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ABSTRACT
Dialog State Tracking (DST) is one of the most crucial modules for
goal-oriented dialogue systems. In this paper, we introduce FastSGT
(Fast Schema Guided Tracker), a fast and robust BERT-based model
for state tracking in goal-oriented dialogue systems. The proposed
model is designed for the Schema-Guided Dialogue (SGD) dataset
which contains natural language descriptions for all the entities
including user intents, services, and slots. The model incorporates
two carry-over procedures for handling the extraction of the values
not explicitly mentioned in the current user utterance. It also uses
multi-head attention projections in some of the decoders to have a
better modelling of the encoder outputs.

In the conducted experiments we compared FastSGT to the base-
line model for the SGD dataset. Our model keeps the efficiency in
terms of computational and memory consumption while improv-
ing the accuracy significantly. Additionally, we present ablation
studies measuring the impact of different parts of the model on
its performance. We also show the effectiveness of data augmenta-
tion for improving the accuracy without increasing the amount of
computational resources.
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1 INTRODUCTION
Goal-oriented dialogue systems is a category of dialogue systems
designed to solve one or multiple specific goals or tasks (e.g. flight
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reservation, hotel reservation, food ordering, appointment schedul-
ing) [21]. Traditionally, goal-oriented dialogue systems are set up
as a pipeline with four main modules: 1-Natural Language Under-
standing (NLU), 2-Dialogue State Tracking (DST), 3-Dialog Policy
Manager, and 4-Response Generator. NLU extracts the semantic
information from each dialogue turn which includes e.g. user in-
tents and slot values mentioned by user or system. DST takes the
extracted entities to build the state of the user goal by aggregating
and tracking the information across all turns of the dialogue. Dia-
log Policy Manager is responsible for deciding the next action of
the system based on the current state. Finally, Response Generator
converts the system action into human natural text understandable
by the user.

The NLU andDSTmodules have shown to be successfully trained
using data-driven approaches [21]. In the most recent advances in
language understanding, due to models like BERT [3], researchers
have successfully combined NLU and DST into a single unified
module, called Word-Level Dialog State Tracking (WL-DST) [7, 14,
18]. The WL-DST models can take the user or system utterances in
natural language format as input and predict the state at each turn.
The model we are going to propose in this paper falls into this class
of algorithms.

Most of the previously published public datasets, such as Mul-
tiWOZ [2] or M2M [16], use a fixed list of defined slots for each
domain without any information on the semantics of the slots and
other entities in the dataset. As a result, the systems developed on
these datasets fail to understand the semantic similarity between
the domains and slots. The capability of sharing the knowledge
between the slots and domains might help a model to work across
multiple domains and/or services, as well as to handle the unseen
slots and APIs when the new APIs and slots are similar in function-
ality to those present in the training data.

The Schema-Guided Dialogue (SGD) dataset [14] was created
to overcome these challenges by defining and including schemas
for the services. A schema can be interpreted as an ontology en-
compassing naming and definition of the entities, properties and
relations between the concepts. In other words, schema defines not
only the structure of the underlying data (relations between all the
services, slots, intents and values), but also provides descriptions
of most of the entities expressed in a natural language. As a result,
the dialogue systems can exploit that rich information to capture
more general semantic meanings of the concepts. Additionally, the
availability of the schema enables the model to use the power of
pre-trained models like BERT to transfer or share the knowledge
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between different services and domains. The recent emergence of
the SGD dataset has triggered a new line of research on dialogue
systems based on schemas, e.g. [1, 4, 9, 15].

Many state-of-the-art models proposed for the SGD dataset, de-
spite showing impressive performance in terms of accuracy, appear
not to be very efficient in terms of computational complexity and
memory consumption, e.g. [9, 11, 12, 19]. To address these issues,
we introduce a fast and flexible WL-DST model called Fast Schema
Guided Tracker (FastSGT)1. Main contributions of the paper are as
follows:

• FastSGT is able to predict the whole state at each turn with
just a single pass through the model, which lowers both the
training and inference time.

• The model employs carry-over mechanisms for transferring
the values between slots, enabling switching between ser-
vices and accepting the values offered by the system during
dialogue.

• We propose an attention-based projection to attend over
all the tokens of the main encoder to be able to model the
encoded utterances better.

• We evaluate themodel on the SGD dataset [14] and show that
our model has significantly higher accuracy when compared
to the baseline model of SGD, at the same time keeping the
efficiency in terms of computation and memory utilization.

• We show the effectiveness of augmentation on the SGD
dataset without increasing the training steps.

