
Blockchains Meet Distributed Hash Tables:

Decoupling Validation from State Storage

(Extended Abstract)

Matteo Bernardinia, Diego Penninob, and Maurizio Pizzoniac

abcUniversità degli Studi Roma Tre, Dipartimento di Ingegneria,
Sezione Informatica e Automazione, Via della Vasca Navale 79,

00146, Roma (Italy)
amat.bernardini@stud.uniroma3.it

bpennino@ing.uniroma3.it
cpizzonia@ing.uniroma3.it

Abstract

The first obstacle that regular users encounter when setting up a node
for a public blockchain is the time taken for downloading all the data
needed for the node to start operating correctly. In fact, this may last
from hours to weeks for the major networks.

Our contribution is twofold. Firstly, we show a design that enables
mining and validation of new blocks keeping only a very small state. Sec-
ondly, we show that it is possible to store the state of the blockchain in
a distributed hash table obtaining a wide spectrum of trade-offs between
storage committed by the nodes and replication factor. Our proposal is
independent from the consensus algorithm adopted, and copes well with
transactions that involve smart contracts.

Keywords. Blockchain, Distributed Hash Table, Synchronisation Effi-
ciency, Integrity.

1 Introduction

Cryptocurrencies based on public blockchains started with the promise for the
common people to gain some freedom from institutional and government-reg-
ulated payment instruments. Currently, this romantic objective is hardly met.
The reasons are many. The adoption of a proof-of-work consensus algorithm
is usually regarded as a prominent one due to its big requirements in terms of
computational power. The needs are so high that only focused organisations
can afford mining (e.g., mining pools). This is one of the reasons that prompt

1



researchers and other communities to focus on the study of lighter consensus
algorithms, e.g., based on some form of proof-of-stake. The effort in that direc-
tion is remarkable and it is likely that this problem will be practically overcome
quite soon.

Even supposing to have a light consensus algorithm, when installing a node
a common user stumbles upon another major difficulty: the time taken to down-
load the data needed for the software to properly operate and, up to a certain
extent, the amount of space required for that data. Note that this is true also
with today’s technology when the user decides to install a validate-only node,
which may be useful, for example, to have an independent way of injecting
transactions into the network. The time needed for the first synchronisation
varies depending on the bandwidth, on the I/O speed of the mass storage and
on the CPU speed of the node. This is currently in the order of 6-24 hours for
Ethereum but may last weeks for Bitcoin. Further, if the node is shut down
for a while, it needs a certain amount of time before becoming fully operational
again.

In this paper, we present a blockchain design with certain notable properties
with respect to the ability to quickly start a validating node, which might pos-
sibly be a miner. In particular, we show that it is possible to run a blockchain
in which validating nodes are only mandated to keep the last n received blocks.

In our approach, nodes do not store the whole state of the blockchain but
only the state changed by transactions in these blocks, while still being able to
validate blocks with the same level of security of regular blockchains.

The data needed to perform validation of transactions are retrieved from un-
trusted storage by the creator of the transaction and conveyed to the nodes along
with it. Security is obtained by equipping candidate transactions with proofs
derived from authenticated data structures, similar to those already commonly
used in blockchains. Since validation is decoupled from the storage of the bulk of
the blockchain data, we are free to store these data where it is more convenient.
Our proposal is to store them in a Distributed Hash Table (DHT) realised by
the same nodes that perform validations. In principle, a node may choose how
much storage to commit for storing blockchain data, from nothing to the whole
blockchain dataset. The burden to query the DHT is left to the creator of the
transaction. This allows us to obtain a wide spectrum of trade-offs between
storage used by nodes and replication factor.

The rest of this paper is structured as follows. In Section 2 we review the
state of the art. In Section 3 we briefly introduce basic concepts. In Section 4
we describe our decoupled approach. In Section 5 we discuss performances and
security. In Section 6 we draw the conclusions.

