
End-to-End Learning for Answering Structured
Queries Directly over Text

Paul Groth1, Antony Scerri2, Ron Daniel, Jr.2, and Bradley P. Allen2

1 University of Amsterdam p.groth@springer.com
2 Elsevier Labs

{a.scerri,r.danel,b.allen}@elsevier.com

Abstract. Structured queries expressed in languages (such as SQL,
SPARQL, or XQuery) offer a convenient and explicit way for users to
express their information needs for a number of tasks. In this work, we
present an approach to answer these directly over text data without stor-
ing results in a database. We specifically look at the case of knowledge
bases where queries are over entities and the relations between them.
Our approach combines distributed query answering (e.g. Triple Pattern
Fragments) with models built for extractive question answering. Impor-
tantly, by applying distributed querying answering we are able to simplify
the model learning problem. We train models for a large portion (572) of
the relations within Wikidata and achieve an average 0.70 F1 measure
across all models. We describe both a method to construct the necessary
training data for this task from knowledge graphs as well as a prototype
implementation.

1 Introduction

Database query languages (e.g. SQL, SPARQL, XQuery) offer a convenient and
explicit way for users to express their information needs for a number of tasks in-
cluding populating a dataframe for statistical analysis, selecting data for display
on a website, defining an aggregation of two datasets, or generating reports.

However, much of the information that a user might wish to access using a
structured query may not be available in a database and instead available only
in an unstructured form (e.g. text documents). To overcome this gap, the area
of information extraction (IE) specifically investigates the creation of structured
data from unstructured content [15]. Typically, IE systems are organized as
pipelines taking in documents and generating various forms of structured data
from it. This includes the extraction of relations, the recognition of entities, and
even the complete construction of databases. The goal then of IE is not to answer
queries directly but first to generate a database that queries can be subsequently
executed over.

In the mid-2000s, with the rise of large scale web text, the notion of com-
bining information extraction techniques with relational database management
systems emerged [4, 10] resulting in what are termed text databases. Systems
like Deep Dive [22] InstaRead [9], or Indrex [11], use database optimizations

58 Groth et al.

within tasks such as query planning to help decide when to perform extractions.
While, in some cases, extraction of data can be performed at runtime, data is
still extracted to an intermediate database before the query is answered. Thus,
all these approaches still require the existence of a structured database to answer
the query.

In this paper, we present an approach that eliminates the need to have an
intermediate database in order to answer structured database queries
over text. This is essentially the same as treating the text itself as the store of
structured data. Using text as the database has a number of potential benefits,
including being able to run structured queries over new text without the need for
a-priori extraction; removing the need to maintain two stores for the same infor-
mation (i.e. a database and a search index); eliminating synchronization issues;
and reducing the need for up-front schema modeling. [3] provides additional ra-
tionale for not pre-indexing “raw data”, although they focus on structured data
in the form of CSV files.

Our approach builds upon three foundations: 1. the existence of large scale
publicly available knowledge bases (Wikidata) derived from text data (Wikipedia);
2. recent advances in end-to-end learning for extractive question answering (e.g.
[21]); 3. the availability of layered query processing engines designed for dis-
tributed data (e.g. SPARQL query processes that work over Triple Pattern Frag-
ment [25] servers).

A high-level summary of our approach is as follows. We use a publicly-
available knowledge base to construct a parallel corpus consisting of tuples each
which is made up of a structured slot filling query, the expected answer drawn
from the knowledge base, and a corresponding text document in which we know
the answer is contained. Using this corpus, we train neural models that learn to
answer the given structured query given a text document. This is done on a per
relation basis. These models are trained end-to-end with no specific tuning for
each query. These models are integrated into a system that answers queries ex-
pressed in a graph query language directly over text with no relational or graph
database intermediary.

The contributions of this paper are:

– an approach, including training data generation, for the task of answering
structured queries over text;

– models that can answer slot filling queries for over 570 relations with no
relation or type specific tuning. These models obtain on average a 0.70 F1
measure for query answering.

