapping to determine the chemical entity roles it is 

critical we associate as many chemicals as possible with a connection table (e.g. 

SMILES). If compound numbers are used without definition in a reaction (Fig. 3) 

then we cannot resolve the structures. The reaction extraction software is designed to 

run on an entire document, under those conditions these are less problematic as it is 

possible to resolve compound references to structures defined elsewhere in the docu-

ment. 

 



 

Fig. 3. Reaction paragraphs that reference “Compound 154 and 155” ( US20180162876A1 

0944, train:0022) and “compound from Ex. 10A” (US10428083B2 0721 train:0026). 

The ChEMU task provided paragraphs in isolation and so we cannot resolve the 

structure for referenced compounds. However by providing an additional context 

mapping of input paragraphs to the source patent document we can resolve more 

structures and improve our entity type assignment. 

This mapping was obtained by finding a patent, within which the same text as the 

input paragraph was found. We used this mapping to call out to a LeadMine based 

web-service that automatically extracts the compound-id relationships from the que-

ried document and returns these as a TSV file. The annotator can then use this addi-

tional context to assign structures. 

3.4 Annotation Difference Viewer 

Since we were adapting an existing tool to the annotation task we started with a base-

line and then improved it incrementally as we identified differences in our output to 

what was expected by the gold standard annotations. All changes were carried out in 

the evaluation period of the task and a tool that could provide intuitive feedback 

quickly was required. Internally at NextMove a “reaction diff-viewer” web applica-

tion is used to identify output changes between commits in our version control system 

and check for regressions. This web application was adapted to the ChEMU tasks and 

allowed us to rapidly identify differences from the gold standard and assess improve-

ments and regressions between runs of the tool (Fig. 4). Over the course of the evalua-

tion period the NER Exact F1-Score on the training split was improved from an initial 

score 0.7933 to 0.9060. 

 



 

 

Fig. 4. Screenshot of the ChEMU Diff Viewer Web Application used to assist in matching gold 

standard annotations. 

4 Results 

Table 2. Results for Task 1: Named Entity Recognition 

Run Exact matching Relaxed matching 

F1-score Precision Recall F1-score Precision Recall 

With 

Patent 

Context 

0.8983 0.9042 0.8924 0.9240 0.9301 0.9181 

Without 

Patent 

Context 

0.8977 0.9037 0.8918 0.9236 0.9294 0.9178 

Table 3.   Results for Task 2: Event extraction 

F1-score Precision Recall 

0.8977 0.9441 0.8556 



Table 4. Results for end-to-end (event extraction using named entities from Task 1) 

 

Run Exact matching Relaxed matching 

F1-score Precision Recall F1-score Precision Recall 

With Patent Con-

text 

0.8026 0.8492 0.7609 0.8196 0.8663 0.7777 

Without Patent 

Context 

0.8020 0.8486 0.7602 0.8188 0.8653 0.7771 

With Patent Con-

text + same algo-

rithm as final task 

2 submission 

0.8255 0.8746 0.7816 0.8420 0.8909 0.7983 

4.1 Complete Reactions 

We evaluated the training split on subsets based on whether the tool thinks it under-

stood the semantics of the paragraph and identified a reaction. 

The first subset (Any Complete) includes any paragraphs where ≥1 complete reac-

tion was found. A complete reaction passes various sanity checks (e.g. ≥2 reactant 

and ≥1 product structures) and must have been atom-mapped by NameRxn or Indigo. 

A refinement of this subset is paragraphs that only contain a single complete reaction 

(One Complete). Finally of those with a single complete reaction we evaluated only 

those that NameRxn recognized. We measured the last two categories with and with-

out the patent context. 

Table 5. NER scores for different subsets of the training split 

Subset Patent 

Context 

Applicability F1-Score Precision Recall Relaxed 

F1-Score 

Everything Y 900 (100%) 0.90604 0.91602 0.89628 0.92517 

Any Com-

plete 

Y 540 (60%) 0.92561 0.93429 0.91709 0.9397 

One Com-

plete 

N 475 (52.7%) 0.92873 0.93675 0.92085 0.94080 

One Com-

plete 

Y 529 (58.7%) 0.92621 0.93491 0.91768 0.94031 

NameRxn N 375 (41.6%) 0.93597 0.94431 0.92778 0.94717 

 

Table 6. End-to-end scores for different subsets of the training split 

Subset Patent 

Context 

Applicability F1-Score Precision Recall Relaxed 

F1-Score 

Everything Y 900 (100%) 0.82843 0.88384 0.77955 0.84443 

Any Com-

plete 

Y 540 (60%) 0.84649 0.89556 0.80252 0.85909 



 

4.2 Confusion Matrices 

For the training and development splits we compared the expected entity type from 

the gold standard against the “predicted” entity type assigned by our tool (Tables 7 

and 8). 