2 State of the Art

In 2008 the blockchain technology was introduced as basis for the Bitcoin cryp-
tocurrency [7]. In that context, blockchain addressed the problem to verify the
correct behaviour of untrusted nodes in a peer-to-peer network, with respect

2



to the execution of payment transactions. Following the same approach, many
other blockchain-based systems extended the application spectrum and the kind
of supported transactions. One notable example is Ethereum [11], which sup-
ports transactions that can execute general purpose scripts called smart con-
tracts.

Scalability is one of the prominent topics in research about blockchain. Most
of the work is focused on obtaining scalable consensus algorithms in terms of
number of nodes and throughput, keeping latency low. A good survey of this
area is provided by [2]. It compares various scalability issues with common
blockchains and recent proposals to overcome scalability limits. It concludes
suggesting that the sharding technique seems to be the most viable method
for scaling the blockchain. Essentially, this technique divides the peer-to-peer
network in several smaller networks dividing up the load (see for example [4]).

We focus on a very specific practical problem. In current technologies, a
validating node is required to store a large amount of data and this is one of the
difficulties that hinder the wide adoption of the current blockchain technology.
A Bitcoin “full node” needs to store the whole transaction history. Currently,
the Bitcoin database of a full node occupies more that 150 GB. In Ethereum,
blocks assert not only consensus on a valid set of transactions but also on an
explicitly represented state of the system in terms of amount of money associated
with addresses and content of persistent variables of smart contracts. For this
reason, contrary to Bitcoin nodes, Ethereum nodes can validate and mine new
blocks without storing the whole transaction history. Currently, for Ethereum
the full history is larger that 1 TB but Ethereum does not mandate to store
it for mining or validating blocks. A node storing only the current state needs
about 150 GB of free space (using geth fast sync). The time taken to download
and validate these data greatly varies depending on bandwidth, cpu speed and
mass storage speed. However it may go from several hours to several weeks.
This problem is particularly relevant if blockchain is adopted in IoT devices [3].
The adoption of the sharding technique should mitigate this problem. However,
for several reasons, sharding requires a complete re-engineering with respect to
the most common blockchains. Further, the impact depends on the size of the
shards, which may be affected by other considerations, and on how large the
state associated with each shard is.

Blockchain is also used as a notary service. When notarised data is more
than a handful of bytes, the document is usually stored by a different service and
just its hash is recorded in the blockchain. One possible approach to keep the
decentralised characteristic of the system intact is to store these documents in
a peer-to-peer network, like IPFS [1]. These solutions rely on Distributed Hash
Tables (DHTs). A DHT is a key-value pair storing system that is decentralised
and distributed and guarantees that any participating node can efficiently re-
trieve the value associated with a given key using a lookup service (see for ex-
ample [6]). In [10] an authenticated DHT is proposed. In this paper, we adopt
a DHT to store the state of the blockchain to relieve a validating node from
storing the state associated with the addresses of the blockchain and permit
higher flexibility in storage commitment.

3



3 Background

In this section, we recall basic concepts, terminology and properties about
authenticated data structures (ADS ), Blockchain and Distributed Hash Tables
(DHT ), limiting the matter to what is strictly needed to understand the rest of
this paper.

3.1 Authenticated Data Structures (ADS)

For this paper, an ADS is a container of key-value pairs, which are also called
elements. The ADS deterministically provides a constant-size digest of its con-
tent with the same properties of a cryptographic hash. We call it root-hash,
denoted by r. If the value of any element of the set changes, r changes. An
ADS provides two operations, the authenticated query of a key k and the au-
thenticated update of a key k with a new value v′. A query returns the value
v and a proof of the result with respect to the current value of r. The update
operation on k changes v associated with k into a provided v′ and changes r in
r′, as well. An interesting aspect is that a trusted entity that intends to update
k can autonomously compute r′ starting from the proof of 〈k, v〉 obtained by a
query.

A typical ADS is a Merkle Hash Tree in which each leaf stores the hash of
〈k, v〉 and each internal node stores the hash of the composition of the hashes
of its children. In this case, a proof for k is constructed by considering the path
from the leaf associated with k to the root. The proof contains the sequence
of the hashes stored in the siblings of each node in that path labelled with the
indication that the path is entering a node from the left or right child. The
proof check is performed by computing the hashes on the path starting from
the leaf and comparing the result with the root-hash. To update the root-hash,
the same computation is performed using the new value when computing the
hash of the leaf.

