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Abstract. PROV has been adopted by a number of workflow systems
for encoding the traces of workflow executions. Exploiting these prove-
nance traces is hampered by two main impediments. Firstly, workflow
systems extend PROV differently to cater for system-specific constructs.
The difference between the adopted PROV extensions yields heterogene-
ity in the generated provenance traces. This heterogeneity diminishes
the value of such traces, e.g. when combining and querying provenance
traces of different workflow systems. Secondly, the provenance recorded
by workflow systems tends to be large, and as such difficult to browse
and understand by a human user. In this paper, we propose SHARP, a
Linked Data approach for harmonizing cross-workflow provenance. The
harmonization is performed by chasing tuple-generating and equality-
generating dependencies defined for workflow provenance. This results
in a provenance graph that can be summarized using domain-specific
vocabularies. We experimentally evaluate the effectiveness of SHARP
using a real-world omic experiment involving workflow traces generated
by the Taverna and Galaxy systems.
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1 Introduction

Reproducibility has recently gained momentum in (computational) sciences as a
means for promoting the understanding, transparency and ultimately the reuse
of scientific experiments. This is particularly true in the life sciences where
Next Generation Sequencing (NGS) equipments produce tremendous amounts
of omics data, and lead to massive computational analysis (aligning, comparing,
filtering, etc.). Life scientists urgently need for reproducibility and reuse to avoid
duplication of storage and computing efforts.

Pivotal to reproducibility is provenance [11], which documents the exper-
iment, including information about the activities that were conducted during
the experiment, the agents that were involved, the resources and programs that



were utilized as well as the data artifacts that were used and generated. Sev-
eral researchers have investigated the use of provenance as a means for tracing
pack the execution of experiment (see e.g., [23,19,6,4]). We note however that
experiments may involve multiple scientists, each of them is responsible for con-
ducting and analyzing the execution of part of the overall experiment, using
his/her favorite data analysis tool (workflow system, programming or scripting
language, etc.), which may be different from those used by the rest of the team.
This is particularly the case for interdisciplinary projects involving scientists
with different backgrounds and expertise. In order to exploit the provenance
generated by the different data analysis tools utilized within the scope of an
experiment, there is therefore the need for harmonizing and interlinking the
provenance traces such tool recorded and generated. The adoption of the W3C
PROV recommendations [20] (in particular the PROV-O ontology [18] given in-
creasing number of provenance-producing environments adopting semantic web
technologies) by a number of data analysis tools has to a certain extent lessen the
severity of the provenance harmonization problem. Yet, the fact that such envi-
ronments use PROV extensions that extend differently PROV, means that there
is a need for aligning the provenance traces generated by those tools. Moreover,
the provenance graphs generated by those environments need to be interlinked
by identifying the entities that refer to the same real world entity.

Interlinking and harmonizing provenance data is essential to deliver a global
account of what happened during scientific experiments. It is, however, by no
mean sufficient for promoting the understanding and re-usability of the experi-
ment and its associated results. Indeed, the provenance graph generated are often
large and contain low level and cumbersome information that is targeted for the
consumption of machines. This calls for abstraction mechanisms for providing a
human user with a global view on what happens in the experiment, by deriving
from the raw provenance information, high level and succinct information that
helps users in understanding the experiment and the results of its execution in
its entirety. In this paper, we propose SHARP that addresses the above issues.
We propose the following contributions:

– An approach for interlinking and harmonizing provenance traces recorded
by different workflow systems based on PROV inferences.

– An application of provenance harmonization towards Linked Experiment
Reports by using domain-specific annotations as in [15].

– An evaluation with real world omic use case illustrating the feasibility of
SHARP.

The paper is organized as follows. Section 2 describes motivations and prob-
lem statement. Section 3 presents the harmonization of multi-PROV Graphs
and its application towards Linked Experiment Reports. Section 4 reports our
experimental results. Section 5 summarizes related works. Finally, conclusions
and future works are outlined in Section 6.



