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ABSTRACT 

Computer simulations may be composed of scientific programs 
chained in a coherent flow and executed in High Performance 
Computing environments. These executions may present anomalies 
associated to the data that flows in parallel among programs. Several 
parallel code-profiling tools already support performance analysis, 
such as Tuning and Analysis Utilities (TAU) or provide fine-grained 
performance statistics such as the System Activity Report (SAR). 
However, these tools do not associate their results to their 
corresponding dataflows. Such analysis is fundamental to trace back 
the data origins of an error. In this paper, we propose to couple a 
workflow monitoring data approach to parallel code-profiling tools 
for workflow executions. The goal is to profile and debug parallel 
workflow executions by querying a database that is able to integrate 
performance, resource consumption, provenance, and domain data 
from simulation programs at runtime. We have implemented our data 
monitoring approach as a software component that was coupled to 
TAU and SAR code profiling tools. We show how querying the 
resulting integrated database enables domain-aware runtime steering 
of performance anomalies by using the astronomy Montage 
workflow, as a motivating example. We observe that the overhead 
introduced by our approach is negligible. 
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1. INTRODUCTION 

A workflow is an abstraction that defines a set of activities and a 
dataflow among them [1]. Each activity is associated to a simulation 
program, which is responsible for the consumption of an input 
dataset and the production of an output dataset. Many workflows 
process a large volume of data, requiring the effective use of High 
Performance Computing (HPC) or High-Throughput Computing 
(HTC) environments allied to parallelization techniques such as data 
parallelism or parameter sweep [2]. 

To support the modeling and execution of workflows in those 
environments, standalone parallel Scientific Workflow Management 
Systems (SWfMS) were developed, such as Swift/T [3], Pegasus [4] 
and Chiron [5], or SWfMS embedded in Science gateways such as 
WorkWays [6]. To foster data parallelism, the activities of workflows 
can be instantiated as tasks for each input data, known as activations 
[6] (we are going to use the term activation consistently throughout 
this paper). Each activation executes a specific program or 
computational service in parallel, consuming a set of parameter 

values and input data that produces output data. Besides the 
activations, parallel SWfMS control the data dependencies among 
activities. It is worth mentioning that the dependency management of 
this dataflow and provenance support are some of the advantages of 
SWfMS in relation to executing workflows using Python scripts [8] 
or Spark [7]. 

It is far from trivial to monitor and steer performance of the resource 
consumption related to domain data during the parallel execution of 
workflows [8]. Users need to relate performance and resource 
consumption information with domain data to plan actions. For 
example, the execution of simulation programs with several 
combinations of parameter values correspond to the production of 
many data files, whose contents present relevant domain data to the 
result analysis. Despite the challenges to find those several raw data 
files, users have to develop ad-hoc programs to access and extract the 
contents of these files (often binary or specific formats) to analyze 
the workflow results.  

Most of the parallel SWfMS have addressed the need of performance 
and resource consumption monitoring facilities by adding new 
components in their workflow engines, or loading data into databases 
(at runtime or after the workflow execution) to be further queried by 
users [9]. Approaches such as STAMPEDE [10], which has been 
coupled to Pegasus, are also able to monitor the execution of 
workflows in HPC environments at runtime. However, this coarse 
grain information prevents users to understand the behavior of the 
data derivation (i.e., dataflow path) associated to the performance and 
resource consumption.  

To address low level execution information, there are code-profiling 
tools that support debugging and profiling of HPC scientific 
applications, such as Tuning and Analysis Utilities (TAU) [11]. TAU 
instruments the application code to capture performance data and 
invokes ParaProf for presenting these data, for instance, using 3D 
visualizations. Other tools, such as System Activity Report (SAR)1, 
provide system statistics from time to time, but disconnected from 
the workflow execution data. When performance and resource 
consumption data are not related to fine-grained domain data (i.e. 
data value within raw data files), the user may not see that a certain 
data value from a huge file is presenting an anomalous behavior.  

