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Abstract. This paper describes a submission to the PlantCLEF 2020
challenge, whose topic was the classification of plant images in the field,
based on a dataset composed mainly of herbaria.. This work proposes
the usage of domain adaptation techniques to tackle the problem. In
particular, it makes use of the Few-Shot Adversarial Domain Adapta-
tion method proposed by Motiian et al. (9). Additionally, a modification
of this architecture is proposed to take advantage of upper taxa relations
between species in the dataset. Experiments performed show that do-
main adaptation can provide very significant increases in accuracy when
compared with traditional CNN-based approaches.

1 Introduction

Recent approaches to automated plant identification have relied on deep learning-
based techniques (1). These techniques can be very effective and compete with
human experts if a large amount of labeled data is available, even if it is par-
tially noisy (2; 6). However, in the path towards achieving the goal of universal
plant species identification, a significant obstacle is posed by the large number
of species for which there are none or very few samples of their appearance in
their natural state, thus making it very difficult to use this kind of methods.
Carrying out missions to collect more data, typically in tropical regions, is not
a feasible solution due to the elevated cost, difficulty to access the areas where
the species are located and vast amount of data still not labeled. Nonetheless,
vast amounts of data about these species exist in the form of herbarium sheets,
collected over centuries by botanists and which has been recently massively dig-
itized and published online. This is the topic of the PlantCLEF 2020 challenge
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5. Given a large dataset of digitized herbarium sheets and very few photos in the
field, the objective is to develop a classifier that can perform well on a test set
consisting only of field photos after being trained primarily on herbariums. This
article describes in detail the methods used for our submissions to the challenge
(identified by the acronym aabab on the challenge web page6).

(a) Training stage

(b) Testing stage

Fig. 1: Description of the problem

2 Methodology

2.1 Data

Dataset The main dataset to be used is PlantCLEF 2020 (3), (8). This dataset
has 320,752 herbarium images from 997 species, 4,482 field images from 375
species and 1,816 images from 244 species where for each specimen there are
images both in its natural state and in herbarium sheets. In addition to this
dataset, some experiments will include additional data from sources like GBIF7

and PlantCLEF 2019 (7). These images come from the dataset used by (11).
Figure 2 shows examples of images in the PlantCLEF 2020 dataset. As can be
observed in these examples, the herbarium and field pictures differ greatly, even
if they come from the same species (and even the same specimen). This aspect
makes the task at hand a particularly challenging one.

2.2 Architecture and Models

Convolutional Neural Networks A common way to perform classification
is to take a pretrained CNN and to re-train it on the new target classes. As
mentioned earlier, this approach usually requires vast amounts of data. Given

5 https://www.imageclef.org/PlantCLEF2020
6 https://www.aicrowd.com/challenges/lifeclef-2020-plant/submissions
7 https://www.gbif.org



Fig. 2: Herbarium and Field images from the Asystasia gangetica (L.)
T.Anderson specie. Significant visual variations between them in color, back-
ground and shape can be observed even though they are from the same species

that the training set is comprised mostly of herbariums and the test set of field
photos, we expect the performance of such an approach to be low. This reason
motivates us to look for alternate solutions (which will be described in the next
sections), but it is still necessary to measure the performance of the baseline
CNN approach. Therefore, the submitted runs also include experiments with a
CNN-based approach. The architecture chosen is Resnet50 (4) to maintain the
same conditions as those used in the other experiments. Experiments will be per-
formed using the PlantCLEF2020 dataset solely, or the union of all the datasets
described in section 2.1. To take advantage of the data available, training will
be performed in three stages. First the model will be trained on the ImageNet
dataset, in a second stage only the herbariums will be used and in the last stage
only the photos will be used.

Domain Adaptation Architectures To tackle the problem of having very few
photos in the field domain we base our solution on the architecture presented
in (9). This architecture which was devised to tackle the problem of few-shot
domain adaptation has the following elements (see Figure 3):

– a CNN-based feature extractor E that maps from the source dataset (herbaria)
and target dataset (field images) into a common space, in which it is expected
for the features represented to be independent from the original domain.

– a classifier F that performs species classification on the common space
– a discriminator D that determines to which of the following categories a pair

of samples from the common space belongs to



1. Samples from different domains and different classes
2. Samples from different domains but the same class
3. Samples from the same domain but different classes
4. Samples from the same domain and the same class

The division into these four categories instead of just into two categories
determined by the domain is done to take advantage of label information in
the target domain (9).

The feature extractor and the classifier are trained in an adversarial approach
with the discriminator in order to guarantee a domain agnostic common space
and a robust classifier. In addition to this strategy, data augmentation is done
in the target domain in order to complete the feature space with more training
samples from this domain.