2 RELATEDWORKS
The availability of schema descriptions for services, intents and
slots enables the NLU/DST models to share and transfer knowl-
edge between different services that have similar slots and intents.
Considering the recent advances in natural language understand-
ing and rise of Transformer-based models [17] like BERT [3] or
RoBERTa [10], it looks like a promising approach for training a uni-
fied model on datasets which are aggregated from different sources.
We categorize all models proposed for the SGD dataset into two
main categories: multi-pass and single-pass models.

2.1 Multi-pass Models
The general principle of operation of multi-pass models [6, 11, 12,
15, 19] lies in passing of descriptions of every slots and intents as
inputs to the BERT-like encoders to produce their embeddings. As
a result encoders are executed several times per a single dialog turn.
Passing the descriptions to the model along with the user or system
utterances enables the model to have a better understanding of the
task and facilitates learning of similarity between intents and slots.
The SPDD model [12] is a multi-pass model which showed one of
the highest performances in terms of accuracy on the SGD dataset.
For instance, in order to predict the user state for a service with
4 intents and 10 slots and 3 slots being active in a given turn, this
model needs 27 passes through the encoder (4 for intents, 10 for
requested status, 10 for statuses, and 3 for values). Such approaches
handle unseen services well and achieve high accuracy, but seem
not to be practical in many cases when time or resources are limited.

1Source code of the model is publicly available at: https://github.com/NVIDIA/NeMo

One obvious disadvantage of multi-pass models is their lack
of efficiency. The other disadvantage is the memory consumption.
They typically use multiple BERT-like models (e.g. five in SPDD) for
predicting intents, requested slots, slot statuses, categorical values,
and non-categorical values. This significantly increases the memory
consumption compared to most of the single-pass models with a
single encoder.

2.2 Single-pass Models
The works that incorporate the single-pass approach [1, 14] rely
on BERT-like models to encode the descriptions of services, slots, in-
tents and slot values into representations, called schema embeddings.
The main difference lies in the fact that this procedure is executed
just once, before the actual training starts, mitigating the need
to pass the descriptions through the model for each one of the
turns/predictions.

While these models are very efficient and robust in terms of
training and inference time, they have shown significantly lower
performance in terms of accuracy compared to the multi-pass ap-
proaches. On the other hand, multi-pass models need significantly
higher computation resource for training and inference, and also
the usage of additional BERT-based encoders increases the memory
usage drastically.

3 THE FASTSGT MODEL
The FastSGT (Fast Schema Guided Tracker) model belongs to the
category of single-pass models, keeping the flexibility along with
memory and computational efficiency. Our model is based on the
baseline model proposed for SGD [14] with some improvements in
the decoding modules. The model architecture is illustrated in Fig. 1.
It consists of four main modules: 1-Utterance Encoder, 2-Schema
Encoder, 3-State Decoder, and 4-State Tracker. The first three
modules constitute the NLU component and are based on neural
networks, whereas the state tracker is a rule-based module. We
used BERT [3] for both encoders in our model, but similar models
like RoBERTa [10] or XLNet [20] can also be used.

Assume we have a dialogue of 𝑁 turns. Each turn consists of the
preceding system utterance (𝑆𝑡 ) and the user utterance (𝑈𝑡 ). Let
𝐷 = {(𝑆1,𝑈1), (𝑆1,𝑈2), ..., (𝑆𝑁 ,𝑈𝑁 )} be the collection of turns in
the dialogue.

The Utterance Encoder is a BERT model which encodes the
user and system utterances at each turn. The Schema Encoder
is also a BERT model which encodes the schema descriptions of
intents, slots, and values into schema embeddings. These schema
embeddings help the decoders to transfer or share knowledge be-
tween different services by having some language understanding of
each slot, intent, or value. The schema and utterance embeddings
are passed to the State Decoder - a multi-task module. This module
consists of five sub-modules producing the information necessary
to track the state of the dialogue. Finally, the State Tracker mod-
ule takes the previous state along with the current outputs of the
State Decoder and predicts the current state of the dialogue by
aggregating and summarizing the information across turns. Details
of all model components are presented in the following subsections.
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Figure 1: The overall architecture of FastSGT (Fast Schema Guided Tracker) with exemplary inputs from a restaurant service.

3.1 Utterance Encoder
This module is responsible for encoding of the current turn of the
dialogue. At each turn (𝑆𝑡 ,𝑈𝑡 ), the preceding system utterance
is concatenated with the user utterance separated by the special
token of [𝑆𝐸𝑃], resulting in (𝑇𝑡 ) which is serves as input into the
utterance encoder module:

𝑇𝑡 = [𝐶𝐿𝑆] ⊕ 𝑆𝑡 ⊕ [𝑆𝐸𝑃] ⊕ 𝑈𝑡 ⊕ [𝑆𝐸𝑃] (1)

The output of the first token passed to the encoder is denoted
as 𝑌𝑐𝑙𝑠 and is interpreted as a sentence-level representation of the
turn, whereas the token-level representations are denoted as 𝑌𝑡𝑜𝑘 =

[𝑌 1
𝑡𝑜𝑘
, 𝑌 2
𝑡𝑜𝑘
, ..., 𝑌𝑀

𝑡𝑜𝑘
], where M is the total number of tokens in 𝑇𝑡 .