2 Motivations and Problem Statement

Due to costly sequencing equipment and massively produced data, DNA se-
quencing is generally outsourced to third-party facilities. Therefore, part of the
scientific experiment is conducted by the sequencing facility which requires ded-
icated high throughput computing infrastructures, and a second part conducted
by the scientists themselves to analyze and interpret the results of sequencing
using traditional computing resources. Figure 2.1 illustrates a concrete example
of such experiment, which is composed of two workflows enacted by different
workflow systems, namely Galaxy [2] and Taverna [22].
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Fig. 2.1: A multi-site genomics workflow, involving Galaxy and Taverna workflow
environments.

The first workflow (WF1), in blue in Figure 2.1, is implemented in Galaxy
and addresses DNA data pre-processing which is loosely coupled to scientific
hypothesis. Such workflow takes as input two DNA sequences from two biological
samples s1 and s2, represented in green. For each sample, the sequence data is
stored in forward4 (.R1) and reverse (.R2) files. The first sample has been split
by the sequencer in two parts, (.a) and (.b). The very first processing step
consists in aligning (Alignment5) short sequence reads onto a reference human
genome (GRCh37). Then the two parts a and b are merged6 into a single file. Then

4 DNA sequencers can decode genomic sequences in both forward and reverse direc-
tions which improves the accuracy of alignment to reference genomes.

5 BWA-mem: http://bio-bwa.sourceforge.net
6 PICARD: https://broadinstitute.github.io/picard/
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the aligned reads are sorted7 prior to genetic variant identification8 (Variant
Calling). This primary analysis workflow finally produces a VCF9 file which
list all known genetics variations compared to the GCRh37 reference genome.

The second workflow (WF2) is implemented with Taverna, and highly de-
pends on scientific questions. It is generally conducted by life scientists possibly
from different research labs and with less computational needs. Such workflow
proceeds as follows. It first query a database of known effects to associate a pre-
dicted effect10 (Variant effect prediction). Then all these predictions are fil-
tered to select only those applying to the exon parts of genes (Exon filtering).
The results obtained by the executions of such workflows allow the scientists to
have answers for questions such as Q1 : “from a set of gene mutations, which
are common variants, and which are rare variants ?”, Q2 : “Which alignment
algorithm was used when predicting these effects ?”, or Q3: “A new version of
a reference genome is available, which genome was used when predicting these
effects ?”. While Q1 can be answered based on provenance tracking from WF1,
Q2 and Q3 need for an overall tracking of provenance at the scale of both WF1
(Galaxy) and WF2 (Taverna) workflows.

While the two workflow environments used in the above experiments (Tav-
erna and Galaxy) track provenance information conforming to the same W3C
standardized PROV vocabulary, which can be valuable, there are unfortunately
impediments that hinder their exploitation. i)- The heterogeneity of the prove-
nance languages used to encode workflow runs, despite the fact that they extend
the same vocabulary PROV, does not allow the user to issue queries that use
and combine traces recorded by different workflow languages. ii)- Heterogeneity
aside, the provenance traces of workflow runs tend to be large, and thus cannot
be utilized as they are to document the results of the experiment execution.
We show how the above issues can be addressed by, i) applying graph satu-
ration techniques and PROV inferences to overcome vocabulary heterogeneity,
and ii) summarizing harmonized provenance graphs for life-science experiment
reporting purposes.

