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Abstract. Providing algorithmic explanations for the decisions of ma-
chine learning systems to end users, data protection officers, and other
stakeholders in the design, production, commercialization and use of ma-
chine learning systems pipeline is an important and challenging research
problem. Crucial motivations to address this research problem can be ad-
vanced on both ethical and legal grounds. Notably, explanations of the
decisions of machine learning systems appear to be needed to protect
the dignity, autonomy and legitimate interests of people who are subject
to automatic decision-making. Much work in this area focuses on image
classification, where the required explanations can be given in terms of
images, therefore making explanations relatively easy to communicate
to end users. In this paper we discuss how the representational power
of sparse dictionaries can be used to identify local image properties as
main ingredients for producing humanly understandable explanations for
the decisions of a classifier developed on the basis of machine learning
methods.
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1 Introduction

Machine Learning (ML) techniques make possible to develop systems that learn
from observations. Many ML techniques (e.g., Support Vector Machines (SVM)
and Deep Neural Networks (DNN)) give rise to systems the behavior of which
is often hard to interpret [15]. A crucial ML interpretability issue concerns the
generation of explanations for an ML system behavior that are understandable
to a human being. In general, this issue is addressed as a scientific and techno-
logical problem by so-called explainable artificial intelligence (XAI). Providing
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XAI solutions to the ML explainability problem is important for many AI and
computer science research areas: to improve intelligent systems design, testing
and revision processes, to make the rationale of automatic decisions more trans-
parent to end users and systems managers, thereby leading to better forms of
HCI and HRI involving learning systems, to improve interactions between learn-
ing agents in Distributed AI, and so on. Providing XAI solutions to the ML
explainability problem is quite important from ethical and legal viewpoints as
well. Learning systems are being increasingly used to make or to support de-
cisions that are most significant for the life of persons, including career, court,
medical diagnosis, insurance risk profiles and loan decisions. Thus, obtaining ex-
planations for classifications and automatic decisions is arguably very important
on ethical grounds, in order to respect and protect the dignity, autonomy and
legitimate interests of people who are subject to automatic decision-making. On
more properly legal grounds, it is sufficient to recall here that art. 22 of the Eu-
ropean Union GDPR establishes the right of a person to contest an automatic
decision and to address her complaint to the data protection officer who is in
charge of the decision-making system. The data protection officer would be in
a better position to evaluate these personal complaints, if he/she had an un-
derstanding of the reasons, if any, underlying the contested automatic decision.
Moreover, in the case of repeated and undesired system behaviors, having good
explanations of learning systems decisions can be very helpful to identify the
sources of ethically unacceptable biases of learning systems, and to take those
corrective actions that are impelled by codes of professional ethics.

Although some ML techniques come with reasonably interpretable mecha-
nisms and Input/Output (I/O) relationships (e.g., decision trees), this is not the
case for a wide variety of ML systems, whose processing and I/O relationships
are often difficult to understand [14]. A ML system may have multiple sources
of opacity for human bounded rationality, notably including the large numbers
of features and ML parameters. As a consequence, the output of ML systems
may depend from inner data representations and processing which escape full
human understanding and interpretation. Indeed, in the ML system represen-
tation space, small differences or key features that cannot be easily made sense
of in the framework of human classification strategies may play a decisive role
for classification outcomes. Various senses of interpretability and explainabil-
ity for learning systems have been distinguished and analyzed [7], and various
approaches to overcoming their opaqueness are now being pursued [9, 22]. For ex-
ample, in [19] a series of techniques for the interpretation of DNN are discussed,
and in [16] a wide variety of motivations underlying interpretability needs are
examined, thereby refining the notion of interpretability in ML systems. In the
context of this multifaceted interpretability problem [27, 28], we focus on the is-
sue of what it is to explain the behavior of ML perceptual classification systems
for which only I/O relationships are accessible, i.e., the learning system is seen
as a black-box. In literature, this type of approach is known as model agnostic
[25].
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Various model agnostic approaches have been developed to give global ex-
planations exhibiting a class prototype which the input data can be associated
to [9, 22, 27, 19]. These explanations are given in response to explanation re-
quests that are usually expressed as why-questions: “Why were input data x
associated to class C?”. Specific why-questions which may arise in connection
with actual learning systems are : “Why was this loan application rejected?”
and “Why was this image classified as a fox?”. However, prototypes often make
rather poor explanations available. For instance, if an image x is classified as
“fox”, the explanation provided by means of a fox-prototype is nothing more
than a “because it looks like this” explanation: one would not be put in the
position to understand what features (parts) of the prototype are associated to
what characteristics (parts) of x. In order to go beyond this impoverished level
of understanding, instead of merely giving the user a global explanation, one
might attempt to provide a local explanation, which highlights salient parts of
the input [25]