– a prototype system that answers structured queries using triple pattern frag-
ments over a large corpus of text (Wikipedia).

The rest of this paper is organized as follows. We begin with an overview of
the approach. This is followed by a description of the training data. Subsequently,
we describe the model training and discuss the experimental results. After which,
we present our prototype system. We end the paper with a discussion of related
and future work.

End-to-End Learning for Answering Structured Queries Directly over Text 59

2 Overview

SPARQL TPF Client

TPF Query Engine
(Facade)

QA Executor

Answer Ranking Model Runner

Candidate
Selection

Text
Search Engine

Model Query Builder
<s, p, o> to string

Document

Collection
ColModel

1
Model

N…

Query Service

Fig. 1: Components of the overall system for structured query answering over text.

Our overall approach consists of several components as illustrated in Figure
1. First, structured queries as expressed by SPARQL [7] are executed using a
Triple Pattern Client (SPARQL TPF Client). Such a client breaks down a more
complex SPARQL query into a series of triple patterns that are then issued to a
service. Triple patterns are queries of the form subject, predicate, object, where
each portion can be bound to an identifier (i.e. URI) or a variable.3 Within the
service, the execution engine (QA Executor) first lexicalizes the given identifiers
into strings using the Model Query Builder component. For example, this com-
ponent would translate an identifier like https://www.wikidata.org/wiki/Q727
into the string form “Amsterdam”. These queries are then issued to a candidate
selection component. This component queries a standard text search engine to
find potential documents that could contain the answer to the specified query.

The candidate documents along with the lexicalized queries are provided
to a model runner which issues these to models trained specifically to bind
the variable that is missing. That is given a query of the form < s, p, ?o >
where s and o are bound and o is the variable, there would be specific models
trained to extract ?o from the provided document. For example, given the query
(:Amsterdam :capital of ?o) we would have models that know how to answer
queries of where the type of the subject is City and the property is capital of.
Likewise, there would be models of that are able to answer queries of the form
<?s, p, o > and so on. Each model is then asked to generate a binding of the
variable. Note that the bindings generated by the models are strings. The results
of each model are then ranked (Answer Ranking). Using a cut-off, the results
are then translated back into identifier space and returned to the client.

3 Objects can also be bound to a literal.

60 Groth et al.

A key insight of our approach is that by breaking down complex queries
into triple patterns we can simplify the queries that need to be answered by the
learned models.

Our approach relies on the construction of models that are able to extract
potential candidate answers from text. Following from [5] and [13], we cast the
problem in terms of a question answering task, where the input is a question (e.g.
entity type + relation) and a document and the output is answer span within
the document that binds the output. To learn these sorts of models we construct
training data from knowledge graphs that have a corresponding representation
in text. In the next section, we go into detail about the construction of the
necessary training data.

3 Training Data Construction

Our training data is based on the combination of Wikidata and Wikipedia.
Wikidata is a publicly accessible and maintained knowledge base of encyclopedic
information [27]. It is a graph structured knowledge base (i.e. a knowledge graph)
describing entities and the relations between them. Every entity has a globally
unique identifier. Entities may also have attributes which have specific datatypes.
Entities have may have more than one type. Relations between entities may hold
between differing entity types.

Wikidata has a number of properties that make it useful for building a corpus
to learn how to answer structured queries over text. First, and perhaps most
importantly, entities have a parallel description with Wikipedia. By our count,
Wikidata references 7.7 million articles in the English language Wikipedia. Thus,
we have body of text which will also most likely contain answers that we retrieve
from Wikidata. Second, every entity and relation in Wikidata has a human
readable label in multiple languages. This enables us to build a direct connection
between the database and text. Third, Wikidata is large enough to provide for
adequate training data in order to build models. Finally, Wikidata provides
access to their data in a number of ways including as a SPARQL endpoint, a
triple patterns fragment endpoint and as a bulk RDF download. While we use
Wikidata, we believe that our approach can be extended to any knowledge graph
that has textual sources.