3 Harmonizing multi-PROV Graphs

Faced with the heterogeneity in the provenance vocabularies, we can use classical
data integration approaches such as peer-to-peer data integration or mediator-
based data integration [12] Both options are expensive since they require the
specification of schema mappings that often require heavy human inputs. In
this paper, we explore a third and cheaper approach that exploits the fact that
many of the provenance vocabularies used by workflow systems extend the W3C
PROV-O ontology. This means that such vocabularies already come with (im-
plicit) mappings between the concepts and relationships they used and those

7 SAMtools sort: http://www.htslib.org
8 SAMtools mpileup
9 Variant Call Format

10 SnpEff tool: http://snpeff.sourceforge.net
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of the W3C PROV-O. Of course, not all the concepts and relationships used
by individual mappings will be catered for in PROV. Still this solution remains
attractive because it does not require any human inputs, since the constraints
(mappings) are readily available. We show in this section how the provenance
traces that are encoded using different PROV extensions can be harmonized by
capitalizing on such constraints.

3.1 Tuple-Generating Dependencies

Central to our approach to harmonizing provenance traces is the saturation op-
eration. Given a possibly disconnected provenance RDF graph G, the saturation
process generates a saturated graph G8 obtained by repeatedly applying some
rules to G until no new triple can be inferred. We distinguish between two kinds of
rules. OWL entailment rules includes, among other things, rules for deriving
new RDF statements through the transitivity of class and property relationships.
Prov constraints [8], these are of interest to us as they encode inferences and
constraints that need to be satisfied by provenance traces, and can as a such be
used for deriving new RDF provenance triples.

In this section, we examine such constraints by identifying those that are
of interest when harmonizing the provenance traces of workflow executions, and
show (when deemed useful) how they can be translated into SPARQL queries for
saturation purposes. It is worth noting that the W3C Provenance constraint doc-
ument presents the inferences and constraints assuming a relational-like model
with possibly relations of arity greater than 2. We adapt these rules to the con-
text of RDF where properties (relations) are binary. For space limitations, we
do not show all the inferences rules that can be implemented in SPARQL, we
focus instead on representative ones. We identify three categories of rules with
respect to expressiveness (i) rules that contain only universal variables, (ii) rules
that contain existential variables, (iii) rules making use of n-array relations (with
n ě 3). The latter is interesting, since RDF reification is needed to represent
such relations. For exemplary rule, we present the rules using tuple-generating
dependencies TGDs [1], and then show how we encode it in SPARQL. A TGD
is a first order logic formula @x̄y φpx̄, ȳq Ñ Dz̄ ψpȳ, z̄q, where φpx̄, ȳq and ψpȳ, z̄q)
are conjunctions of atomic formulas.

Transitivity of alternateOf. Alternate-Of is a binary relation that associates two
entities e1 and e2 to specify that the two entities present aspects of the same
thing. The following rule states that such a relation is transitive, and it can be
encoded using a SPARQL construct query, in a straightforward manner.

alternateOfpe1, e2q, alternateOfpe2, e3q Ñ alternateOfpe1, e3q.

Inference of Usage and Generation from Derivation The following rule states
that if an entity e2 was derived from an entity e1, then there exists an activity
a, such that a used e1 and generated e2.

wasDerivedFrompe2, e1q Ñ D a usedpa, e1q, wasGeneratedFrompe2, aq.



Notice that unlike the previous rule, the head of the above rule contains an
existential variable, namely the activity a. To encode such a rule in SPARQL,
we make use of blank nodes 11 for existential variables as illustrated below.

CONSTRUCT {

?e_2 prov:wasGeneratedBy _:blank_node .

_:blank_node prov:used ?e_1

} WHERE {

?e_2 prov:wasDerivedFrom ?e_1

}

Inference of Usage and Generation from Derivation Using the Qualification pat-
terns In the previous rule, derivation, usage and generation are represented
using binary relationships, which do not pose any problem to be encoded in
RDF. Note, however, that PROV-DM allows such relationships to be augmented
with optional attributes, for example, usage can be associated with a timestamp
specifying the time at which the activity used the entity. The presence of ex-
tra optional attributes increases the arity of the relations that can no longer be
represented using an RDF property. As a solution, the PROV-O opts for qual-
ification patterns 12 introduced in [13]. To illustrate this, Figure 3.1 shows how
a qualified usage can be encoded in RDF.

