
Fact-Oriented Business Rule Modeling in the Event 

Perspective  

Peter Bollen 

Department of Organization & Strategy, University of Maastricht 

P.O. Box 616, 6200 MD, the Netherlands 

p.bollen@os.unimaas.nl 

 

Abstract. In this article we will focus on the business rule 

modeling constructs and methodology in the fact-oriented 

approach for the third perspective from the IFIP CRIS 

framework: the behaviour-oriented perspective or event 

perspective. 

1    Introduction 

In order to define the fact-oriented modeling constructs for the event perspective, we 

will formalize the definition of derivation rules as they are currently used in fact-

oriented modeling languages (e.g ORM [1]). The derivation rules that constitute an 

application’s process base can be fully formalized whenever an appropriate references 

structure for the (static) information grammar has been put in place. We note how the 

pre-condition references the object types that are specified in the process argument 

and possibly references the (ingredient) fact types that must be contained in the 

application information grammar. We note that the post-condition specifies what the 

result will be of the execution of the derivation rule, whenever the pre-condition 

evaluates to true. The create operator is defined as follows: a fact instance that will be 

‘created’ has subsequently to be inserted to the application’s information base. If the 

projected information base after the proposed insert transaction will violate the 

application’s conceptual schema or information grammar, a created fact will not be 

added to the application’s information base. The rule-body of the derivation rule 

contains the explicit derivation logic that ’computes’ the value(s) for the ‘derived’ 

role for the fact instance(s) that will be created. 

 
Dr1:  Derive credibility status <(arg1, customer)> 

 

IF There exists an instance of  Ft2   SUCH THAT FT2.R2 = ‘arg1’   

AND There exists at least one instance of Ft3  (where ‘ FT3.R1’   is SUCH THAT there 

exist an instance of  Ft2 SUCH that Ft2.R2 =’ arg1’ )                      [pre-condition] 

         

THEN Create an instance of fact type Ft1 SUCH THAT Ft1.R2= ‘arg1’  

      AND Ft1.R1=  DRbody1  [post-condition] 

       

DRbody1:=  IF there exists at least one instance of Ft3 SUCH THAT Ft3.R2 = ‘bad’  

                     THEN ‘ not credible’  ELSE   ‘credible’   [rule body] 

37



 

2 The extension of ORM with Event-Condition-Action (ECA) 

modeling constructs 

Although the execution of the derivation rule is constrained by the pre-conditions and 

post-conditions, there still remain degrees of freedom with respect to when and in 

what sequence these derivation rules or information base update processes (IBUPs) 

can be executed. Therefore, an additional modeling construct is needed, to specify 

when the instances of derivation rules from the conceptual schema will be executed. 

These ‘rule’ executions will be triggered by events. For example the occurrence of an 

event instance that an insurance application is created will ‘trigger’ the derivation 

rule: derive customer credibility: 

 
ON insurance application is created 
THEN  derive customer credibility 

 

Definition 1. An event type is a set of events in the application subject area, each of 

these events can lead to the execution of one or more derivation rules. 

 

Definition 2. An event type argument set of a given event type specifies all 

occurrences of object types, instances of which should be supplied for an event 

instance of the event type. 

 

An event can start the execution of a derivation rule or IBUP (in some cases) under 

(a) condition(s) on the information base. In the population constraints from the 

application information model we have modeled the ‘invariant’ business rules that 

must hold for every information base state.  For example the business rule that states 

that every insurance application must state the insurance type. In the pre-condition of 

the derivation rule(s), the business rules are modeled that specify what ingredient fact 

instances should be available in order to ‘compose’ or ‘derive’ the resulting fact 

instance(s) in the derivation rule [2: p.1519]. In the event perspective we will model 

the business rules that contain the knowledge under what condition (on the 

application information base) an event of an event type will trigger a specific 

derivation rule or IBUP. An example event description for the insurance application 

example will look as follows: 

 
ON E1:insurance application is created (arg1:application) 
THEN  derive customer credibility (arg1:customer) 

ON E2: new day(arg1: date, arg2: month) 
IF C1: (E2.arg1= ‘1’ AND E2.arg2= ‘january’) 
THEN  derive customer credibility (arg1:customer) 

 
 

Definition 3. A guard condition is a proposition on the information base. 

 

The proposition in the guard condition can contain a reference to one or more 

instances of the event argument. 