In this paper, we present a database-oriented approach that is able to 
extract and represent fine-grained performance with resource 
consumption data associated to workflow information, provenance 
and domain-specific data all into a single database managed by a 

                                                                 
1
 http://pubs.opengroup.org/onlinepubs/7908799/xsh/sysstat.h.html 
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relational database management system at runtime. In [12] and [13], 
we showed how domain and provenance data associated to execution 
data are able to improve steering, debugging and workflow execution 
time. However, execution data was limited to performance data 
captured by SWfMS. Thus, users still had to explore TAU or other 
tools to improve debugging, while having a hard time to associate 
debugging tools to the enriched provenance database. Moreover, we 
also contribute in this paper by developing a component for capturing 
performance and resource consumption metrics that is designed on 
top of TAU and SAR tools, which we named as PerfMetricEval. We 
coupled PerfMetricEval to Chiron SWfMS. 

This paper is organized in five sections. Section II discusses related 
work. Section III describes our approach for performance and 
resource consumption monitoring and the integration between 
PerfMetricEval with Chiron SWfMS. We also show the evaluation of 
the proposed approach in this section using the Montage workflow in 
a cluster environment. Section IV concludes the paper and presents 
some final remarks. 

2. RELATED WORK 

Related work is organized in two broad categories, systems that 
monitor the execution of workflows and tools for monitoring low 
level information on performance and resource consumption. There 
are several SWfMS that provide monitoring and performance 
analysis mechanisms within their engines. ASKALON [13], Swift/T, 
Pegasus (kickstart tool [14]), Makeflow [15] and Chiron provide 
monitoring mechanisms for users to follow the execution of the 
workflow and to analyze its behavior. Swift/T and Pegasus provide 
interfaces to follow the execution while Chiron allows for database 
queries to be submitted at runtime for workflow monitoring. Swift/T 
and Pegasus provide information about the amount of activations 
executed, the execution time of each activation and the resources 
used. Specifically, Pegasus SWfMS uses the Kickstart tool to do 
performance analyses that can also be associated to provenance data. 
Makeflow is a workflow approach that enables performance 
monitoring and debugging on HPC environments, such as application 
elapsed time. Chiron provides information about the amount of 
activations, their execution times, and domain data in the same 
database, but it does not provide performance metrics neither 
resource consumption data. STAMPEDE [10] is a SWfMS-
independent solution that provides a common model for workflow 
monitoring, however it does not consider domain-specific data. These 
SWfMS solutions fail to combine domain data and workflow 
execution data with performance and resource consumption 
information. 

WorkWays [6] and FireWorks [17] enable users to monitor the status 
and the elapsed time of tasks, and correlate those data to domain-
specific data. They also display performance data related to memory 
usage and I/O operations. Those performance data allow for 
identifying performance bottlenecks in HPC environments, however, 
they are not related to domain data. 

There are other approaches that provide detailed performance and 
resource consumption information for applications (i.e. disconnected 
from the workflow concept). Tuning and Analysis Utilities (TAU) 
[11] is a profiling tool that gathers performance information and 
visualize it on interactive graphs using ParaProf. TAU gathers 
performance information by instrumenting functions, methods, basic 
blocks, and statements as well as event-based sampling. To use TAU 
in workflows, it is required to instrument both the applications and 
the workflow engine to collect performance data. Similar to TAU, 

DARSHAN is a resource consumption profiler that monitors I/O 
operations in applications with a non-intrusive solution.  

System Activity Report (SAR) is a Linux monitor command that 
informs system loads, including CPU activity, memory usage 
statistics, etc. The statistics provided by SAR are fine-grained, but 
this approach is disconnected from the workflow concept. To use 
SAR in SWfMS, one should couple it to the workflow engine or call 
it within the program that is invoked. We have used SAR to help on 
other workflow applications, but associating SAR information to 
provenance and domain-specific data is far from trivial. Similarly to 
SAR, CCTools 2  presents a resource monitor tool for gathering 
performance data during the execution of applications, which enables 
visualization of performance data, such as the memory usage and % 
of CPU usage. Ganglia [18] is a distributed monitoring system for 
distributed infrastructures. Ganglia captures performance information 
from infrastructure and also presents similar visualizations for 
memory, disk usage, network statistics, number of running processes, 
etc. However, Ganglia usage is similar to SAR’s and CCTools’, and 
thus they all present the same difficulties to associate performance 
data with provenance and domain-specific data. 