En#ty	 Ac#vity	

Usage	

xsd:dateTime	

prov:qualifiedUsage prov:entity 

prov:atTime 

Fig. 3.1: Example of a qualified relationship.

The following rule shows how the inference of usage and generation from
derivation can be expressed when such relationships are qualified. It can also be
encoded using a SPARQL Construct query with blank nodes.

qualifiedDerivationpe2, dq, provEntitypd, e1q
Ñ D a, u, g qualifiedUsagepa, uq,

provEntitypu, e1q, qualifiedGenerationpe2, gq, provActivitypg, aq.

Figure 3.2 presents inferred statements in dashed arrows resulting from the
application of this rule.

11 https://www.w3.org/TR/rdf11-concepts/#dfn-blank-node
12 https://www.w3.org/TR/prov-o/

https://www.w3.org/TR/rdf11-concepts/#dfn-blank-node
https://www.w3.org/TR/prov-o/


_:g _:a _:u

E2 E1D

prov:qualifiedDerivation prov:entity

prov:qualifiedGeneration

prov:activity prov:qualifiedUsage

prov:entity

Fig. 3.2: Inferred qualified usage and generation relationships.

3.2 Equality-Generating Dependencies

As well as the tuple-generating dependencies, we need to consider equality-
generating dependencies (EGDs), which are induced by uniqueness constraints.
An EGD is a first order formula: @x̄φpx̄q Ñ px1 “ x2q, where φpx̄q is a conjunction
of atomic formulas, and x1 and x2 are among the variables in x̄. We give below
an examples of an EGD, that is implied by the uniqueness of the generation that
associates a given activity a with a given entity e.

wasGeneratedBypgen1, e, a, attrs1q, wasGeneratedBypgen2, e, a, attrs2q
Ñ pgen1 “ gen2q

Having defined an example EGD, we need to specify what it means to apply
it (or chase it [14]) when we are dealing with RDF data. The application of an
EGD has three possible outcomes. To illustrate them, we will work on the above
example EGD. Typically, the generations gen1 and gen2 will be represented by
two RDF resources. We distinguish the following cases:

(i) gen1 is a non blank RDF resource and gen2 is a blank node. In
this case, we add to gen1 the properties that are associated with the blank node
gen2, and remove gen2. (ii) gen1 and gen2 are two blank nodes. In this case,
we create a single blank node gen to which we associate the properties obtained
by unionizing the properties of gen1 and gen2, and we remove the two initial
blank nodes. (iii) gen1 and gen2 are non black nodes that are different.
In this case, the application of the EGD (as well as the whole saturation) fails.
In general, we would not have this case, if the initial workflows runs that we
use as input are valid (ie., they respect the constraints defined in the W3C Prov
Constraint recommendation [8].

To select the candidate substitutions (line 5 of the algorithm), we express
the graph patterns illustrated in the previous cases 1 and 2 as a SPARQL query.
This query retrieves candidate substitutions as blank nodes coupled to their
substitute, i.e., another blank node or a URI.

For each of the found substitution (line 6), we merge the incoming and out-
going relations between the source node and the target node. This operation
is done in two steps. First, we navigate through the incoming relations of the
source node (line 9), we copy them as incoming relations of the target node (line
10), and finally remove them from the source node (line 11). Second, we repeat



Algorithm 1: EGD pseudo-code for merging blank nodes produced by
PROV inference rules with existential variables.

Input : G1 : the provenance graph resulting from the application of TGD on G
Output: G2: the provenance graph with substituted blank nodes, when possible.