38



3   The Impulse Mapper 

In many cases the derivation rules are executed by users from different user groups in 

the same organization. The external schema for the event perspective for such a user 

group might contain compound impulses. This means that an event will trigger two or 

more derivation rules at the same time. In order to abstract from externally imposed 

"ways of working" we will have to atomize these compound impulse types. Each 

atomic impulse containing exactly one (primitive) event [3], exactly one derivation 

rule or IBUP and the condition under which the derivation rule or IBUP will be 

executed. We will call the effect of an event occurence into the execution of one 

derivation rule or IBUP (eventually under a condition on the information base) an 

impulse (instance). It is this definition of an impulse that allows us to look at an 

impulse as a specific type of ‘business constraint’ (see the discussion in Bollen [4: 

p.112-113]) without having to worry about run-time implementation issues like code 

generation [5], message sending [3: p.132] and software components (e.g. event 

handler [6]). 

 
Algorithm 1:Fact-oriented behavioral modeling procedure 

BEGIN  Take the first user group in application subject area   

  WHILE   still user groups left in   
  Take the first derivation rule or IBUP from conceptual schema 

      WHILE   still derivation rules/IBUP’s in conceptual schema. 

   Ask the users in the Sphere of Influence what event type(s)   

       invoke such a derivation rule or IBUP  

   Check whether such an event type is already listed. 

      IF event type not listed 

   THEN For each event type determine the event type argument 

   ELSE For each event type that evokes such a process:             

            determine the condition on the IB and event    

            argument under which the der. Rule is instantiated.    

       IF the condition is different from an existing    

          condition on the same event type and derivation  

           rule/IBUP 

       THEN Make a combined condition which contains the   

            old condition type and the new condition type 

       ELSE  the impulse is already defined. 

       ENDIF 

       For each (relevant) impulse determine the impulse mapper 

       IF parts of such an impulse mapper can not be determined 

          THEN redefine the part of the event argument such that an         

             impulse mapper can be defined 

        ENDIF 

   For each impulse define the event-condition  

         and the condition-process trigger type (if relevant)  

      ENDIF 

    take next derivation rule/IBUP 

    ENDWHILE 

 take next user group in sphere of influence 

ENDWHILE 

END  

 
 

Events that do not have the potential to ‘trigger’ derivation rules from the 

application’s conceptual schema or IBUP’s are not relevant for the description of the 

39



behavioural perspective in a given application subject area [7 : p.3]. We can now 

classify all impulses that have the same event type, the same derivation rule or IBUP 

and the same condition type into a set of impulse instances that belong to the same 

impulse type. 

An impulse type contains an event type,  a condition type, and a derivation rule (or 

a conceptual process type in general) or IBUP. 

   

Definition 4. An impulse mapper is a construct that transforms values of event type 

arguments and fact instances from the application information base into instantiation 

values for the argument set(s) for the derivation rule or IBUP. 

 
Example: 

Event type  Et1: insurance application created (arg1: application). 

Derivation rule                Dr1: determine customer credibility (arg1:customer). 

Guard Condition type C1 : Ft4.R1 =’car’ (where FT4.R2=’E1.arg1’) 

     Impulse mapper                Dr1.arg1:=Ft2.R2 (where Ft2.R1=’E1.arg1’ 

 

In algorithm 1 the modeling procedure for deriving the business rule model in the 

behaviour-oriented perspective is given.  

4     Conclusions 

In this article we have generalized the declarability of business rules in the data-

oriented an process-oriented perspectives to the event perspective, by defining the 

basic ECA oriented modeling constructs and the concept of impulse mapper that 

provides the semantic connection between the model in the event perspective on one 

hand and the models in the process- and data-oriented perspectives on the other hand. 

In addition an explicit modeling procedure was provided. 

 

References 

 
1. Halpin, T., Information Modeling and Relational Databases; from conceptual analysis to   

          logical design. 2001, San Francisco, California: Morgan Kaufmann. 

2. Bollen, P., Conceptual process configurations in enterprise knowledge management  

          systems, in Applied computing 2006. 2006, ACM: Dijon, France. 

3. Bassiliades, N. and I. Vlahavas, Processing production rules in DEVICE, an active  

          knowledge base system. Data & Knowlege Engineering, 1997. 24: p. 117-155. 

4. Bollen, P., On the applicability of requirements determination methods, in Management  

          and Organization. 2004, University of Groningen: Groningen. p. 219. 

5. Dietrich, S.W., et al., Component adaptation for event-based application integration  

          using active rules. Journal of Systems and Software, (in press). 

6. Pissinou, N., K. Makki, and R. Krishnamurthy, An ECA object service to support active  

          distributed objects. Information Sciences, 1997. 100: p. 63-104. 

7. Paton, W., . ed. Active rules in database systems. Monographs in computer science, ed.  

          D. Gries. 1999, Springer: New-York. 

 

 

40