When we have a large set of elements stored in an ADS, but we only need
authentication for a small number of them, known in advance, we can resort to
the pruning technique. Pruning reduces the storage size of the tree, without
changing the root-hash, by removing sections of the tree that are not needed for
the expected queries. The basic idea is very simple. Whenever a subtree has
only unneeded leaves, we can remove all the subtree maintaining only its root
with its original hash. Pruning an ADS reduces the required space, preserves
the root-hash, preserves the capability to produce proofs for the needed keys,
and keeps security intact.

Further details can be found in [9, 5].

3.2 Blockchain

From our point of view, a blockchain is a data structure that stores a state and
its evolution over time. The state is a sort of key-value store where keys are
called (state) elements. The concept of state element is an abstraction that

4



may be regarded as an address with a corresponding balance (following the
Ethereum terminology) or as a variable of a contract account with its value.
A transaction is an atomic change of a number of involved state elements. A
block is essentially a sequence of transactions. Each block is hash-chained with
the previous one in a blockchain. In our model, each block is associated with
a state before and after the execution of its transactions. Blocks are generated
at regular intervals of length T , called block time. Each block is identified by
an increasing number: its index. The block with index i is denoted bi. The
depth of a block is the number of blocks that were mined after it plus one. The
depth of the last mined block is 1. To be valid, a block should conform to a
number of consensus rules, which may deal with specific semantic constraints
(like accounting constraints or smart contract execution). Even if consensus
rules are fundamental in practice, the rest of the paper is largely independent
from the specific rules enforced by a blockchain. The consensus algorithm is
the way nodes reach an agreement about the next block to be added to the
blockchain. The rest of the paper is independent from the specific algorithm
adopted by a blockchain. Certain algorithms may temporarily produce forks,
that is more chains are grown at the same time for a while, then one of them is
chosen (usually the longest one) by all nodes discarding the blocks of the other
chains.

3.3 Distributed Hash Tables (DHT)

Distributed Hash Tables are distributed data structures supporting put() and
get() primitives on key-value pairs. Most DHT implementations can locate an
object in O(log n) network operations, where n is the number of nodes of the
DHT, and provide a fault-tolerant way to access large amounts of data. The
keyspace is the set of all possible keys. Each node stores a subset of key-value
pairs among the keyspace. We say a node N is authority for the key k if it stores
its data. Each node also gets assigned an identifier from the keyspace. The DHT
defines a distance function between keys. Typically a node N is authority for
keys close to its identifier according to that distance.

In our study, we do not need the put() operation. The get(k) operation
returns the value associated with a key k, performing a lookup in the network,
to locate a node that is authority for k. For that purpose a suitable routing
algorithm is used, with each node storing a routing table based on the distance
among node identifiers.

4 Block Validation and State Storage as Sepa-
rate Roles

In our approach, each node has two distinct roles: the storage role and the
validation role. For the storage role, each node stores values for a subset of the
state elements, essentially acting as a DHT node. For the validation role, each
node mines new blocks and validate blocks that are broadcasted in the network.

5



0

0

0 0 0 0

1

1

1 1 1

1

1

0

r

∅

∅ ∅ ∅

e0 = 000 e1 = 001 e4 = 100 e6 = 110 e7 = 111e2 = 010 e3 = 011 e5 = 101
v = 0 v = 0 v = 0v 6= 0 v 6= 0 v 6= 0 v 6= 0 v 6= 0

this part is not stored in N1

Node N1 is authority
for these elements

this part is stored in N1

(a) The pADS stored by N1.

0

0

0 0 0 0

1

1

1 1 1

1

1

0

r

∅

∅ ∅ ∅

e0 = 000 e1 = 001 e4 = 100 e6 = 110 e7 = 111e2 = 010 e3 = 011 e5 = 101
v = 0 v = 0 v = 0v 6= 0 v 6= 0 v 6= 0 v 6= 0 v 6= 0

this part is not
stored in N2

this part is stored in N2

Node N2 is authority
for these elements

this part is not
stored in N2

(b) The pADS stored by N2.