1 begin
2 G2

Ð G1

3 substitutionsÐ new List ă Pair ă Node,Node ąą pq
4 repeat
5 S Ð findSubstitutionspG1

q

6 foreach (s P S) do
7 sourceÐ sr0s
8 targetÐ sr1s

9 foreach (in P G1.listStatementsp˚,˚, sourceq) do
10 G2

Ð G2.addpin.getSubjectpq, in.getPredicatepq, targetq

11 G2
Ð G2.delpinq

12 foreach (out P G1.listStatementspsource,˚,˚q) do
13 G2

Ð G2.addptarget, out.getPredicatepq, out.getObjectpqq

14 G2
Ð G2.delpoutq

15 until pS.sizepq “ 0q

this operation for the outgoing relations (lines 12 to 14). We repeat this process
until we can’t find any candidate substitutions.

3.3 Full provenance harmonization process

Multi-provenance linking. This process starts by first linking the traces of
the different workflow runs. Typically, the outputs produced by a run of a given
workflow are used to feed the execution of a run of another workflow as depicted
in Figure 2.1.

The main idea consists in providing an owl:sameAs property between the
PROV entities associated with the same physical files. The production of owl:sameAs
can be automated as follows : i) generate a fingerprint of the files (SHA-512
is one of the recommended hashing functions), ii) produce the PROV anno-
tation associated the fingerprint to the PROV entities, iii) generate, through
a SPARQL CONSTRUCT query, the owl:sameAs relationships when finger-
prints are matched. When applied to our motivating example (Figure 2.1), the
PROV entity annotating the V CFFile produced by the Galaxy workflow be-
comes equivalent to the one as input of Taverna workflow. A PROV example
associating a file name and its fingerprint is reported below:

<http://fr.symetric#c583bef6-de69-4caa-bc3a-00000000>
a prov:Entity ;
rdfs:label "my-variants.vcf"^^xsd:String ;
crypto:sha512 "1d305986330304378f82b938d776ea0be48eda8210f7af6c
152e8562cf6393b2f5edd452c22ef6fe8c729cb01eb3687ac35f1c5e57ddefc4
6276e9c60409276a"^^xsd:String .

The following SPARQL Construct query can be used to produce owl:sameAs
relationships :



CONSTRUCT { ?x owl:sameAs ?y }
WHERE {

?x a prov:Entity .
?x crypto:sha512 ?x_sha512 .
?y a prov:Entity .
?y crypto:sha512 ?y_sha512 .
FILTER( ?x_sha512 = ?y_sha512 ) }

Multi-provenance reasoning. Once the traces of the workflow runs have been
linked, we saturate the graph obtained using OWL entailment rules. This oper-
ation can be performed using an existing OWL reasoner (e.g., [7,17]). We then
start by repeatedly applying the TGDs and EGDs derived from the W3C PROV
constraint document, as illustrated in section 3.1 and 3.2. The harmonization
process terminates when we can no longer apply any existing TGD or EGD. This
harmonization process raises the question as to whether such process will termi-
nate. The answer is affirmative. Indeed, it has been shown in the W3C PROV
Constraint document that the constraints are weakly acyclic, which guarantees
the termination of the chasing process in polynomial time (see Fagin et al. [14]
for more details).

3.4 Application of provenance harmonization: domain-specific
experiment reports

In this section we propose to exploit previously harmonized provenance graphs
by transforming them into Linked Experiment Reports. These reports are no more
machine-only-oriented and benefit from a humanly tractable size, and domain-
specific concepts. Several ontologies and controlled vocabularies have been pro-
posed to capture and organize knowledge associated to in silico experiments.

Domain-specific vocabularies. Workflow annotations. P-Plan13 is an ontol-
ogy aimed at representing the plans followed during a computational experiment.
Plans can be atomic or composite and are a made by a sequence of processing
Steps. Each Step represents an executable activity, and involves input and output
Variables. P-Plan fits well in the context of multi-site workflows since it allows
to work at the scale of a site-specific workflow as well as at the scale of the global
workflow.