Therefore, we observe that existing approaches do provide valuable 
information for computer science experts to debug a code or to 
understand the performance of a workflow execution or to follow a 
scientific workflow execution in an HPC environment. However, 
when using those existing solutions, users may miss important 
opportunities to understand the behavior of data derivation based on 
resource consumption information. When resource consumption data 
are not related to domain data, it may be hard to find which specific 
data value is presenting an anomalous memory consumption or 
execution behavior and act directly on this. In data-intensive 
workflows this lack becomes really an issue.  

3. THE PERFMETRICEVAL COMPONENT  

TAU is a tool that supports debugging and profiling of HPC 
scientific applications for computer experts, like instrumenting the 
application code to capture performance data and to present these 
data using a graphical representation. However, users from the 
application domain also need to analyze performance and resource 
consumption together with the domain-specific data, as well as to be 
aware of all data transformations that have occurred in the workflow 
parallel execution. In this section, we show how TAU, SAR and 
other tools may be integrated to the provenance database of a 
SWfMS. To integrate TAU, SAR and the provenance database, we 
have extended a W3C PROV-compliant provenance database schema 
with performance and resource consumption information.  

In this paper we consider metrics such as total elapsed time (that can 
be decomposed to identify bottlenecks related to the computational 
simulation; for example, communication bottleneck), CPU usage, 
memory consumption and I/O, and transfer rates statistics to be 
captured and stored in the provenance database. We decomposed the 
total workflow elapsed time (T_wf), which corresponds to the 
workflow wall-clock time, into three different metrics: useful 
computing time (time needed for executing a specific activation – 
T_comp), communication time (time needed to perform 
communication between processes/machines – T_comm) and time 
taken to access the provenance database (T_prov), thus T_wf = 
T_comp + T_comm + T_prov. 

                                                                 
2 http://ccl.cse.nd.edu/software 
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For CPU usage, we consider the cumulative runtime CPU usage of 
all machines involved in the execution of the workflow. The CPU 
usage can be decomposed into the percentage of CPU utilization that 
occurred while executing the application (usr), the percentage of 
CPU utilization that occurred while executing at the system level 
(sys), the percentage of time that the CPU was idle during which the 
system had an outstanding disk I/O request (iowait) and the 
percentage of time that the CPU was idle and the system did not have 
an outstanding disk I/O request (idle).  

PerfMetricEval captures performance and resource consumption 
metrics using both TAU and SAR. Using TAU, we capture the 
elapsed time of computing, communication, and provenance 
operations. However, since TAU does not provide memory, CPU and 
I/O statistics, we get those from SAR.  

The integration of Chiron with PerfMetricEval is based on inserting 
an invocation of PerfMetricEval component (after the execution of 
each activation) to gather fine-grained performance information from 
TAU and SAR, insert this data in the provenance database and then 
convert it into TAU files (profiles for each computing node, e.g. 
profile.0.x.0 for node x). The generated TAU files serve as input for 
TAU to plot, for instance, 3D graphs using ParaProf [11]. 
PerfMetricEval execution flow is presented in Figure 1. In 
https://github.com/hpcdb/PerfMetricEval, the component is available 
for download with explanations on how to configure a database and 
invoke Chiron with PerfMetricEval. 

 

Figure 1. The PerfMetricEval execution flow 

After the execution of each activation, Chiron invokes the 
PerfMetricEval component that identifies the elapsed time of the 
activation and invokes SAR to gather resource consumption 
information related to the corresponding activation. For each metric, 
it is created a new file and stored in the workflow workspace. By 
creating those files, PerfMetricEval is able to parse them, extract 
performance information, and asynchronously load it into the 
provenance database.  