Figure 1: An example of pruned ADS (pADS ) for two nodes, each storing just
a part of the same ADS.

Contrary to the traditional approach, validation does not rely on local storage
of the state. A node may not play the storage role at all. Further, any node can
create a new transaction and broadcast it so that it can be included (if valid)
in one of the next blocks during mining.

4.1 Storage Role of a Node

For this role, each node acts as a node of a DHT. The whole DHT stores the
state of the blockchain (see Section 3.2) and is able to reply to each query for a
state element e with its value v.

Since the storage is considered untrusted by the validation role, we equip the
state with an ADS. For simplicity, we assume the ADS to be constructed as a
binary prefix tree (see Figure 1) where we suppose that elements are identified
by strings of bits of the same length. Logically the state is represented as a

6



complete binary tree where the leaves are all possible state elements. As for
any DHT, in general, not all the state is kept by each node. A node that stores
the value of an element e is called authority for e. If node N is not authority
for e, we prune e from the ADS stored by N using the technique described in
Section 3.1. We call this pruned version a pADS.

Figure 1 depicts an example of an ADS, over state elements e0, . . . , e7, and
how two nodesN1 andN2 store different pruned versions of it. All state elements
are associated to a value. A special value, denoted ∅ in figure, refers to the hash
associated with subtrees whose leaves store only null values, like all unused
elements. In the example, N1 is authority for e0 and e1, while N2 is authority
for e4 and e5. The part of the ADS delimited by the solid line is the structure
stored by a specific node, which we call pADS, while the part delimited by the
dashed line is pruned.

Each node N stores a pADS for the blockchain state in a certain instant of
time. In a synchronous scenario, all pADSes are the pruned version of the same
ADS. In a real scenario, this is no longer true because each node receives the
updates with a different delay. For this reason, each node N stores a pADS for
the blockchain state that is associated with a block bi (i.e., the state before the
execution of the transactions in bi). We call that block the pivot block for N .

When a new block is received and validated by N , it is added to the local
view of the blockchain. At the same time, the pADS is updated by applying
changes according to the execution of the transactions of bi, and bi+1 becomes
the new pivot, where bi+1 may be the last block in the local view of N of the
blockchain or an older block still stored by N (see Section 4.3). Since block
propagation in the network takes some time, nodes can have a slightly skewed
view of the state. This aspect is taken into account within the validation role.

A query for element e can be answered by a node N that is authority for
e. It returns the value v of e, the proof p obtained by its pADS (see Section 3)
and the index of the pivot block for N .

4.2 Transaction Creation

A transaction involves a number of state elements. These are the state elements
read and updated by the operations executed in the transaction. Operations
may be complex, like in an invocation of a smart contract. However, we con-
strain the operations to act only on a set of state elements that should be known
before the execution of the transaction.

In our approach, a transaction is similar to one in traditional blockchains.
It specifies sender(s), receiver(s), operations, and all involved state elements.
As in traditional blockchains, for state elements that contain cryptocurrency
balances to be charged, a signature is also provided to prove that the sender of
the transaction is also the owner of charged state elements.

Suppose a node Nc intends to create a new transaction t. The set of the state
elements involved in t is denoted by E. To know the current value associated
with each e ∈ E, Nc queries the DHT obtaining, from a node Na authority for
e, the tuple δi(e) = 〈v, p, i〉, where v is the value for e known to Na, p is the

7



proof obtained from the pADS of Na, and i is the index of the pivot block of
Na. When Nc broadcasts t, it attaches δi(e) to t for each e. These additional
data are attached without any additional signature, since they will be verified
against root-hashes taken from blocks, and will be used during mining by nodes
executing the validation role.

4.3 Validation Role of a Node

. . .

︸ ︷︷ ︸
d

. . .