Using this input data we generate datasets of the form: [query; answer;
text in which the query is answered]. As previously mentioned, com-
plex queries can be expressed as a series of graph patterns. Thus, the queries
we consider are graph patterns in which two of the variables are bound (e.g.
:New England Patriots :play ?x). We term these slot filling queries as the
aim is to bind one slot in the relation (i.e. the subject or the object). While we do
not test graph patterns where the predicate is the variable, the same approach
is also applicable. In some sense, one can think of this as generating data that
can be used to build models that act as substitute indexes of a database.

Our construction method loops through all of the predicates (i.e. relations) in
the dataset. It determines the frequency with which a predicate connects different

End-to-End Learning for Answering Structured Queries Directly over Text 61

types of entities. This is essential as large knowledge graphs can connect many
different types using the same predicate. Thus, examples from different types
of subjects and objects are needed to capture the semantics of that predicate.
Using the most frequently occurring pairs of entity types for a predicate, the
algorithm then retrieves as many example triples as possible where the subject
and object of the triple are instances of the connected types - up to a given
maximum threshold. Thresholding is used to help control the size of the training
data.

Each triple is then used to generate a row of training data for learning how
to answer graph pattern queries that contain the given predicate. To connect
the graph pattern queries, which are expressed using entity IRIs to the plain
text over which it should be answered, each of the components of the triple is
lexicalized. The lexicalized subject and predicate of each triple are concatenated
together to form a textual query and use the lexicalized object as the answer.
(Note, this is trivally modified for the (?s, p, o case). We then retrieve the text
describing the subject. We assume that the text contains some reference to the
object under consideration.

The location of that reference which we term an anchor is computed by the
given anchor function. For simplicity, in our implementation, we locate the first
instance of the answer in the text. This may not always represent an instance
of the answer’s lexical form which is located in an expression which answers
the specific question form. More complex implementations could use different
heuristics or could return all possible anchor locations.

We apply the algorithm to the combination of Wikipedia and Wikidata
dumps4. We attempted to obtain training data for all 1150 predicates in Wiki-
data that associate two entities together. At this time, we do not treat predicates
that connect entities to literals. This is left for future work. We limited the ex-
traction to the top 20 entity type pairs per predicate, and limited each type pair
to 300 examples). Thus, there is a maximum yield of 6000 examples per predi-
cate. We then apply the following cleaning/validation to the retrieved examples.
First, we drop examples where there is no Wikipedia page. Second, we ensure
that the answer is present in the Wikipedia page text. Finally, in order to ensure
adequate training data we filter out all models with less than 30 examples. Note
that this means that we have differing amounts of training data per predicate.
After cleaning, we are able to obtain training data for 572 predicate for the set-
ting in which the object is the variable/answer. We term this the SP setting. On
average we have 929 examples per predicate with a maximum number of exam-
ples of 5477 and a minimum of 30 examples. The median number of examples is
312. In the setting in which the subject is the variable / answer we are trying to
extract, enough data for 717 predicates is obtained. This is because the subject
answer is more likely to appear in the Wikipedia page text. We term this the
PO setting.

4 Specifically we used Wikipedia 2018-08-20 (enwiki-20180820-pages-articles-
multistream.xml.bz2) and Wikidata 2018-08-29.

62 Groth et al.

4 Models

Based on the above training data, we individual train models for all predicates
using the Jack the Reader framework [5]. We use two state-of-the-art deep learn-
ing architectures for extractive question answering, namely, FastQA [28] and the
implementation provided by the framework, JackQA. Both architectures are in-
teresting in that while they perform well on reading comprehension tasks (e.g.
SQuAD [20]) both architectures try to eliminate complex additional layers and
thus have the potential for being modified in the future to suit this task. Instead
of describing the architectures in detail here, we refer the reader to correspond-
ing papers cited above. We also note that the Jack the Reader configuration files
provide succinct descriptions of the architectures, which are useful for under-
standing their construction.