Fig. 3: Approach by (9) to tackle the problem of few-shot domain adaptation. It
has an encoder E, classifier F and discriminator D

The training is completed in 3 stages. During the first stage the encoder E
and the classifier F are trained in a standard way with samples from only the
source domain. In the second stage the discriminator D is trained to distinguish
between samples from the 4 categories mentioned before. The objective of the
first two stages is to initialize the weights of E F and D. Finally, during the
third stage they are all trained together with the objective of performing domain
adaptation. It can be said that domain adaptation has been achieved once the
discriminator is not able to distinguish samples from categories 1 and 2 and



categories 3 and 4. This means that once the samples have been encoded into
the common domain, it is difficult for the discriminator to tell which was the
original domain of such sample.

The architecture used has a ResNet50 (4) based encoder, which provides a
good compromise between performance, memory use and training time. This is
done by removing the last fully connected layer from the ResNet50 architecture.
After applying these changes, the dimensionality of the common domain becomes
2048 features. This decision affects the architecture of the classifier and the
discriminator. The first one is composed of a single fully-connected layer with
2048 inputs and 997 outputs. The discriminator is a multilayer perceptron, the
input is composed of two feature vectors of 2048 features stacked together and
it has 6 fully-connected layers that reduce the input size from 4096 features to
just 4 outputs. Figure 4 portrays these components.

Fig. 4: Details of the FADA architecture used in the experiments



2.3 Additions to the main FADA architecture

Data Augmentation To obtain better results, data augmentation is used to
increase the performance of the model. The traditional data augmentation op-
erations used are: random rotations of ± 15 degrees, color jittering and random
horizontal flips. Additionally, special transformations are added for each domain.
In the herbariums, a special tilling around the center is added. This operation
creates a crop of the original herbarium that is centered around the center and
can has a zoom level randomly set between 0.9 and 1.3. This is done because
in herbariums the plant samples are commonly placed around the center of the
sheet. Examples of this crops can be observed in figure 5. In the field domain,
the transformation used is a center crop as large as the original picture permits
it to be.

Self Supervision Self supervision is a technique derived from unsupervised
learning that tries to address situations found in supervised learning in which
there might not be enough labeled data in order to train an efficient model.
The objective of these tasks is to extract robust visual information from the
pictures which can be useful either as initial weights or to help the main model
during training. In our experiments self supervision is used following the ideas
presented in (12), where it is used in a multi-task learning approach to help the
main classifier. Figure 6 depicts how it is performed in the context of the FADA
architecture. Self-supervision is only used during the third stage in the training
of the encoder and the classifier. The self-supervision task is applied to the image
after it has undergone the data augmentation process. This modification is also
used in the traditional CNN approach. In this case, the main model is joined
by an additional classifier in a multi-task learning approach. The new classifier
tries to predict the correct self-supervision label for the data. In this case, the
extra classifier loss is combined with the loss from the main classifier

From the several self supervision tasks in existence (5), we used the jigsaw
puzzle solving (10). This decision was taken based on the findings of (12) that
when incorporating self-supervision into domain adaptation it is important to
choose tasks that do not reinforce domain-dependent features and the fact that
the spatial information learned from this showed to be useful when compared to
other tasks like recolorization. This task consists in dividing the original image
into tiles, rearranging them randomly into one of the 64 possible orderings with
the largest distance between them and then having the network try to determine
which of the rearrangements is used. Figure 6 shows this process.

Upper taxa Given the nature of the dataset, it is possible to obtain taxo-
nomical information from each species, like the genus or family name (= upper
taxa). Because of the lack of data, we try to incorporate this information to the
architecture on a multi-task learning approach, so that the features from the
common domain are not only used to predict the species name, but also the
genus or family of the specimen. This is done in two different approaches. For



Fig. 5: Special tilling used for herbariums to take maximum advantage of the
information they have

the FADA architecture, both the classifier and the discriminator are extended
with two additional sub-tasks, one for the genus level and one for the family
level. These components have the same function as the original species classifier
and discriminator, but they have to perform the discrimination and classifica-
tion tasks with the genus or family instead. It is expected that specimens from
the same group share partially similar visual content, and as such this training
taking into account upper taxa can be indirectly used to increase performance
on specimens that are poorly represented in the dataset but which might have
related species in the dataset. In the flowers in figure 7 it is possible to observe
the visual similarities between plants from a different specie and the same genus.
This is the kind of information we hope to take advantage of.



Fig. 6: Addition of jigsaw self-supervision complementary task (10) to the FADA
architecture.

Fig. 7: Multi-task learning with upper taxons

2.4 Training procedure details

Several hyperparameters had to be tuned in order to obtain the best results
possible. These are detailed in table 1



Hyperparameter Value

Framework Pytorch

Learning rate E and F in FADA 0.001

Learning rate D in FADA 0.001

Learning rate in CNN 0.03

Batch size in FADA 15

Batch size in CNN 64

Number of epochs, stage 1 FADA 60

Number of epochs, stage 2 FADA 60

Number of epochs, stage 3 FADA 30

Number of epochs CNN 60

Learning rate scheduler criterion Step

Learning rate scheduler gamma 0.1

Learning rate scheduler step in
FADA stage 3

15

Learning rate scheduler step in
CNN and FADA stage 1

50

Table 1: Hyperparameters used in the training

3 Results

Results from the runs submitted to the challenge can be seen in table 2 and
figure 8.