In this paper, we propose a model agnostic framework that returns local
explanations of classifications based on dictionaries of local and humanly inter-
pretable elements of the input. This framework can be functionally described
in terms of a three-entity model, composed of an Oracle (an ML system, e.g. a
classifier), an Interrogator raising explanations requests about the Oracle’s re-
sponses, and a Mediator helping the Interrogator to understand the answer given
by the Oracle. The three-entity model is resumed in Figure 1. In this framework,
local explanations are provided by a system (the Mediator) which does not co-
incide with the system which classifies inputs. A similar situation may occur in
the human brain where, for instance, the visual system provides classifications
and recognition of objects present in a visual scene, but the reasons why a given
input is a recognised as a “cat” rather than, say, a ’‘dog”, may involve other
areas of the brain, including those storing and processing semantic memories. In
this framework, the Mediator plays the crucial explanatory role, by advancing
hypotheses on what humanly interpretable elements are likely to have influenced
the Oracle output. More specifically, elements are computed which represent hu-
manly interpretable features of the input data, with the constraint that both
prototypes and input can be reconstructed as linear combinations of these ele-
ments. Thus, one can establish meaningful associations between key features of
the prototype and key features of the input. To this end, we exploit the repre-
sentational power of sparse dictionaries learned from the data, where atoms of
the dictionary selectively play the role of humanly interpretable elements, inso-
far as they afford a local representation of the data. Indeed, these techniques
provide data representations that are often found to be accessible to human
interpretation [18]. The dictionaries are obtained by a Non-negative Matrix Fac-
torization (NMF) method [3, 14, 11], and the explanation is determined using an
Activation-Maximization (AM) [9, 27] based technique, that we call Explanation
Maximization.

The article is organized as follows: Section 2 briefly reviews related ap-
proaches, in Section 3 we present the overall architecture; experiments and re-
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sults are discussed in Section 4, while Section 5 is devoted to concluding remarks
and future developments.

2 Related Work

In recent years, various attempts have been made to interpret and explain the
output of a classification system. Initial attempts concerned SVM classifiers (see
for example [23]) or rule-based systems [6, 5].

In the neural network context, recent surveys on explainable AI are pro-
posed in [33, 24, 10, 1]. A significant attempt to explain in terms of images what
a computational neural unit computes is found in [9] using the Activation Max-
imization method. AM-like approaches applied to CNN were proposed in [27,
17]. Additional attempts to give interpretability to CNNs were proposed in [31]
and [8], where Deconvolutional Network (already presented by [32] as a way to
do unsupervised learning) and up-convolutional network are proposed, while [22,
21] uses an image generator network (similar to GANs) as priors for AM algo-
rithm to produce synthetic preferred images. In these approaches, explanations
are given in terms of prototypes or approximate input reconstructions. However,
one does not take into account the issue whether the given explanations are in
some manner interpretable by humans. Moreover, the proposed approaches seem
to be model-specific for CNN, differently from our model which is to be consid-
ered as model-agnostic, and consequently applicable in principle to any classifier.
From another point of view, [29] studies the influence on the output of hardly
perceptible perturbation on the input, empirically showing that it is possible to
arbitrarily change the network’s prediction even when the input is left appar-
ently unchanged. Although this type of noise is extremely unlikely to occur in
realistic situations, the fact that such noise is imperceptible to an observer opens
interesting questions about the semantics of network components. However, ap-
proaches of this kind are quite distant from our present concerns, insofar as they
focus on entities that are hardly meaningful to humans. Important works are
also made into [2, 4, 20] where Pixel-Wise Decomposition, Layer-Wise Relevance
propagation ad Deep Taylor Decomposition are presented. [34] presents a work
based on prediction difference analysis [26] where a features relevance vector
is built which estimates how much each feature is “important” for the classifier
to return the predicted class. In [25] , the model-agnostic explainer LIME is
proposed, which takes into account the model behavior in the proximity of the
instance being predicted. The LIME framework is more similar to our approach
than the other approaches mentioned in this section, and many other approaches
found in the literature. The LIME framework differs from our own mainly in its
use of super-pixels instead of a learned dictionary constrained in order to have
a compact representation.
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Fig. 1: The 3-entity proposed framework. See text for details.