To improve performance both in terms of reducing training time and to re-
duce the amount of additional text the model training has to cope with, we
applied a windowing scheme. This is because longer text is normally associated
with greater issues when dealing with sequence models. Our scheme takes a por-
tion of the text around the answer location chosen from the Wikipedia content.
We now describe the following parameters for each architecture.

FastQA All text is embedded using pre-trained GloVe word embeddings [17]
(6 billion tokens, and 50 dimensions). We train for 10 epochs using a batch size
of 20. We constrain answers to be a maximum of 10 tokens and use a window
size of 1000 characters. The answer layer is configured to be bilinear. We use the
ADAM optimizer with a learning rate of 0.11 and decay of 1.0.

JackQA Here we embed the text using pre-trained GloVe word embeddings
(840 billion tokens and 300 dimensions). We use the default JackQA settings.
We use a window size of 3000 characters. The batch sizes were 128/96/64 for
three iterative runs. The subsequent runs with smaller batch sizes were only run
if the prior iteration failed. We specified a maximum number of 20 epochs.

Baseline In addition to the models based on neural networks, we also im-
plemented a baseline. The baseline consisted of finding the closest noun phrase
to the property within the Wikipedia page and checking whether the answer is
contained within that noun phrase.

Note, we attempted to find functional settings that worked within our avail-
able computational constraints. For example, FastQA requires more resources
than JackQA in relation to batch size , thus, we chose to use smaller embed-
dings and window size in order to maintain a “good” batch size.

We use 2/3 of the training data for model building and 1/3 for testing. Data
is divided randomly. Training was performed using an Amazon EC2 p2.xlarge5

box. It took 23 hours for training of FastQA models, which included all models
for all predicates even when there were too few training samples. For JackQA,
the window was increased to 3000 characters, and multiple training sessions were
required, reducing the batch size each time to complete the models which not

5 1 virtual GPU - NVIDIA K80, 4 virtual CPUs, 61 GiB RAM

End-to-End Learning for Answering Structured Queries Directly over Text 63

finish from earlier runs, in all three passes were required with 128, 96 and 64
batch size respectively. Total training time was 81 hours.

Note that we train models for the setting where the subject and predicate
are bound but the object is not. We also use the FastQA architecture to build
models for the setting where the subject is treated as the variable to be bound.

5 Experimental Results and Analysis

Table 1 one reports the average F1 measure across all models as well as the
baseline. This measure takes into account the overlap of the identified set of
tokens with the gold standard answer controlling for the length of the extracted
token. By definition, the baseline only generates such overlap scores.

Model Model Count mean std min max 25% 50% 75%

JackQA - SP 572 0.70 0.24 0.0 1.0 0.54 0.77 0.89
FastQA - SP 572 0.62 0.24 0.0 1.0 0.43 0.65 0.80
FastQA - PO 717 0.89 0.10 0.4 1.0 0.85 0.92 0.96
Baseline 407 0.15 0.17 0.0 0.86 0.03 0.08 0.20

Table 1: F1 results across all models and the baseline

Table 2 reports the average exact match score over all models. This score
measures whether the model extracts the exact same string as in the gold stan-
dard. For reference, both tables also reports the total number of models trained
(Model Count), which is equivalent to the training data provided. The Model
Count for the baseline is equivalent to the number of predicates for which the
baseline method could find an answer for.

Model Model Count mean std min max 25% 50% 75%

JackQA - SP 572 0.64 0.26 0.0 1.0 0.44 0.71 0.86
FastQA - SP 572 0.55 0.25 0.0 1.0 0.36 0.57 0.74
FastQA - PO 717 0.83 0.14 0.1 1.0 0.75 0.86 0.94

Table 2: Exact results

Figure 3 plots individual model performance against the size of the training
data given. Overall, models based on deep learning notably outperform the base-
line models on average. Additionally, using these deep learning based approaches
we are able to create models that answer queries for 160 additional properties
over the baseline. In terms of analysis, first, we wanted to see if there was a cor-
relation between the amount of training data and the performance of a model.
Using the data presented in Figure 3, we fit a linear regression to it. We found no
statistically significant correlation (R2 = 0.37). The model architectures show

64 Groth et al.

0.0 0.2 0.4 0.6 0.8 1.0
F1 Measure (JackQA Models)

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f e

xa
m

pl
es

Models trained using Jack QA

0.0 0.2 0.4 0.6 0.8 1.0
F1 Measure (FastQA Models)

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f e
xa

m
pl

es

Models trained using Fast QA.