3.2 Schema Encoder
The Schema Encoder uses the descriptions of intents, slots, and
services to produce some embedding vectors which represent the
semantics of slots, intents and slot values. To build these schema
representations we instantiate a BERTmodel with the same weights
as theUtterance Encoder. However, this module is used just once,
before the training starts, and all the schema embeddings are stored
in a memory to be reused during training. This means, they will
be fixed during the training time. This approach of handling the
schema embeddings is one of the main reasons behind the effi-
ciency of our model compared to the multi-pass models in terms of
computation time.

We used the same approach introduced in [14] for encoding the
schemas. For a service with 𝑁𝐼 intents, 𝑁𝐶 categorical slots and
𝑁𝑁𝐶 non-categorical slots, the representation of the intents are
denoted as 𝐼𝑖 , 1 ⩽ 𝑖 ⩽ 𝑁𝐼 . Schema embeddings for the categorical
and non-categorical slots are indicated as 𝑆𝐶

𝑖
, 1 ⩽ 𝑖 ⩽ 𝑁𝐶 , and 𝑆𝑁𝐶𝑖 ,

1 ⩽ 𝑖 ⩽ 𝑁𝑁𝐶 respectively. The embeddings for the values of the
𝑘-th categorical slot of a service with 𝑁𝑘

𝑉
possible values is denoted

as 𝑉𝑘
𝑖
, 1 ⩽ 𝑖 ⩽ 𝑁𝑘

𝑉
.

Generally, the input to the Schema Encoder is the concatena-
tion of two sequences with the [𝑆𝐸𝑃] token used as the separator
and the [𝐶𝐿𝑆] token indicating the beginning of the sequence.

The Schema Encoder produces four types of schema embed-
dings: intents, categorical slots, non-categorical slots and categori-
cal slot values. For a single intent embeddings 𝐼𝑖 , the first sequence
is the corresponding service description and second one is the in-
tent description. For each categorical 𝑆𝐶

𝑖
and non-categorical 𝑆𝑁𝐶

𝑖
slots embedding, the service description is concatenated with the
description of the slot. To produce the schema embedding 𝑁𝑘

𝑉
for

the k-𝑡ℎ possible value of a categorical slot, the description of the
slot is used as the first sequence along with the value itself as the
second sequence.

These sequences are given one by one to the Schema Encoder
before the main training is started and the output of the first out-
put token embedding 𝑌𝑐𝑙𝑠 is extracted and stored as the schema
representation, forming the Schema Embeddings Memory.
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3.3 State Decoder
The Schema Embeddings Memory along with the outputs of the
Utterance Encoder are used as inputs to the State Decoder to
predict the values necessary for state tracking. The State Decoder
module consists of five sub-modules, each employing a set of pro-
jection transformations to decode their inputs. We use the two
following projection layers in the decoder sub-modules:

1) Single-token projection: this projection transformation,
which is introduced in [14], takes the schema embedding vector and
the 𝑌𝑐𝑙𝑠 of the Utterance Encoder as its inputs. The projection for
predicting 𝑝 outputs for task 𝐾 is defined as 𝐹𝐾

𝐹𝐶
(𝑥,𝑦;𝑝) for two

vectors 𝑥,𝑦 ∈ 𝑅𝑞 as the inputs. 𝑞 is the embedding size, 𝑝 is the size
of the output (e.g. number of classes), the first input 𝑥 is a schema
embedding vector, and 𝑦 is the sentence-level output embedding
vector produced by the Utterance encoder. The sources of the
inputs 𝑥 and 𝑦 depend on the task and the sub-module. Function
𝐹𝐾
𝐹𝐶

(𝑥,𝑦;𝑝) for projection 𝐾 is defined as:

ℎ1 = 𝐺𝐸𝐿𝑈 (𝑊𝐾
1 𝑦 + 𝑏

𝐾
1 ) (2)

ℎ2 = 𝐺𝐸𝐿𝑈 (𝑊𝐾
2 (𝑥 ⊕ ℎ1) + 𝑏𝐾2 ) (3)

𝐹𝐾𝐹𝐶 (𝑥,𝑦;𝑝) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊
𝐾
3 ℎ2 + 𝑏

𝐾
3 ) (4)

where𝑊𝐾
𝑖
, 1 ⩽ 𝑖 ⩽ 3 and𝑏𝐾

𝑖
, 1 ⩽ 𝑖 ⩽ 3 are the learnable parameters

for the projection, and 𝐺𝐸𝐿𝑈 is the activation function introduced
in [5]. Symbol ⊕ indicates the concatenation of two vectors. Softmax
function is used to normalize the outputs as a distribution over the
targets. This projection is used by the Intent, Requested Slot and
Non-categorical Value Decoders.