Table 7. Confusion Matrix for Train Split (Relaxed) 

 

One Com-

plete 

N 475 (52.7%) 0.85342 0.89961 0.81174 0.86486 

One Com-

plete 

Y 529 (58.7%) 0.84877 0.89758 0.80499 0.86101 

NameRxn N 375 (41.6%) 0.86442 0.90775 0.82503 0.87583 



Table 8. Confusion Matrix for Dev Split (Relaxed) 

 

5 Discussion 

As our solution is primarily based on an existing solution rather than being built or 

trained for this task, performance was primarily improved by adapting our existing 

output to match the annotation guidelines. This revealed a few notable quirks and 

inconsistencies. For some of these points, a specific example in the training split is 

referred to via its 4 digit paragraph number. 

• “Overnight” isn’t considered to be a period of time in the gold standard 

• The annotation guidelines indicated that inert gases should not be included in event 

annotations. However in the gold standard, more often than not these chemicals 

were included with no obvious distinction between the cases where they were and 

weren’t. As a result, despite having implemented detection for inert gases, in our 

final submission we made no distinction between these and other compounds. 

• While the gold standard’s reaction events generally were similar in scope to Chem-

icalTagger’s, some events were very rarely annotated in the gold standard. A 

common example was a concentrate action e.g. “the filtrate was concentrated un-

der vacuum”. We adjusted for this by not considering VB-CONCENTRATE to be 

a workup action trigger word. 



 

• The annotation guidelines specified that if multiple temperatures were given for a 

reaction that only the lowest and highest should be retained. Due to the anticipated 

small difference in performance and high likelihood of important reaction condi-

tion information being excluded, this was not implemented. 

• Presenting reaction paragraphs without the context of their originating patent can 

significantly complicate assigning roles as when a starting material was defined in 

a preceding experimental section, you will not know the structure of it, while from 

the complete patent this may have been possible. This means an atom mapping for 

the reaction likely won’t be possible and hence the assignment of which chemicals 

are catalysts is complicated. Our “with patent context” runs were a proof of con-

cept to investigate overcoming this limitation.  

• The annotation guidelines do not distinguish between definitions of the product 

and label(s) associated with the product. This means that it’s not uncommon for a 

single product reaction to have 3 product entities: a mention in the heading, a men-

tion of the reaction outcome and a label associated with the product. This mis-

matches with our typical goal where the reaction data structure should only contain 

more than one product if a reaction yielded multiple compounds. 

• 1034: “ice-water bath” occurs twice, water is tagged as “OTHER_COMPOUND” 

in only one. We would recognize this as an apparatus/equipment. 

• Six train+dev paragraphs had no starting material, 0174,1036,1050,1055,1376 

(US10258045B2) 

• 1111: “target pale brown solid” is two entities “target” and “solid” 1198 “target 

white solid” is one. We recognized both as one. 

• The trailing dot is sometimes omitted from the bounds for “aq.” and “r.t.” abbre-

viations (0185/0206 and 0833/1444). 

• Boron tribromide is tagged as a STARTING_MATERIAL (0081) but doesn’t con-

tain any carbons, the guidelines list contributing a carbon to the product as a re-

quirement for this entity type. 

• Temperature ranges were handled inconsistently by the gold standard, necessitating 

adjusting the entity bounds to remove qualifiers and selectively splitting ranges. 

Closer correspondence with the gold standard was obtained by selectively splitting 

these ranges. Ranges were split if they were connected by “to” or “and”, and the 

lower bound had an explicit unit attached. Removed quantity qualifiers included 

“approximately”, “below”, and “about”. 

 

Using the patent context information had little impact on the annotation scores, F1 

0.8983 vs F1 0.8977 on the test split. However the benefit of the patent context is em-

phasised on how many complete reactions we can extract (Table 5).  In the “one com-

plete” subset we can generate 529 “complete reactions” instead of 475. The precision 

and recall is higher if we only consider paragraphs that we can extract a complete 

reaction. Further investigation is needed to determine if the tool performs better when 

there is a completable reaction or whether we extract more complete reactions due to 

better annotation. 



Annotating the paragraphs with their source patent number reveals a large overlap 

between the training, development and test. This splitting is unrealistic as there are 

more similarities between how reactions are described within a document than be-

tween documents. As patents only apply to particular jurisdictions, it is common for 

multiple patents with essentially the same content to be filed in different jurisdictions. 

These patent equivalents should also be considered when splitting the data to avoid 

training and testing on different documents that nonetheless have the same content.  

  The confusion matrices (Table 7a and 7b) show the majority of mistakes are re-

lated to the chemical type (role) assignment. Unfortunately a miss-typed entity counts 

as both a FP and FN so eliminating these cases is desirable. Additional heuristics and 

statistics could help with distinguishing the non-product roles. An additional entity 

type confusion is seen with chemical entities and TIME entities. These cases are 

terms like “1h” and “2h” which the tool labels as plausible reference identifiers “add 

12.2 g of 1h” but are actually time intervals “stirred for 1h”. These entities are consid-

ered too short and ambiguous for the LeadMine physical quantity grammar to recog-

nize in general text. However with the additional context of the surrounding tags it is 

possible to rectify this in ChemicalTagger. 