Fig. 3: Plot of individual model performance vs. training data size. All 572 models are
shown for the SP setting.

strong correlation in performance. The R2 value being 0.97 in the case of the F1
measure and 0.96 for the Exact measure. This suggests that the performance is
primarily a factor of the underlying kind of data. More details are provided in
Appendix A

6 Prototype

To understand whether this approach is feasible in practice, we implemented a
prototype of the system outlined in Figure 1. For the triple pattern fragment
facade we modify Piccolo, an open source triple pattern fragments server to
replace its in-memory based system with functions for calling out to our QA
answering component. The facade also implements a simple lexicalization rou-
tine. The query answering component is implemented as a Python service and
calls out to an Elasticsearch search index where documents are stored. The query
answering component also pre-loads the models and runs each model across can-
didate documents retrieved by querying elastic search. We also specify a max
number of candidate documents to run the models over. Currently, we execute
each model sequentially over all candidate documents. We then chose the top
set of ranked answers given the score produced by the model. Note that we can
return multiple bindings for the same ranked results. We made some prelimi-
nary timing estimates of a query. It takes on the order of 10 seconds to provide
results for a single triple pattern query. This is surprisingly good given the fact
that we execute models sequentially instead of in parallel. Furthermore, we ex-
ecute the models over the entirety of the Wikipedia article. Our own anecdotal
experience shows that question answering models are both faster and produce
more accurate results when supplied with smaller amounts of text. Thus, there is
significant room for optimizing query performance with some simple approaches
including parallelizing models, chunking text into smaller blocks, and limiting
the number of models executed to those that are specific for the triple pattern.
Furthermore, it is straightforward to issue triple pattern fragment query requests

End-to-End Learning for Answering Structured Queries Directly over Text 65

over multiple running instances [25]. One could also implement more complex
sharding mechanisms designed for triple tables [1]. Overall, the prototype gives
us confidence that this sort of system could be implemented practically.6

7 Related Work

Our work builds upon and connects to a number of existing bodies of liter-
ature. The work on information extraction is closely related. [15] provides a
recent survey of the literature in this area specifically targeted to the the prob-
lems of extracting and linking of entities, concepts and relations. One can view
the models that we build as similar to distantly supervised relation extraction
approaches [16, 23], where two mentions of entities are found in text and the con-
text around those mentions is used to learn evidence for that relation. Recent
approaches have extended the notion of context [18] and applied neural networks
to extract relations [30, 6].

The closest work to ours in the information extraction space is [14] where they
apply machine comprehension techniques to extract relations. Specifically, they
translate relations into templated questions - a process they term querification.
For example, for the relation spouse(x,y) they created a series of correspond-
ing question templates such as “Who is x married to?”. These templates are
constructed using crowdsourcing, where the workers are provided a relation, ex-
ample sentence and asked to produce a question template. This dataset is used
to train a BiDAF-based model [21] and similar to our approach they address slot
filling queries where the aim is to populate one side of the relation. While we
apply a similar technique, our approach differs in a two key aspects. First, we
target a different task, namely, answering structured queries. Second, we do not
generate questions through question templates but instead build the questions
out of the knowledge base itself.