︸ ︷︷ ︸
f

bl−f blbl−f−d+1

possible fork
arriving block

pivot block

Figure 2: A node, for its validation role, stores only the last d + f blocks (see
text). In the figure, l denotes the index of the last block.

For the validation role, each node N stores only the last d + f blocks it
received (see Figure 2). We denote ΛN this truncated blockchain of N . At
a certain instant of time, the truncated blockchain of distinct nodes may be
different, since the propagation of new blocks in the network may take some
time. We suppose that each branch of a fork can be at most f blocks long.
Hence, the block at depth greater than f cannot be undone by a fork resolution.
The pivot block for the storage role for a certain node N is chosen to be bl−f ,
where l is the index of last block in ΛN .

We suppose that d is big enough so that the proofs attached with each
transaction are computed on states related to blocks that are still in ΛN when
N validates the transaction for the mining of a new block. The dimensioning of
d should take into account the time taken to create a transaction, comprising the
query to the DHT, the propagation delay of the transaction, and the maximum
time a transaction has to wait to be included in a block in case of a peak of
requests (see also Section 5).

Each block bi contains a number of transactions. In traditional blockchains
these are stored in a Merkle Tree whose root-hash is stored in the block. We
depict it in this way in Figure 3, even though this is not relevant for our ap-
proach. The union of all involved state elements in transactions associated with
bi is denoted Ei. The block bi also contains a pADS τi representing the state
of the blockchain before the application of the transactions in bi, but only ele-
ments in Ei are explicitly represented in τi, the rest is pruned. Note that, the
root-hash of τi is uniquely associated with the whole state at a certain time. We
also denote by πi a distinct pADS (with the same topology of τi but different
content) obtained applying all transaction in bi to the state represented by τi.
Note that, a node can choose to store πi’s or re-compute them when needed.

8



bi bi+1

transactions ti

State τi

transactions ti+1

State τi+1

t1 t2 t3 t4
e1 e1 e3 e5
e3 e4 e6

t1 t2
e1 e2
e3 e4
e7 e8
e9

e1 e2 e3 e7 e8 e9
e1 e3 e4 e5 e6

Figure 3: Content of two consecutive blocks. Each block bi contains a pruned
representation τi of the state before the execution of the transactions in bi. In
τi, the only unpruned leaves are the state elements involved in the transactions
of the block.

Validation of a block Let bl be the last block of ΛN . When N receives
a new block bl+1, it checks its validity considering the root-hash of πl, which
should turn out to be equal to the root-hash of τl+1. Each transaction in bl+1

is then validated considering its execution starting from the values of elements
as in τl+1, according to the consensus rules. If all consensus rules are respected,
bl+1 is appended to ΛN , bl−f−d is removed from ΛN and l is incremented.

Since the pivot block is now changed, the pADS for the storage role of N
is updated accordingly. Namely, τl−f−1 is updated with the changes of the
execution of transitions of bl−f−1 into a τ̄ . Then, τ̄ is used to update values of
leaves or hashes of pruned subtrees in the pADS used for the storage role.

Creation of a block To mine a new block, a node N chooses a set of selected
transactions to be included in the candidate next block bl+1, based on some
criteria (e.g., prioritising higher fees). We call El+1 the state elements that
are involved in at least one of the selected transactions. For each e ∈ El+1,
all δi(e) = 〈v, p, i〉 attached to the selected transactions are checked for their
integrity by comparing the root-hash computed from p and v against the root-
hash of τi, which should be in ΛN if d is big enough.

We now compute the pADS τ̄ = τl+1 to be included into bl+1 representing
the state before the execution of the selected transactions. Note that, πl can
not be used as τl+1 since they have a different pruning. We start by creating a τ̄

9



with the final structure but with no hashes and values. This is done by merging
all the proofs attached to the selected transactions considering only topological
information and ignoring hashes and values. Then, we iteratively perform the
following operations starting from x = l and decrementing x. We consider πx
and, only for nodes with unset hash/value in τ̄ , set their hashes/values with
the content of the corresponding nodes in πx. We then do the same thing with
nodes of proofs in δx(e) that are attached to selected transactions, again filling
only empty hashes/values. We iterate until τ̄ is fully populated. At the end, τ̄
turns out to be equal to τl+1. This procedure ends since, in the worst case, τ̄
is populated only by all δi(e) attached to selected transactions. Its correctness
derives from the fact it gives precedence to the most up-to-date hashes/values
and up-to-date hashes should take into account non updated hashes/values by
the way transactions update the state.