Domain-specific concepts and relations. To capture knowledge associated to
the data processing steps, we rely on EDAM14 which is actively developed, in
the context of the Bio.Tools registry, and which organizes common terms used
in the field of bioinformatics. However these annotations on processing tools do
not capture the scientific context in which a workflow takes place. SIO15, the
Semantic science Integrated Ontology, has been proposed as a comprehensive and
consistent knowledge representation framework to model and exchange physical,
informational and processual entities. Since SIO has been initially focusing on

13 http://purl.org/net/p-plan
14 http://edamontology.org
15 http://sio.semanticscience.org

http://purl.org/net/p-plan
http://edamontology.org
http://sio.semanticscience.org


Life Sciences, and is reused in several Linked Data repositories, it provides a way
to link the data routinely produced by PROV-enabled workflow environment to
major linked open data repositories, such as Bio2RDF.

NanoPublications16 are minimal sets of information to publish data as citable
artifacts while taking into account the attribution and authorship. NanoPubli-
cations provide named graphs mechanisms to link Assertion, Provenance, and
Publishing statements. In the remainder of this section, we show how fine-grained
and machine-oriented provenance graphs can be summarized into NanoPublica-
tions.

Linked Experiment Reports Based on harmonized multi-provenance graphs,
we show how to produce NanoPublications as exchangeable and citeable scientific
experiment reports. Figure 3.3 drafts how data artifacts and scientific context
can be related to each other for the motivating scenario introduced in section 2.

reference 
genomesample_001 scientific 

question

predicted 
phenotypes 
from exons

sio:has-phenotype

sio:is-variant-of

sio:is-supported-by

sio:is-supported-by

sio:is-supported-by

sio:is-supported-by

Fig. 3.3: Expected experiment report, linking the most relevant multi-site work-
flow artifacts with domain specific statements, and scientific context.

The expected Linked Experiment Report would be a NanoPublication as
follows. For the sake of simplicity we omitted the definition of namespaces, and
we used the labels of SIO predicates instead of their identifiers.

:head {
ex:pub1 a np:Nanopublication .
ex:pub1 np:hasAssertion :assertion1 ;

np:hasAssertion :assertion2 .
ex:pub1 np:hasProvenance :provenance .
ex:pub1 np:hasPublicationInfo :pubInfo . }

:assertion1 {
ex:question a sio:Question ;

sio:has-value "What are the effects of SNPs
located in exons for study-Y samples" ;
sio:is-supported-by ex:referenceGenome ;
sio:is-supported-by ex:sample_001 ;
sio:is-supported-by ex:annotatedVariants . }

:assertion2 {
ex:referenceGenome a sio:Genome .
ex:sample_001 a sio:Sample ;

sio:is-variant-of ex:referenceGenome ;
sio:has-phenotype ex:annotatedVariants .

16 http://nanopub.org

http://nanopub.org


ex:annotatedVariants sio:is-supported-by ex:referenceGenome . }
:provenance { :assertion2 prov:wasDerivedFrom :harmonizedProvBundle .}
:pubInfo { ex:pub1 prov:wasAttributedTo ex:MyLab . }

To produce this NanoPublication, we identify a data lineage path in mul-
tiple PROV graphs, beforehand harmonized (as proposed in section 3). Since
we identified the prov:wasInfluencedBy as the most commonly inferred lineage
relationship, we search for all connected data entities through this relationship.
Then, when connected data entities are identified, we extract the relevant ones
so that they can be later on incorporated and annotated through new state-
ments in the NanoPublication. The following SPARQL query illustrates how
:assertion2 can be assembled from a matched path in harmonized provenance
graphs. The key point consists in relying on SPARQL property path expres-
sions (prov:wasInfluencedBy)+ to identify all paths connecting data artifacts
composed by one or more occurrences of the prov:wasInfluencedBy predicate.
Such SPARQL queries could be programmatically generated based on P-Plan
templates as it has been proposed in our previous work [15].

CONSTRUCT {
GRAPH :assertion {

?ref_genome a sio:Genome .
?sample a sio:Sample ;

sio:is-variant-of ?ref_genome ;
sio:has-phenotype ?out .