Like much of the work in this space our approach is based on a large scale par-
allel corpus. Of particular relevance to our task are the WikiSQL and WikiRead-
ing corpora. WikiSQL [31] provides a parallel corpus that binds SQL queries to
a natural language representation. The task the dataset is used for is to an-
swer natural language questions over SQL unlike ours which is to answer SQL-
like queries over text. SQLWikiReading [8] like our approach extracts a corpus
from Wikidata and Wikipedia in order to predict the value of particular proper-
ties. Another corpus of note is ComplexWebQuestions [24], which pairs complex
SPARQL queries with natural language queries. Importantly, it looks at the com-
positionality of queries from smaller units. Like WikiSQL, it looks at answering
natural language queries over databases. In general, we think our approach in
also specifying an extraction procedure is a helpful addition for applying corpus
construction in different domains.

As mentioned in the introduction, text databases, where information extrac-
tion is combined with databases are also relevant. Our system architecture was

6 We also integrated the prototype with Slack.

66 Groth et al.

inspired by the pioneering work of [10]. In that work, a search index is used to
first locate potential documents and then information extraction techniques are
applied to the selected documents to populate a database. Our approach differs
in two key aspects. First, instead of populating a database our system substitutes
the indexes of the database with models. Second, we use distributed query tech-
niques in order to process complex queries on the client side. Recent work [12]
uses deep learning based approaches to perform information extraction during
database query execution specifically for entity disambiguation. Similar to other
work in this area, and unlike ours, they integrate the information extraction
within the database engine itself.

Finally, there is a long history of mixing information retrieval and database
style queries together. For example, for the purposes of querying over semistruc-
tured data [2]. [19] provides an accessible introduction to that history. While our
system is designed to answer database queries one can imagine easily extending
to the semistructured setting.

8 Conclusion & Future Work

In this work, we have explored the notion of answering database queries over
text absent the need for a traditional database intermediary. We have shown
that this approach is feasible in practice by combining machine comprehension
based models with distributed query techniques.

There are a number of avenues for future work. In the short term, the de-
veloped models could be expanded to include extracting properties as well as
subjects and objects. We also think that joint models for all triple pattern pre-
dictions is worth exploring. One would also want to extend the supported queries
to consider not only relationships between entities but also to the attributes of
entities. Our current lexicalization approach is also quite simple and could be im-
proved by considering it as the inverse of the entity linking problem and applying
those techniques or applying summarization approaches [26]. In this work, we
used model architectures that are designed for answering verbalized questions
and not database queries. Modifying these architectures may also be a direc-
tion to obtain even better performance. Obviously more extensive experimental
evaluations would be of interest, in particular, extending the approach to other
knowledge bases and looking more deeply at query result quality.

In the long term, the ability to query over all types of data whether images,
structured data or text has proven useful for knowledge bases [29]. Extending
our concept to deal with these other datatypes could be powerful -making it
easy to perform structured queries over unstructured data while minimizing in-
formation extraction overhead. In general, we believe that structured queries
will continue to be a useful mechanism for data professionals to both work with
data and integrate information into existing data pipelines. Hence, focusing on
automated knowledge base construction from the query vantage point is an im-
portant perspective.

End-to-End Learning for Answering Structured Queries Directly over Text 67

References

1. Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental com-
parison of distributed sparql engines for very large rdf data. Proceedings of the
VLDB Endowment 10(13), 2049–2060 (2017)

2. Abiteboul, S.: Querying semi-structured data. In: International Conference on
Database Theory. pp. 1–18. Springer (1997)

3. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: Nodb: efficient
query execution on raw data files. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. pp. 241–252. ACM (2012)

4. Cafarella, M.J., Re, C., Suciu, D., Etzioni, O., Banko, M.: Structured querying
of web text. In: 3rd Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar, California, USA (2007)

5. Dirk Weissenborn, Pasquale Minervini, T.D.I.A.J.W.T.R.M.B.J.M.T.D.P.S.S.R.:
Jack the Reader A Machine Reading Framework. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL) System
Demonstrations (July 2018), https://arxiv.org/abs/1806.08727

6. Glass, M., Gliozzo, A., Hassanzadeh, O., Mihindukulasooriya, N., Rossiello, G.:
Inducing implicit relations from text using distantly supervised deep nets. In: In-
ternational Semantic Web Conference. pp. 38–55. Springer (2018)