Each selected transaction t is then validated considering its execution start-
ing from the values of elements as in τl+1, according to the consensus rules. If
all consensus rules are met, t is actually added to the block. The new block
bl+1 contains all the valid transactions t and τl+1 (pruned from elements only
used by invalid transactions). Then N executes the consensus algorithm and,
if/when successful, broadcasts the block to the blockchain network.

5 Discussion

In this section, we discuss several aspects of a possible realisation of the de-
scribed approach. We assess our approach on the basis of some parameters
taken from the Ethereum network. Currently, in Ethereum, a broadcasted block
has an average size of 18 kB and a transaction has an average size of 200 bytes.
Supposing to adopt our approach, additional information should be attached
to transactions and blocks. In both cases, its size depends on the number of
involved state elements.

In our approach, each broadcasted transaction attaches values and proofs
of the involved state elements, relative to a certain pivot block. Since values
usually have negligible size, we focus on proofs. For each state element, in our
very simple construction of a pADS, a proof has as many elements as the number
of bits of the identifier of the state element. For example, if an identifier has
160 bits and a hash is 20 bytes, we obtain for each proof a size of 3200 bytes.
However, depending on the design, many state-elements that are involved in
a transaction may be close to each other and thus share most of the path to
the root. For example, in Ethereum the state elements which represent the
“storage” of a contract account are all in the same subtree. A set of proofs
can be represented itself as a pADS. Further, the pADS may be a patricia trie
compressing long chains. For this reason, we assume an average of 500 bytes
for each involved state element. In the Ethereum case, most transactions are
calls to smart contracts, generally involving more that two state elements. We
assume 5 as an average number of state elements per transaction. With these
assumptions, each transaction turns out to be about 2700 bytes, which is one

10



order of magnitude larger than the standard one. We leave a more precise
estimation as a future work.

A broadcasted block bi contains τi, which is a pADS covering all state ele-
ments involved in transactions contained in bi. Hashes of inner nodes of τi are
omitted since they can be computed from their leaves (see Section 3.1). We
estimate the size of τi as the size of the union of all the proofs of involved state
elements in bi. In Ethereum, a block has 90 transactions on average. Given the
assumptions above, we estimate an average of 450 involved state elements per
block. Thus, each block gets an average overhead of 225 kB, again one order of
magnitude bigger than the standard block.

We now estimate the time needed by a node to synchronise. This is the
time needed to receive d + f blocks. Usually, in Ethereum, a transaction is
considered confirmed after 3 minutes which is about 12 blocks, hence, we set
f = 12. Regarding the dimensioning of d, for simplicity, we consider a model in
which propagation of broadcast communications in the network takes some time
but is synchronised, in the sense that all nodes receive the same data at the same
time. In this model, all nodes have the same pivot block. A node Nc, to create a
transaction θ, queries the DHT to obtain proofs of state elements involved in θ.
Suppose that the first query is served at time t0 with index i. Then, all queries
are completed within time t0+∆tDHT. Supposing transactions propagate in the
network in time ∆tpr, θ arrives to a miner Nm at time t1 = t0 + ∆tDHT + ∆tpr.
For Nm to be able to check the proofs attached with θ, bi should still be in ΛNm

at t1. This is verified if ∆tDHT + ∆tpr < (d− 1)T , since ΛNm is updated every
block time T . The work described in [8] reports a look-up time for Kademlia
of no more than 30 seconds. To take into account the time to broadcast a new
transaction and the time it has to wait in queue, we conservatively set d = 8
(which is equivalent to 2 minutes). Thus, the data to be downloaded to set up
a node from scratch is about 4.8 MB, which at the speed of 2 Mb/s takes about
19 seconds. A very high speed up with respect to the time currently taken by
an Ethereum node, which is in the order of hours at best.