2) Attention-based projection: the single-token projection
just takes one vector from the outputs of the Utterance Encoder.
For the Slot Status Decoder andCategorical Value Decoderwe
propose to use a more powerful projection layer based on multi-
head attention mechanism [17]. We use the schema embedding
vector 𝑥 as the query to attend to the token representations 𝑌𝑡𝑜𝑘
as outputted by the Utterance Encoder. The idea is that domain-
specific and slot-specific information can be extracted more ef-
ficiently from the collection of token-level representations than
just from the sentence-level encoded vector 𝑌𝑐𝑙𝑠 . The multi-head
attention-based projection function 𝐹𝐾

𝑀𝐻𝐴
(𝑥,𝑌𝑡𝑜𝑘 ;𝑝) for task 𝐾 to

produce targets with size 𝑝 is defined as:

ℎ1 = MultiHeadAtt(𝑞𝑢𝑒𝑟𝑦 = 𝑥, 𝑘𝑒𝑦𝑠 = 𝑌𝑡𝑜𝑘 , 𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑌𝑡𝑜𝑘 ) (5)

𝐹𝐾𝑀𝐻𝐴 (𝑥,𝑌𝑡𝑜𝑘 ;𝑝) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊
𝐾
1 ℎ1 + 𝑏

𝐾
1 ) (6)

where 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡 is the multi-head attention function intro-
duced in [17], and𝑊𝐾

1 and 𝑏𝐾1 are learnable parameters of a linear
projection after the multi-head attention. To accommodate padded
utterances we use attention masking to mask out the padded por-
tion of the utterance.

3.3.1 Intent Decoder. Each service schema contains a list of all
possible user intents for the current dialogue turn. For example,
in a service for reserving flight tickets, we may have intents of
searching for a flight or cancelling a ticket. At each turn, for each
service, at most one intent can be active. For all services, we addi-
tionally consider an intent called 𝑁𝑂𝑁𝐸 which indicates that there

is no active intent for the current turn. An embedding vector 𝐼0 is
considered as the schema embedding for the 𝑁𝑂𝑁𝐸 intent. It is a
learnable embedding which is shared among all the services.

The inputs to the Intent Decoder for a service are the schema em-
beddings 𝐼𝑖 , 0 ⩽ 𝑖 ⩽ 𝑁𝐼 from the Schema Embeddings Memory
and 𝑌𝑐𝑙𝑠 of the Utterance Encoder. The predicted output of this
sub-module is the active intent of the current turn 𝐼𝑎𝑐𝑡𝑖𝑣𝑒 defined
as:

𝐼𝑎𝑐𝑡𝑖𝑣𝑒 = argmax
0⩽𝑖⩽𝑁𝐼

𝐹𝐾𝐹𝐶 (𝐼𝑖 , 𝑌𝑐𝑙𝑠 ;𝑝 = 𝑁𝐼 ) (7)

3.3.2 Slot Request Decoder. At each turn, the user may request
information about a slot instead of informing the system about a
slot value. For example, when a user asks for the flight time when
using a ticket reservation service, 𝑓 𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 slot of the service
is requested by the user. This is a binary prediction task for each
slot. For this task, slot 𝑠𝑖 is requested when 𝐹𝐾

𝐹𝐶
(𝑆𝑖
𝑗
, 𝑌𝑐𝑙𝑠 ;𝑝 = 1) >

0.5, 𝑗 ∈ 𝑐, 𝑛. The same prediction is done for both categorical and
non-categorical slots.

3.3.3 Slot Status Decoder. We consider four different statuses
for each slot, namely: 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑑𝑜𝑛𝑡_𝑐𝑎𝑟𝑒, 𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 . If the
value of a slot has not changed from the previous state to the
current user state, then the slot’s status is "𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒". If a slot’s
value is updated in the current user’s state into "𝑑𝑜𝑛𝑡_𝑐𝑎𝑟𝑒", then
the status of the slot is set to "𝑑𝑜𝑛𝑡_𝑐𝑎𝑟𝑒" which means the user
does not care about the value of this slot. If the value for the slot is
updated and its value is mentioned in the current user utterance,
then its status is "𝑎𝑐𝑡𝑖𝑣𝑒". There are many cases where the value for
a slot does not exist in the last user utterance and it comes from
previous utterances in the dialogue. For such cases, the status is
set to "𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 " which means we should search the previous
system or user utterances in the dialogue to find the value for this
slot. More details of the carry over mechanisms are described in
subsection 3.4.