6 Conclusions 

We present here a grammar based approach to chemical reaction extraction, demon-

strating that this approach can achieve competitive performance when compared to 

contemporary machine learning approaches. A complete system using this approach 

had already been used to extract millions of reactions from patents resulting in valua-

ble data resources. 

References 

1. Reeker, L.H., Zamora, E.M., Blower, P.E.: Specialized information extraction: automatic 

chemical reaction coding from English descriptions. In: Proceedings of the first conference 

on Applied natural language processing. pp. 109–116. Association for Computational Lin-

guistics (1983). 

2. Zamora, E.M., Blower Jr, P.E.: Extraction of chemical reaction information from primary 

journal text using computational linguistics techniques. 1. Lexical and syntactic phases. J. 

Chem. Inf. Comput. Sci. 24, 176–181 (1984). 

3. He, J., Nguyen, D.Q., Akhondi, S.A., Druckenbrodt, C., Thorne, C., Hoessel, R., Afzal, Z., 

Zhai, Z., Fang, B., Yoshikawa, H., Albahem, A., Cavedon, L., Cohn, T., Baldwin, T., 

Verspoor, K.: Overview of ChEMU 2020: Named Entity Recognition and Event Extraction 

of Chemical Reactions from Patents. In: Arampatzis, A., Kanoulas, E., Tsikrika, T., Vro-

chidis, S., Joho, H., Lioma, C., Eickhoff, C., Névéol, A., Cappellato, L., and Ferro, N. (eds.) 

Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 

Eleventh International Conference of the CLEF Association (CLEF 2020). Lecture Notes in 

Computer Science (2020). 



 

4. Lowe, D.M.: Extraction of chemical structures and reactions from the literature, 

http://www.repository.cam.ac.uk/handle/1810/244727, (2012). 

5. Lowe, D.M.: Patent Reaction Extraction Project, https://github.com/dan2097/patent-

reaction-extraction, last accessed 2020/07/09. 

6. Lowe, D.M., Sayle, R.A.: LeadMine: A grammar and dictionary driven approach to entity 

recognition. Journal of Cheminformatics. 7, S5 (2015). 

7. Lowe, D.M.: Chemical reactions from US patents (1976-Sep2016), 

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-

Sep2016_/5104873, (2017). https://doi.org/10.6084/m9.figshare.5104873.v1. 

8. NextMove Software: Pistachio, https://www.nextmovesoftware.com/pistachio, last accessed 

2020/07/17. 

9. Schneider, N., Lowe, D.M., Sayle, R.A., Tarselli, M.A., Landrum, G.A.: Big Data from 

Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists’ Bread and But-

ter. J. Med. Chem. 59, 4385–4402 (2016). https://doi.org/10.1021/acs.jmedchem.6b00153. 

10. Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., Gomes, J., Luu Nguyen, Q., Ho, S., Sloane, 

J., Wender, P., Pande, V.: Retrosynthetic Reaction Prediction Using Neural Sequence-to-

Sequence Models. ACS Cent. Sci. 3, 1103–1113 (2017). 

https://doi.org/10.1021/acscentsci.7b00303. 

11. Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molec-

ular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS 

Cent. Sci. 5, 1572–1583 (2019). https://doi.org/10.1021/acscentsci.9b00576. 

12. Hawizy, L., Jessop, D.M., Adams, N., Murray-Rust, P.: ChemicalTagger: A tool for seman-

tic text-mining in chemistry. J Cheminf. 3, 17 (2011). https://doi.org/10.1186/1758-2946-3-

17. 

13. Jessop, D.M., Adams, S., Willighagen, E.L., Hawizy, L., Murray-Rust, P.: OSCAR4: a 

flexible architecture for chemical text-mining. J Cheminf. 41 (2011). 

https://doi.org/10.1186/1758-2946-3-41. 

14. Parr, T.: The definitive ANTLR reference: building domain-specific languages. Pragmatic 

Bookshelf (2007). 

15. NextMove Software: NameRxn, https://www.nextmovesoftware.com/namerxn.html, last 

accessed 2020/11/07. 

16. EPAM Systems: Indigo Toolkit, https://lifescience.opensource.epam.com/indigo/, last ac-

cessed 2020/07/11. 

17. Clark, A.M., McEwen, L.R., Gedeck, P., Bunin, B.A.: Capturing mixture composition: an 

open machine-readable format for representing mixed substances. Journal of Cheminfor-

matics. 11, 33 (2019). https://doi.org/10.1186/s13321-019-0357-4. 

18. Gushurst, A.J., Nourse, J.G., Hounshell, W.D., Leland, B.A., Raich, D.G.: The substance 

module: the representation, storage, and searching of complex structures. J. Chem. Inf. 

Comput. Sci. 31, 447–454 (1991). https://doi.org/10.1021/ci00004a003. 

 


	1 Introduction
	2 Background to the approach
	2.1 Differences from open source implementation

	3 Methodology
	3.1 Named Entity Recognition
	3.2 Event Extraction
	3.3 Patent Context
	3.4 Annotation Difference Viewer

	4 Results
	4.1 Complete Reactions
	4.2 Confusion Matrices

	5 Discussion
	6 Conclusions