?out rdfs:label ?out_label .
?out sio:is-supported-by ?ref_genome . }

} WHERE {
?sample rdfs:label ?sample_label.
FILTER (contains(lcase(str(?sample_label)), lcase("fastq"))) .
?ref_genome rdfs:label ?ref_genome_label.
FILTER (contains(lcase(str(?ref_genome_label)), lcase("GRCh"))) .
?out ( prov:wasInfluencedBy )+ ?sample
?out tavernaprov:content ?out_label .
FILTER (contains(lcase(str(?out_label)), lcase("exons"))) . }

4 Experimental results and discussion

As a first evaluation, we ran two experiments. The first one evaluates the per-
formance of harmonization in terms of execution time, number and nature of
inferred relations. In a second experiment, we evaluated the ability of the sys-
tem to answer the domain-specific questions of our motivating scenario.

4.1 Harmonization of heterogeneous PROV traces

In this experiment, we used provenance document of ProvStore17. Specifically,
we selected three documents, namely PA (ID 113207), PB (ID 113206), and PC

(ID 113263). These documents have different sizes from 10 to 666 triples and use
different concepts and relations of PROV. We ran the provenance harmonization
process as described in this paper using such documents on a classical desktop
computer (4-cores CPU, 16GB of memory). We computed the mean time and



size blank nodes wDF pred. wIB pred. mean time (ms)
PA [10,2786] [0,2] [0,1] [0,7] 4835 ˘ 343
PB [109,3211] [0,4] [10,11] [0,58] 4759 ˘ 71
PC [666,5689] [1,64] [17,18] [0,231] 5304 ˘ 176

Table 1: [before,after] metrics characterizing the impact of the provenance har-
monization process. wDF refers to wasDerivedFrom properties and wIB refers
to wasInfluencedBy.

standard deviation based on five executions of the harmonization, as well as the
size of the provenance graph before and after the harmonization.

The processing time of the OWL entailments, TGDs, and EGDs provenance
harmonization process is near to 5 seconds as shown in Table 1. This is negligible
in the context of scientific workflows, which generally rely on possibly long batch
job submissions. With respect to the inferred predicates, Table 1 also shows
that the number of wasInfluencedBy (wIB) is important. In spite of its loose
semantics, these inferred statements could be helpful for tracing data lineage in
provenance graphs. Even if not present in the original PROV graph, SHARP
was able to produce these common data lineage relations. We can also note
that the harmonization process does not allow to infer wasDerivedFrom (wDF)
relations. By design, the PROV inference regime does not allow the inference of
new wasDerivedFrom relations, which means that a particular attention should
be paid to initially capture this provenance relation.

4.2 Usage of semi-automatically produced NanoPublications

We run the multi-site experiment of section 2 using Galaxy and Taverna workflow
management systems. The Galaxy workflow has been designed in the context of
the SyMeTRIC systems medicine project, and was run on the production Galaxy
instance18 of the BiRD bioinformatics infrastructure. The Taverna workflow was
run on a desktop computer. Provenance graphs were produced by the Taverna
built-in PROV feature, and by a Galaxy dedicated provenance capture tool19,
based on the Galaxy API, the later transforms a user history of actions into
PROV RDF triples.

Table 2 presents a sorted count of the top-ten predicates in i) the Galaxy and
Taverna provenance traces without harmonization, ii) these provenance traces
after the first iteration of the harmonization process:

We executed the summarization query proposed in section 3.4 on the har-
monized provenance graph. The resulting NanoPublication (assertion named
graph) represents the input DNA sequences aligned to the GRCh37 human ref-
erence genome through an sio:is-variant-of predicate. It also links the annotated
variants (Taverna WF output) with the prepossessed DNA sequences (Galaxy