7. Harris, S., Seaborne, A., Prudhommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10) (2013)

8. Hewlett, D., Lacoste, A., Jones, L., Polosukhin, I., Fandrianto, A., Han, J., Kelcey,
M., Berthelot, D.: WIKIREADING: A novel large-scale language understanding
task over Wikipedia. In: Proceedings of the The 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2016) (2016)

9. Hoffmann, R., Zettlemoyer, L., Weld, D.S.: Extreme extraction: Only one hour per
relation. arXiv preprint arXiv:1506.06418 (2015)

10. Jain, A., Doan, A., Gravano, L.: Sql queries over unstructured text databases. In:
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp.
1255–1257. IEEE (2007)

11. Kilias, T., Löser, A., Andritsos, P.: Indrex: In-database relation extraction. Infor-
mation Systems 53, 124–144 (2015)

12. Kilias, T., Löser, A., Gers, F.A., Koopmanschap, R., Zhang, Y., Kersten,
M.: Idel: In-database entity linking with neural embeddings. arXiv preprint
arXiv:1803.04884 (2018)

13. Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong,
V., Paulus, R., Socher, R.: Ask me anything: Dynamic memory networks for natural
language processing. In: International Conference on Machine Learning. pp. 1378–
1387 (2016)

14. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via
reading comprehension. In: Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017). pp. 333–342 (2017)

15. Martinez-Rodriguez, J., Hogan, A., Lopez-Arevalo, I.: Information extraction
meets the semantic web: A survey. Semantic Web Journal (2018)

16. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation ex-
traction without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2. pp. 1003–1011. Associ-
ation for Computational Linguistics (2009)

68 Groth et al.

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162

18. Quirk, C., Poon, H.: Distant supervision for relation extraction beyond the sentence
boundary. In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers. vol. 1, pp.
1171–1182 (2017)

19. Raghavan, S., Garcia-Molina, H.: Integrating diverse information management sys-
tems: A brief survey. Bulletin of the Technical Committee on Data Engineering
p. 44 (2001)

20. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing. pp. 2383–2392 (2016)

21. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

22. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge
base construction using deepdive. Proceedings of the VLDB Endowment 8(11),
1310–1321 (2015)

23. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: Proceedings of the 2012 joint conference
on empirical methods in natural language processing and computational natural
language learning. pp. 455–465. Association for Computational Linguistics (2012)

24. Talmor, A., Berant, J.: The web as a knowledge-base for answering complex ques-
tions. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). vol. 1, pp. 641–651 (2018)

25. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D.,
Meester, B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments:
A low-cost knowledge graph interface for the web. Web Semantics:
Science, Services and Agents on the World Wide Web 37-38, 184 –
206 (2016). https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003,
http://www.sciencedirect.com/science/article/pii/S1570826816000214

26. Vougiouklis, P., Elsahar, H., Kaffee, L.A., Gravier, C., Laforest, F.,
Hare, J., Simperl, E.: Neural wikipedian: Generating textual sum-
maries from knowledge base triples. Journal of Web Semantics
(2018). https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002,
http://www.sciencedirect.com/science/article/pii/S1570826818300313

27. Vrandečić, D.: Wikidata: A new platform for collaborative data collection. In:
Proceedings of the 21st International Conference on World Wide Web. pp. 1063–
1064. ACM (2012)

28. Weissenborn, D., Wiese, G., Seiffe, L.: Making neural qa as simple as possible but
not simpler. In: Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017). pp. 271–280 (2017)

29. Wu, S., Hsiao, L., Cheng, X., Hancock, B., Rekatsinas, T., Levis, P., Ré, C.: Fon-
duer: Knowledge base construction from richly formatted data. In: Proceedings of
the 2018 International Conference on Management of Data. pp. 1301–1316. ACM
(2018)

30. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers. pp. 2335–2344
(2014)