3 Proposed Approach

Given an oracle Ω, an input x and an Ω’s answer ĉ (regardless of whether it is
correct or not), we want to give an explanation of the answer provided by the
model Ω that is humanly interpretable.

As we want to obtain humanly interpretable elements which, combined to-
gether, can provide an acceptable explanation for the choice made by Ω, we
search for an explanation having the following qualitative properties:

– 1) the explanation must be expressed in terms of a dictionary V whose
elements (atoms) are easily understandable by an interrogator;

– 2) the elements of the dictionary V have to represent “local properties” of
the input x;

– 3) the explanation must be composed by few dictionary elements.

We claim that considering as elements atoms of a sparse coding from a sparse
dictionary, and using sparse coding methods together with an AM-like algorithm
we obtain explanations satisfying the properties described above.

3.1 Sparse Dictionary learning

The first step of the proposed approach consists in finding a “good” dictionary
V that can represent data in terms of humanly interpretable atoms.

Let us assume that we have a setD = {(x(1), c(1)), (x(2), c(2)). . . . , (x(n), c(n))}
where each x(i) ∈ Rd is a column vector representing a data point, and c(i) ∈ C
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its class. We can learn a Dictionary V ∈ Rd×k of k atoms across multiple classes
and an encoding H ∈ Rk×n s.t. X = V H+ε where X = (x(1)|x(2)| . . . |x(n)) and
ε is the error introduced by the coding. Every column x(i) in X can be expressed
as x(i) = V hi with hi i−th column of H. The dictionary forms the basis of our
explanation framework for an ML system.

We selected as dictionary learning algorithm an NMF scheme [14] with the
additional sparseness constraint proposed by [11]; this choice is motivated by
the fact that it respects our requirements described above, giving a “local” rep-
resentation of data, and non-negativity, that ensures only additive operations in
data representations, giving a better human understanding with respect to other
techniques. The sparsity level can be set using two parameters γ1 and γ2 which
control the sparsity on the dictionary and the encoding, respectively. .

3.2 Explanation Maximization

Unlike traditional dictionary-based coding approaches, our main goal is not to
get an “accurate” representation of the input data, but to get a representation
that helps humans to understand the decision taken by a trained model. To this
aim, we modify the AM algorithm so that, instead of looking for the input that
just maximizes the answer of the model, it searches for the dictionary-based
encoding h that maximizes the answer and, at the same time, is sparse enough
but without being “too far” from the original input x. More formally, indicating
with Pr(ĉ|x) the probability given by a learned model that input x belongs to
class ĉ ∈ C, V the chosen dictionary, S(·) a sparsity measure, the objective
function that we optimise is

max
h≥0

log Pr
(
ĉ|V h

)
− λ1||V h− x||2 + λ2S

(
h
)

(1)

where λ1, λ2 are hyper-parameters regulating the input reconstruction and the
encoding sparsity level, respectively. The first regularization term leads the al-
gorithm to choose dictionary atoms that, with an appropriate encoding, form a
good representation of the input, while the second regularization term ensures a
certain sparsity degree, i.e., that only few atoms are used. The h ≥ 0 constraint
ensures that one has a purely additive encoding. Thus, each hi, ∀i.1 ≤ i ≤ d,
measures the “importance” of the i-th atom. Equation 1 is solved by using a
standard gradient ascent technique, together with a projection operator given
by [11] that ensures both sparsity and non-negativity. The complete procedure
is reported in Algorithm 1.

4 Experimental Assessment

To test our framework, we chose as Oracle a convolutional neural network archi-
tecture, LeNet-5 [13], generally used for digit recognition as MNIST. We have
trained the network from scratch using two different datasets: MNIST [13], ob-
taining an accuracy of 98.86% on the test set, and Fashion-MNIST [30], obtaining
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Algorithm 1: Explanation Maximization procedure

Input: data point x ∈ Rd, the output class ĉ ,learned model Γ , a dictionary
V ∈ Rd×k, λ1, λ2

Output: the encoding h ∈ Rd

1 h ∼ Ud(0, 1);
2 while ¬ converge do
3 r ← V h;
4 h← arg max

h
Pr

(
ĉ|r;Γ

)
− λ1||r − x||2;

5 h← proj(h, λ2); . proj(·, ·) is given by [11]

6 end
7 return h ;

an accuracy of 91.43% on the test set. The training set is composed of 50000
images, while the test set is composed of 10000 images; the model is learned
using the Adam algorithm [12].