The status of the categorical slot 𝑟 is defined as:

𝑆𝑟 = argmax
0⩽𝑖⩽𝑁𝑐

𝐹𝐾𝑀𝐻𝐴 (𝑆𝑖 , 𝑌𝑡𝑜𝑘 ;𝑝 = 4) (8)

Similar decoder is used for the status of the non-categorical slots
as:

𝑆𝑟 = argmax
0⩽𝑖⩽𝑁𝑛𝑐

𝐹𝐾𝑀𝐻𝐴 (𝑆𝑖 , 𝑌𝑡𝑜𝑘 ;𝑝 = 4) (9)

where 𝑆𝑟 is the status of 𝑟 -th non-categorical slot.

3.3.4 Categorical Value Decoder. The list of possible values for
categorical slots are fixed and known. For the active service, this
sub-module takes the𝑌𝑐𝑙𝑠 and the schema embeddings of the values
for all the categorical slots𝑉𝑘

𝑖
, 1 ⩽ 𝑘 ⩽ 𝑁𝑐 , 1 ⩽ 𝑖 ⩽ 𝑁𝑘𝑉 as input and

uses the 𝐹𝐾
𝑀𝐻𝐴

(𝑥,𝑌𝑡𝑜𝑘 ;𝑝 = 1) projection on each value embedding
and 𝑌𝑡𝑜𝑘 . Then the predictions of the values are normalized by
another Softmax layer, resulting in a distribution over all possible
values for each slot. The value with the maximum probability is
selected as the value of the slot. If a slot’s status is not "𝑎𝑐𝑡𝑖𝑣𝑒" or
"𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 ", this prediction for a given slot will be ignored during
the training.
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3.3.5 Non-categorical ValueDecoder. For non-categorical slots
there is no predefined list of possible values, and they can take any
value. For such slots, we use the spanning network approach [14] to
decode and extract the slot’s value directly from the user or system
utterances.

This decoder would use two projection layers, one for predicting
the start of the span, and one for end of the span. This projection
layer is shared among all the non-categorical slots. The only dif-
ference is their inputs. For each non-categorical slot, the outputs
of the tokens from the Utterance Encoder and also the schema
embedding for the slot are given as inputs to the two projection
layers. These predict the probability of each token to be the start
or end of the span for the value. The token with the maximum
probability of being the start token is considered as the start and
the token with the maximum probability of being the end token
which appears after the start token is be considered as the end of
the span.

For slots with no value mentioned in the current turn, we train
the network to predict the first [𝐶𝐿𝑆] to be both the start and
end tokens. The non-categorical slots with status of "𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒" are
ignored during the training.

3.4 State Tracker
The user’s state at each turn includes the active intent, the collection
of the slots and their corresponding values, and also the list of the
requested slots. This module would get all the predictions from
the decoders along with the previous user state and produces the
current user’s state. The list of requested slots and the active intent
are produced from the outputs of the Slot Request Decoder and
Intent Decoder directly. Producing the collection of the slots and
their values requires more processing.

We start with the list of slots and values from the previous state,
and update it as the following: For each slot, if its status is "𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒",
no update or change is applied and the value from the previous
state is be carried over. If its status is predicted as "𝑑𝑜𝑛𝑡_𝑐𝑎𝑟𝑒",
then the explicit value of "don’t care" would be set as the value
for the slot. If the slot status is "𝑎𝑐𝑡𝑖𝑣𝑒", then it means we should
retrieve a value for that slot. We initially check the output of the
value decoders, if a value is predicted, then that value is assigned
to the slot. If the "#𝐶𝐴𝑅𝑅𝑌𝑂𝑉𝐸𝑅#" special value is predicted for
categorical slots or the start and end pointers for the non-categorical
slots are pointing to a value outside the user utterance’s span, then
we kick off the carry-over mechanism. The carry-over mechanisms
try to search the previous states or system actions for a value. When
the "𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 " status is predicted for any slot, the same carry-over
procedures are triggered.

The carry-over procedures [12] enable the model to retrieve
a value for a slot from the preceding system utterance or even
previous turns in the dialogue. There are many cases where the
user is accepting some values offered by the system and the value
is not mentioned explicitly in the user utterance. In our system we
have implemented two different carry-over procedures. The value
may be offered in the last system utterance, or even in the previous
turns by the system. The procedure to retrieve values in these cases
is called in-service carry-over. There are also cases where a switch
is happening between two services in multi-domain dialogues. A

dialogue may contain more than one service and the user may
switch between these services. When a switch happens, we may
need to carry some values from a slot in the previous service to
another slot in the current service. This carry-over procedure is
called cross-service carry-over.