The metric used to present the results of the challenge is the Mean Reciprocal
Rank (MRR), which measures the average rank of the correct answer in a series
of predictions. It is described by the following formula

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Two distinct MRRs are computed. A first MRR is computed on the full test set.
Then, a second one is computed on a subset of the whole test set whose classes
have particularly few field (or none) images in the training set.

As can be expected from the inherent difficulty of the challenge, the over-
all results obtained are low compared to previous editions of PlantCLEF. The
method described here obtains the best result on the whole test set, and the
second best result on the difficult subset of the test set.

In the runs submitted to the challenge, domain adaptation had a very signif-
icant impact on the results. Between the runs with a CNN and those that used
this technique there is a 2600% and 1850% increase in the MRR All and the
MRR Few. These results can be observed in figure 9.

Additional training data also seems to be a significant factor in obtaining
higher values for the evaluation metric. In the MRR All there is a 5500% and a
165% increase in the values when comparing the results from a CNN and FADA



approaches with the same techniques but adding the complementary dataset
into the training process. This high increase can be observed in figure 10

The last improvement that this work highlights is the benefit of the proposed
extensions of FADA. The usage of self supervision and upper taxa information
actually leads to slight but consistent increases of performance. Among this, the
most useful to improve the MRR All turns out to be the combination of self
supervision and upper taxa, with a 12% increase in the metric. Looking at the
MRR on the difficult species, the use of upper taxa alone leads to an increase
of 59% on the obtained value. This results can be observed in figure 11 and
shows that the visual similarities between species of the same genus or family
are particularly useful for species with very few training samples.

Fig. 8: Results of the PlantCLEF 2020 Challenge, the submissions by the ITCR
Pl@ntNet team (AIcrowd username aabab) are highlighted

4 Conclusions and Future Work

The main conclusions from the experiments are the following

– Domain Adaptation can have a very significant impact in obtaining better
results in scenarios where there is a very limited availability of data in one
domain but a large dataset on the other

– The addition of extra data showed to be a very significant factor in achieving
higher MRRs on the complete test set. On the subset of the most difficult
species, however, this conclusion is not as clear-cut. The additional data
provided an consistent gain when using the CNN approach, but on the other
hand, the gain when using FADA was very small. This is expected to occur
due to the fact that FADA is very sensitive to data (even one additional



Fig. 9: Impact of domain adaptation on the results

Fig. 10: Impact of extra data on the results

picture in the target domain showed to have a significant effect in modifying
the results (9)) and the noisiness in the extra dataset.

– The main modification performed to the FADA architecture, i.e. the intro-
duction of multi-task learning, proved to be important in obtaining better
results on both metrics. Extending the classifier and discriminator to extra
tasks at upper taxa level was successful for boosting results, in particular on
the few shot classes.



Run MRR MRR Diffi-
cult Species

1. Resnet50 trained on PlantCLEF20 0,002 0,002

2. Resnet50 trained on PlantCLEF20 + extra datasets 0,112 0,013

3. FADA trained on PlantCLEF20 0,054 0,039

4. FADA trained on PlantCLEF20 + extra datasets 0,143 0,036

5. FADA trained on PlantCLEF20 + extra datasets
with Self Supervision

0,148 0,039

6. FADA trained on PlantCLEF20 + extra datasets
with MTL from genus and family

0,161 0,037

7. FADA trained on PlantCLEF20 + extra datasets
with Self Supervision and MTL from genus and family

0,134 0,062

8. Ensemble or runs 6 and 7 0,167 0,06

9. Ensemble or runs 5 and 6 0,17 0,039

10. Ensemble or runs 4, 5, 6 and 7 0,18 0,052

Table 2: Results from the runs submitted to the challenge

Fig. 11: Impact of performance improving techniques on the results

– As well as upper taxa information, self supervision was an important factor
in obtaining increases in performance. Although the increases were smaller,
they were nonetheless consistent in particular when combined with multi-
task at upper taxa and on the few shot classes.

As future work, some other paths that can be explored are

– Test different botanical or morphological information in addition to tax-
onomy. For instance, whether a species is Woody/Non-Woody may be an
additional task to be solved. The usage of this information is expected to
help even more general features that can boost even more the results.



– Exploit additional metadata contained in the dataset like geolocation infor-
mation or individual pairs. This might require modifications to the architec-
tures used.
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[8] Joly, A., Goëau, H., Kahl, S., Deneu, B., Servajean, M., Cole, E., Picek,
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