End-to-End Learning for Answering Structured Queries Directly over Text 69

31. Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR abs/1709.00103 (2017)

A Individual Model and Error Analysis

We looked more deeply at performance for individual models for a given property.
Table 3 shows the highest performing models. We find some consistent patterns.
First, properties that have specific value constraints within Wikidata generate
good results. For example, the “crystal system” property needs to have one of 10
values (e.g cubic crystal system, quasicrystal, amorphous solid). Likewise, the
“coolant” property needs to be assigned one of fourteen different values (e.g.
water, oil, air). This is also true of “discovery method”, which oddly enough is
actually defined as the the method by which an exoplanet is discovered. This is
also a feature of properties whose values come from classification systems (e.g.
“Kppen climate classification” and ”military casualty classification”).

A second feature that seems to generate high performing models are those
that refer to common simple words. For example, the “source of energy” property
takes values such as “wind” or “human energy”.

Lastly, simple syntactic patterns seem to be learned well. For example, the
property ”birthday”, which links to entities describing a month, day combination
(e.g. November 8) which is thus restricted to a something that looks like a month
string followed by one or two numerical characters. Likewise, the expected value
for the property “flag” often appears directly in text itself. That is the correct
answer for the query “Japan flag” is “flag of Japan”, which will appear directly
in text.

Property Fast QA Fast QA Jack QA Jack QA Training
F1 Exact F1 Exact Data Size

birthday 0.95 0.91 1.0 1.0 32
flag 0.98 0.88 1.0 1.0 50
league points system 1.00 1.00 1.0 1.0 90
discovery method 0.98 0.91 1.0 1.0 69
source of energy 0.94 0.94 1.0 1.0 50
military casualty classification 1.00 1.00 1.0 1.0 92
topic’s main category 0.99 0.91 1.0 1.0 31
Kppen climate classification 1.00 1.00 1.0 1.0 34
coolant 0.98 0.98 1.0 1.0 128
crystal system 0.96 0.87 1.0 1.0 43

Table 3: Highest 10 performing models in the SP setting as determined by F1 measures
from models trained using the Jack QA architecture.

We also look at the lowest performing models, shown in Table 4 to see what is
difficult to learn. Ratings for films (e.g. Australian Classification, RTC film rat-
ing, EIRIN film rating) seem extremely difficult to learn. Each of these properties

70 Groth et al.

expect values of two or three letters (e.g. PG, R15+, M). The property “blood
type” also has the same form. It seem that using character level embeddings
may worked better in these cases.

The property “contains administrative territorial entity ” is an interesting
case as there are numerous examples. This property is used within Wikidata to
express the containment relation in geography. For example, that county contains
a village or a country contains a city. We conjecture that this might be difficult
to learn because the sheer variety of linkages that this can express making it
difficult to find consistencies in the space. A similar issue could be present for
properties such as “voice actor” and “cast member” where the values can be
essentially any person entity. Similarly, “polymer of” and “species kept” both
can take values that come from very large sets (e.g. all chemical compounds
and all species). It might be useful for the model to be provided specific hints
about types (i.e. actors, chemicals, locations) that may allow it to find indicative
features.

Property Fast QA Fast QA Jack QA Jack QA Training
F1 Exact F1 Exact Data Size

Australian Classification 0.00 0.00 0.00 0.00 48
RTC film rating 0.00 0.00 0.00 0.00 167
EIRIN film rating 0.01 0.01 0.02 0.02 349
blood type 0.00 0.00 0.08 0.08 302
contains administrative terri-
torial entity

0.09 0.06 0.08 0.07 1838

voice actor 0.12 0.11 0.11 0.09 2562
species kept 0.11 0.03 0.12 0.03 354
best sprinter classification 0.19 0.18 0.12 0.11 165
cast member 0.15 0.14 0.13 0.11 3955
polymer of 0.18 0.08 0.13 0.08 38

Table 4: Lowest 10 performing models in the SP setting as determined by F1 measures
from models trained using the Jack QA architecture.