3.4.1 In-service Carry-over. We trigger this procedure in three
cases: 1-status of a slot is predicted as "𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 ", 2-the spanning
region found for the non-categorical slots is not in the span of the
user utterance, 3-"#𝐶𝐴𝑅𝑅𝑌𝑂𝑉𝐸𝑅#" value is predicted for a cate-
gorical slot with "active" or "𝑐𝑎𝑟𝑟𝑦_𝑜𝑣𝑒𝑟 " statuses. The in-service
carry-over procedure tries to retrieve a value for a slot from the
previous system utterances in the dialogue. We first search the
system actions starting from the most recent system utterance and
then move backwards for a value mentioned for that slot. The most
recent value would be considered for the slot if multiple values are
found. If no value could be found, that slot would not get updated
in the current state.

3.4.2 Cross-service Carry-over. Carrying values from previous
services to the current one when a switch happens in a turn is done
by cross-service carry-over procedure. The previous service and
slots are called sources, and the new service and slots are called
the targets. To perform the carry-over, we need to build a list of
candidates for each slot which contains the slots where a carry-
over can happen from them. We create this carry-over candidate
list from the training data. We process the whole dialogues in the
training data, and count the number of times a value from a source
slot and service carry-overs to a target service and slot when a
switch happens. These counts are normalized to the number of the
switches between each two services in the whole training dialogues
to have a better estimate of the likelihood of carry-overs. In our ex-
periments, the candidates with likelihoods less than 0.1 are ignored.
This carry-over relation between two slots is considered symmetric
and statistics from both sides are aggregated. This candidate list
for each slot contains a list of slot candidates from other services
which is looked up to find a carry-over value.

When a switch between two services happens in the dialogue,
the cross-service carry-over procedure is triggered. It looks into the
candidate for all the slots of the new service and carry any value it
found from previous service. If multiple values for a slot are found
in the dialogue, the most recent one is used.

3.4.3 State Summarization. At each turn, the predictions of the
decoders are used to update the previous state and produce the
current state. The slots and their values from the previous state
are updated with the new predictions if their statuses are predicted
as active, otherwise kept unchanged. In case of several WL-DST
models, e.g. TRADE [18] or the the model introduced in [19], they
require the entire of part of the dialogue history to be passed as
the input. FastSGT just decodes the current turn and updates just
the parts of the state that need the change at each turn. It helps the
computational efficiency and robustness of the model.
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4 EXPERIMENTS
4.1 Experimental Settings
We did all our experiments on systems with 8 V100 GPUs using
mixed precision training [13] to make the training process faster.
We used BERT-base-cased in our experiments for the encoders. All
of the models were trained for maximally 160 epochs to have less
variance in the results, whereas most of them managed to converge
in less than 60 epochs. We repeated each experiment three times
and reported the average in all tables.

For each of the BERT-based encoders and attention-based projec-
tion layers we used 16 heads. We have optimized the model using
Adam [8] optimizer with default parameter settings. Batch size was
set to 128 per GPU, with maximum learning rate to 4𝑒 − 4. Linear
decay annealing was used with warm-up of 2% of the total steps.
Dropout rate of 0.2 is used for regularization for all the modules.
We tuned all the parameters to get the best joint goal accuracy on
the dev-set of the datasets.

4.2 Datasets
The SGD dataset is multi-domain goal-oriented dataset that con-
tains over 16k multi-domain conversations between a human user
and a virtual assistant and spans across 16 domains. The SGD
dataset provides schemas that contain details of the API’s interface.
The schema define the list of the supported slots by each service,
possible values for categorical slots, along with the supported in-
tents.

In the original SGD dataset, test and validation splits contains
Unseen Services, i.e. services that do not exist in the training set. By
design, those services are in most cases similar to the services in
the train with similar descriptions, but different names. We created
another version of the dataset by merging all the dialogues and spit-
ting them again randomly in 70%/15%/15% to train/validation/test.
In this version of the dataset, called 𝑆𝐺𝐷+, all services are seen.
It helped us to have a better evaluation of our model as the focus
of our model is for seen services and by using the original split
we were ignoring a significant part of the dataset (some services
simply weren’t present in the original Seen Services split).

4.3 Evaluation Metrics
We evaluated our proposed model and compared with other base-
lines on the the following metrics:

• Active Intent Accuracy: the fraction of user turns with
correctly predicted active intent, where active intent repre-
sents user’s intent in the current turn that is being fulfilled
by the system.

• Requested Slot F1: the macro-averaged F1 score of the re-
quested slots. The turns with no requested slots are skipped.
Requested slots are the slots that were requested by the user
in the most recent utterance.