17 https://provenance.ecs.soton.ac.uk/store/
18 https://galaxy-bird.univ-nantes.fr/galaxy/
19 https://github.com/albangaignard/sharp-prov-toolbox
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Galaxy PROV Taverna PROV Harmonized PROV++
predicates counts predicates counts predicates counts
prov:wasDerivedFrom 118 rdf:type 54 owl:differentFrom 3617
rdf:type 76 rdfs:label 13 rdf:type 958
rdfs:label 62 prov:atTime 8 prov:wasInfluencedBy 515
prov:used 61 wfprov:descByParameter 6 prov:influenced 291
prov:wasAttributedTo 34 rdfs:comment 6 rdfs:seeAlso 268
prov:wasGeneratedBy 33 prov:hadRole 6 rdfs:subClassOf 223
prov:endedAtTime 26 prov:activity 5 owl:disjointWith 218
prov:startedAtTime 26 purl:hasPart 4 rdfs:range 208
prov:wasAssociatedWith 26 prov:agent 4 rdfs:domain 199
prov:generatedAtTime 1 prov:endedAtTime 4 prov:wasGeneratedBy 172

all 463 all 177 all 8654

Table 2: Most prominent predicates when considering the initial two PROV
graphs and their harmonization (PROV++)

WF inputs). Related to the Q3 life-science question highlighted in section 2, this
NanoPublication can be queried to retrieve for instance the reference genome
used to select and annotate the resulting genetic variants.

5 Related Works

Data harmonization (integration) [12] and summarization [3] have been largely
studied in different research domains. Our objective is not to invent yet another
technique for integrating and/or summarizing data. Instead, we show how prove-
nance constraint rules, domain annotations, and semantic web techniques can be
combined to harmonize and summarize provenance data into linked experiment
reports.

There have been several proposals and tools that tackle scientific repro-
ducibility 20. For example, Reprozip [9] captures operating system events that
are then utilized to generate a workflow illustrating the events that happened
and their sequences. While valuable, such proposals neither address the harmo-
nization of provenance traces recorded by different analysis tools that utilize dif-
ferent PROV extension nor machine- and human-tractable experiment reports,
as proposed in SHARP.

Datanode ontology [10] proposes to harmonize data by describing relation-
ships between data artifacts. Datanode allows to present in a simple way dataflows
that focus on the fundamental relationships that exist between original, interme-
diary, and final datasets. Contrary to Datanode, SHARP uses existing PROV
vocabularies and constraints to harmonize provenance traces, thereby reducing
harmonization efforts.

LabelFlow [5] proposes a semi-automated approach for labeling data artifacts
generated from workflow runs. Compared to LabelFlow, SHARP uses existing
PROV ontology and semantic web technology to connect and harmonizes the
dataflows. Moreover, LabelFlow is confined to single workflows, whereas SHARP

20 http://www.refinery-platform.org

http://www.refinery-platform.org


targets a collection of workflow runs that are produced by different workflow
systems.

In previous work [15], we proposed PoeM to produce linked in silico experi-
ment reports based on workflow runs. As SHARP, PoeM leverages semantic web
technologies and reference vocabularies (PROV-O, P-Plan) to generate prove-
nance mining rules and finally assemble linked scientific experiment reports (Mi-
cropublications, Experimental Factor Ontology). SHARP goes steps forward by
proposing the harmonization of provenance traces recorded by different workflow
systems.

6 Conclusions

In this paper, we presented SHARP, a Linked Data approach for harmonizing
cross-workflow provenance. The resulting harmonized provenance graph can be
exploited to run cross-workflow queries and to produce provenance summaries,
targeting human-oriented interpretation and sharing. Our ongoing work includes
deploying SHARP to be used by scientists to process their provenance traces
or those associated with provenance repositories, such as ProvStore. For now,
we work on multi-site provenance graphs with centralized inferences. Another
exciting research direction would be to consider low-cost highly decentralized
infrastructure for publishing NanoPublication as proposed in [21].
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