NMF with sparseness constraints [11] is used to determine the dictionaries.
We set the number of atoms to 200, relying on PCA analysis which showed that
the first 100 principal components explain more than 95% of the data variance.
We construct different dictionaries with different sparsity values in the range
γ1, γ2 ∈ [0.6, 0.8] [11], then we choose the dictionaries having the best trade-off
between sparsity level and reconstruction error. The dictionaries are determined
by looking for a a good trade-off between reconstruction error and sparsity level.

Fig. 2: Visual explanations obtained on three samples from the MNIST data set cor-
rectly classified by the Oracle. In red are the meaningful parts determined by the sys-
tems producing explanations. In green are the encodings of the input image obtained
from the sparse dictionary.
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Fig. 3: Visual explanations obtained on three samples from Fashion-MNIST data set
correctly classified by the Oracle. In red are the meaningful parts determined by the
systems producing explanations. In green are the encodings of the input image obtained
from the sparse dictionary.

The atoms forming our explanations are selected by taking those with larger
encoding values (i.e., those that are more “important” in the representation). In
figure 2 we show the atoms forming the explanation on three inputs for MNIST
dataset on which the Oracle gave the correct answer. The chosen atoms seem
to describe well the visual impact of the input numbers, by providing elements
that appear to be discriminative, such as the crossed line and the bottom part
for the “eight”, a bottom straight line and a smoother upper part for the “two”,
and the straight upper part together with the curved bottom part for the “five”.
To probe empirically the impact of sparsity on this representation, we performed
the same experiment using a dictionary with a very low sparsity (0.1), obtaining
encondings without any preponderant value, thereby making it difficult to select
appropriate atoms for explanation. In figure 3 we show the more “important”
atoms obtained on three input images for the Fashion MNIST dataset, a boot, a
dress and trousers, all of them correctly classified by the Oracle. Selecting the
atoms with higher encoding values seems to give rise to representative parts of
the selected input, returning parts that can be easily interpreted by an human
interrogator, (e.g., the neck and the sole for the boot, the sleeves for the dress
and the separation between the legs for the trousers).

As for MNIST, we performed the same experiment using a dictionary with
low sparsity, ending up with results that are difficult to interpret.

5 Conclusions

We proposed a model-agnostic framework to explain the answers given by clas-
sification systems. To achieve this objective, we started by defining a general ex-
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planation framework based on three entities: an Oracle (providing the answers to
explain), an Interrogator (posing explanation requests) and a Mediator (helping
Interrogator to interpret the Oracle’s decisions). We propose a Mediator using
known and established techniques of sparse dictionary learning, together with
Interpretability ML techniques, to give a humanly interpretable explanation of
a classification system outcomes. We tried our proposed approach by using an
NMF-based scheme as sparse dictionary learning technique. However, we expect
that any other technique that meets the requirements outlined in Section 3 may
be successfully used to instantiate the proposed framework. The results of the
experiments that we carried out are encouraging, insofar as the explanations
provided seem to be qualitatively significant. Nevertheless, more experiments
are necessary to probe the general interest of our approach to explanation. We
plan to perform both a quantitative assessment, to evaluate explanations by
techniques such as those proposed in [19], and a subjective quality assessment
to test how do humans perceive and interpret explanations of this kind.

The proposed approach does not take so far into account factors such as
the internal structure of the dictionary used. Accordingly, the present work can
be extended by considering, for example, whether there are atoms that are suf-
ficiently “similar” to each other or whether the presence in the dictionary of
atoms which can be expressed as combinations of other atoms may affect the
explanations that are arrived at. Another interesting direction of research con-
cerns contrastive explanations, which enable one to answer “why not?” negative
questions, by explaining why some given object was not given another classifi-
cation, differing from the classification that the Oracle actually provided. One
should be careful to note that “why not?” questions are particularly relevant,
from an ethical and legal viewpoint, to address user complaints about purported
misclassifications and corresponding user requests to be classified otherwise.
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