• Average Goal Accuracy: the average accuracy of predict-
ing the value of a slot correctly, where the user goal repre-
sents user’s constraints mentioned in the dialogue up until
the current user turn.

• Joint Goal Accuracy: the average accuracy of predicting
all slot values in a dialogue turn correctly. This metric is the
strictest one among them all.

4.4 Performance Evaluation
In this section, we evaluate and compare FastSGT with the base-
line SGD model proposed in [14] on the two datasets of 𝑆𝐺𝐷 and
𝑆𝐺𝐷+. A through comparison of both models with regard to all
the evaluation metrics explained in subsection 4.3 are reported in
Tables 1 and 2. We have reported the metrics calculated for the
turns from the all services vs just seen services. The performance of
the models trained and evaluated on single-domain and all-domains
are reported separately. All dialogues includes single-domain and
multi-domain dialogues.

There were some issues in the original evaluation process of
the SGD baseline which we had to fix. First, some services were
considered seen services during the evaluation for single-domain
dialogues while they do not actually exist in the training data. The
other issue was that the turns which come after an unseen service
in multi-domain dialogues could be counted as seen by the original
evaluation. The errors from unseen services may propagate through
the dialogue and affect some of the metrics for seen services. We
fixed it by just considering only the turns if there are no turns before
them in the dialogue from unseen services. These fixes helped to
improve the results. However, to have a fair comparison we also
reported the performance of the baseline model and ours with and
without these fixes. In Table 1, we have denoted them by +/- in the
column labelled as "Eval Fix".

The performance of our model in all the metrics on both versions
of the dataset is better than the baseline. The main advantage of
our model comparing to the baseline model is benefiting from the
carry-over mechanisms. These procedures are enhanced by having
the capability of predicting "carryover" statuses for all slots, and
also having "#CARRYOVER#" value for the categorical slots. During
our error analysis, we found out that great number of errors come
from the cases where the value for a slot is not explicitly mentioned
in the user utterance. The other advantage of FastSGT over the SGD
baseline is the attention-based projection functions which enable
our model to have a better modeling of the utterance encoder’s
outputs.

4.5 Data Augmentation
One of the main challenges in building goal-oriented dialogue sys-
tem is lack of sufficient high quality data with annotation. In this
section, we study the effectiveness of augmentation on the perfor-
mance of our model. We created augmented versions of the SGD
and SGD+ datasets by replacing the values of the non-categorical
slots with other values seen for the same slot in other dialogues
randomly. It enables us to create new dialogues from the available
dialogues in an offline manner. However, augmentation in multi-
turn dialogues can be challenging as changing a value for a slot may
need some update in the rest of dialogue to have keep the altered
dialogue still consistent. We carefully updated the whole dialogue
with each slot’s value replacement to maintain the integrity of the
dialogue’s content and annotations.
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Table 1: Evaluation results of our model compared to the SGD baseline [14] on the dev/test sets of the SGD dataset. The results
are reported separately for single-domain dialogues and all dialogues. We also reported the results without the fixes in the
evaluation process of the baseline for both seen and all services.

Eval Single-domain Dialogues All dialogues
Model Services Fix Intent Acc Slot Req F1 Average GA Joint GA Intent Acc Slot Req F1 Average GA Joint GA
SGD Baseline all – 96.00/88.05 96.50/95.60 77.60/68.40 48.60/35.60 90.80/90.60 97.30/96.50 74.00/56.00 41.10/25.40
FastSGT all – 96.45/88.60 96.55/94.65 81.11/71.22 56.66/39.77 91.58/90.33 97.53/96.33 78.22/60.66 52.06/29.20
SGD Baseline seen – 99.03/78.22 98.74/96.83 88.12/92.17 68.61/73.94 96.44/94.50 99.47/99.29 79.86/67.77 54.68/41.63
FastSGT seen – 98.94/77.53 98.80/96.89 92.98/94.12 83.13/80.25 96.61/94.18 99.66/99.55 88.78/76.52 71.34/55.23
SGD Baseline seen + 99.00/75.12 96.08/99.22 90.84/91.42 71.14/68.94 96.08/91.64 99.62/99.66 83.33/81.03 61.15/60.05
FastSGT seen + 98.86/73.98 99.64/99.24 96.54/95.31 88.03/81.56 96.26/91.44 99.65/99.64 92.33/92.12 79.65/78.55

Table 2: Evaluation results of our model compared to the SGD baseline [14] on SGD+ dataset for single-domain dialogues and
also all dialogues. All dialogues includes all the single-domain and multi-domain dialogues.