This speed up is not totally for free. Our approach also increases the time
taken by the sender node to prepare the transaction, due to queries to be per-
formed on the DHT. We note that those queries, one for each state element
involved in the transaction, can be performed in parallel. Further, for use cases
in which nodes should perform a large amount of similar transactions, specific
caching mechanisms can be designed.

We note that, a transaction involving a large number of state elements is a
considerable burden for the network, due to the fact that corresponding proofs
should be stored in the block (i.e., in τi). Hence, a blockchain adopting our
approach can discourage this kind of transactions by suitable means, like higher
fees or gas consumption. On the other hand, a reward may be given to nodes
that commit more storage for the DHT or that serve more DHT requests.

Concerning security, if we assume that blocks in ΛN are trusted, the proofs
that are received along with the transactions to be processed are enough to guar-
antee the authenticity of the involved state elements. Transactions containing
proofs with indexes outside ΛN are discarded. Validation of broadcasted blocks

11



only requires the previous block to be trusted, which is a common assumption
for blockchains.

Since resynchronisation of a node is easy, we expect a high rate of discon-
nection and reconnection of nodes. During reconnection, a node needs a way
to be sure that the first block it downloads belongs to the right blockchain, for
example to the same blockchain that it was attached before reconnection. This
problem is mitigated in regular blockchains by the fact that the nodes down-
load the whole chain and have the hash of the first block hard-coded. In our
approach, to avoid eclipse attacks during synchronisation, we may introduce
checkpoint blocks, whose hash is supposed to be kept by nodes for some time
and included in all (or some) of the following blocks. This method allows for
safe resynchronisation after a disconnection for a limited amount of time.

6 Conclusions

We have presented a method to significantly decrease the time taken by a node
of a blockchain network to download the data needed to properly work. In
particular, validation can be performed storing a small amount of data. To
achieve this, we take advantage of authenticated data structures and flexibly
distribute the storage of the blockchain state on a DHT made by the same
nodes of the network. The main feature of this methodology is its speed, which
allows the first synchronisation of a node to be performed in less than a minute.
Additionally, our approach is independent from the adopted consensus algorithm
and from the consensus rules.

As future works, we plan to prototypically implement this approach in a
software derived from one of the major blockchain networks (e.g., Ethereum).
We plan to perform an extensive test and possibly proposing the idea to the cor-
responding community. We also consider interesting to investigate the relation
of our approach with other scaling techniques, like sharding.

References

[1] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[2] Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejin-
der Singh Mor. Blockchain and scalability. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-
C), pages 122–128. IEEE, 2018.

[3] Pietro Danzi, Anders Ellersgaard Kalor, Cedomir Stefanovic, and Petar
Popovski. Analysis of the communication traffic for blockchain synchro-
nization of iot devices. In 2018 IEEE International Conference on Com-
munications (ICC), pages 1–7. IEEE, 2018.

12



[4] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 583–598. IEEE, 2018.

[5] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart G Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21–41, 2004.

[6] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In International Workshop on
Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[8] Moritz Steiner, Damiano Carra, and Ernst W Biersack. Evaluating and
improving the content access in kad. Peer-to-peer networking and applica-
tions, 3(2):115–128, 2010.

[9] Roberto Tamassia. Authenticated data structures. In European Symposium
on Algorithms, pages 2–5. Springer, 2003.

[10] Roberto Tamassia and Nikos Triandopoulos. Efficient content authentica-
tion over distributed hash tables. In Proc. Int’l Conf. Applied Cryptography
and Network Security (ACNS’07),. Citeseer, 2005.

[11] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

13


	Introduction
	State of the Art
	Background
	Authenticated Data Structures (ADS)
	Blockchain
	Distributed Hash Tables (DHT)

	Block Validation and State Storage as Separate Roles
	Storage Role of a Node
	Transaction Creation
	Validation Role of a Node

	Discussion
	Conclusions