Single-domain Dialogues All Dialogues
Model Intent Acc Slot Req F1 Average GA Joint GA Intent Acc Slot Req F1 Average GA Joint GA
SGD Baseline 95.31/95.70 99.49/99.66 91.85/91.67 71.76/71.86 96.34/96.45 99.69/99.69 81.25/81.15 56.07/56.11
FastSGT 95.36/95.67 99.52/99.59 95.57/95.44 83.97/84.31 96.17/96.36 99.69/99.69 95.33/95.46 82.03/82.81

Table 3: The results of the ablation study of FastSGT on test/dev sets of SGD+.

Single-domain Dialogues All Dialogues
Model Intent Acc Slot Req F1 Average GA Joint GA Intent Acc Slot Req F1 Average GA Joint GA
SGD Baseline 95.31/95.70 99.49/99.66 91.85/91.67 71.76/71.86 96.34/96.45 99.69/99.69 81.25/81.15 56.07/56.11
FastSGT 95.36/95.67 99.52/99.59 95.57/95.44 83.97/84.31 96.17/96.36 99.69/99.69 95.33/95.46 82.03/82.81
- Attention-based Layer 95.23/95.72 99.51/99.62 95.28/95.04 82.85/83.04 96.32/96.48 99.69/99.70 95.14/95.44 81.80/82.76
- Carry-over Value/Status 95.12/95.87 99.54/99.63 95.30/95.40 81.88/82.36 96.32/96.50 99.68/99.71 95.08/95.27 80.84/81.65
- In-service Carry-over 95.28/95.83 99.50/99.65 91.48/91.18 71.48/71.34 96.25/96.41 99.67/99.70 92.07/92.01 72.62/72.58
- Cross-service Carry-over - - - - 96.28/96.43 99.68/99.71 84.31/84.37 62.90/63.54

Augmentation for categorical slots was not possible since the
dataset does not provide the unique position of the categorical slot
values in the dialogue utterance. Also, we did not try the augmen-
tation on multi-domain dialogues as switching between services
makes it more challenging to maintain the consistency of the dia-
logue.

We augmented the data with 10x of the original data, but kept the
number of training steps fixed to have a fair comparison by keeping
the total amount of the computation the same. The results reported
in Table 4 show the effectiveness of augmentation on both the SGD
and SGD+ datasets for single domain dialogues. The experiments
on the SGD dataset are done just for the seen services.

4.6 Ablation Study
We study and evaluate the effectiveness of different aspects of
our model in this section. The performances of different variants

Table 4: FastSGTwith andwithout data augmentation (Aug.)
on seen single-domain dialogues of SGD and SGD+ datasets.
All results are reported for dev/test sets.

Dataset Aug. Intent Acc Slot Req F1 Average GA Joint GA
SGD – 98.86/73.98 99.64/99.24 96.54/95.31 88.03/81.56
SGD + 98.74/73.97 99.59/99.31 96.70/96.31 88.66/83.12
SGD+ – 95.36/95.67 99.52/99.59 95.57/95.44 83.97/84.31
SGD+ + 95.31/95.76 99.49/99.65 96.23/96.19 84.93/86.24

of FastSGT are reported in Table 3. In each variant, one part of
the model is disabled to show the effect of each feature of the
model on the final performance. As it can be seen, both carry-over
mechanisms are very effective and most of the improvements of our
model is the result of this part of the model. The experiments show
the effectiveness of the cross-service carry-over for multi-domain
dialogues which was expected. We did not report the results of
removing the cross-service carry-over for single-domain dialogues
as it does not affect such dialogues.

The performance of the variant of the model without carry-over
status or carry-over values for categorical slots is still good. The
main reason is that while this variant of the model lacks these
features it still can handle carry-over for non-categorical slots by
predicting "active" status along with out-of-bound span prediction.

Experiments also show that the attention-based projections can
help the performance of the model in terms of accuracy. It shows the
effectiveness of exploiting all the encoded outputs instead of just
the first output of the encoder by using self-attention mechanism.

5 CONCLUSIONS
In this paper we proposed an efficient and robust state tracker
model for goal-oriented dialogue systems called FastSGT. In many
cases in multi-turn dialogues, the value of a slot is not mentioned
explicitly in the user utterance. To cope with this issue, the pro-
posed model incorporates two carry-over procedures to retrieve
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the value of such slots from the previous system utterances or other
services. Additionally, FastSGT model utilized multi-head attention
mechanism in some of the decoders to have a better modeling of
the encoder outputs.

We run several experiments and compared our model with the
baseline model of the SGD dataset. The results indicate that our
model has significantly higher accuracy, at the same time being effi-
cient in terms of memory utilization and computation resources. In
additional experiments, we studied the effectiveness of augmenta-
tion for our model and shown that data augmentation can improve
the performance of the model. Finally, we also included ablation
studies measuring the impact of different parts of the model on its
performance.
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