After loading the performance and resource consumption data into 
the same database, the PerfMetricEval component provides a feature 
to query the data relevant to the user-defined parameters for 
performance and resource consumption analysis by executing 
standard SQL queries made by users. After querying the database and 
gathering the results, the PerfMetricEval provides a component to 
generate a file in TAU format to profile the execution. The TAU 
visualization tool (paraprof command) graphically displays the 
generated files. Since the used format is compatible with this code-
profiling tool, it enables the creation of images as bar graphs, 3D 
meshes and scatter charts, all interactive and with customization 
capabilities inherent to TAU. This integration of PerfMetricEval and 
Chiron enables in-depth analysis graphs generated within seconds 
and support decision-making by users at runtime.  

We use the well-known scientific workflow Montage [19], presented 
in Figure 2, from the astronomy domain as the case study of 
PerfMetricEval. A basic analysis assessment is the workflow 
computing time in each machine. One simple SQL query can sum the 
actual computing time, the time spent with communication and the 
time needed for storing provenance for each activation and group by 
each used machine. Based on these queries, we register that the 
experimental results refer to a workflow execution of 17 hours in a 
SGI Altix ICE 8200 at NACAD/COPPE/UFRJ with four machines 
2x Quad Core Intel Xeon X5355 2.66 GHz (32 cores). The Montage 
execution consumed 1,585 input file images, which produced 17,503 
activations that were executed in parallel.  

 

Figure 2. Montage workflow 

Analyzing Figure 3 we can also state that only Machine0 loads 
provenance data in the database. It is due to the architectural 
characteristics of Chiron, where only the master node is responsible 
for storing provenance data in the database. This was an architectural 
choice for Chiron, since the slave nodes can process new activations 
without being locked by the provenance management. We can also 
state that Machine0 is the one that presents the highest 
communication overhead, because it integrates provenance data 
storage and all machines send provenance data to it using messages, 
increasing the communication cost for Machine0. 

 

Figure 3. The computing time of each machine 

Another important analysis considers activity average resource 
consumption per machine. Besides, users need to relate the resource 

SAR and TAU

PerfMetricEval

files extracted with 
SAR and TAUProvenance 

Database

PerfMetricEval

Profile files in TAU’s format
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consumption and the domain-specific data. Domain scientists 
commonly have a fairly good execution time estimate for a specific 
activation (based on their experience and previous executions, all 
registered in the provenance database). Using Chiron + 
PerfMetricEval they are able to check if the real activation execution 
time or resource consumption meets the estimate. If the real 
execution time is considerably higher than the estimate, they are able 
to identify an anomalous behavior with the corresponding domain 
files and parameter data of that particular anomaly. For example, it is 
well known for Montage users that the image region of interest can 
impact the performance and resource consumption of workflow 
activations. Thus, users often need to analyze the behavior of a 
specific subset of the input data. In this case, the image region of 
interest can be defined by setting the domain attributes CRPIX1 and 
CRPIX2 (which values are also loaded from data files to the 
provenance database) that represent the pixels that define the region 
of interest. In this small scale of Montage workflow execution with 
Chiron, we observed a generation of 10,647 files. Finding which file 
has the region of interest with the anomalous behavior is very error 
prone when the performance data is separated from the workflow 
execution data and domain data. With the data integration, one query 
can retrieve the average memory consumption, the average memory 
used, the average CPU usage, the average CPU usage for one 
operational system, the average amount of disk blocks read/write, etc. 
All these data are associated with the domain attributes CRPIX1 and 
CRPIX2 and their corresponding FITS file ids. With the result of this 
query, the domain user can monitor the performance of activations 
for building the mosaic (Create Mosaic), limited to only one specific 
image region to check if there is an anomaly in the execution or on 
the data file contents. The data extracted from these queries allowed 
us to generate several TAU graphs. In Figure 4 we see the CPU usage 
per machine when executing activations where 100 < CRPIX1 < 150 
and 50 < CRPIX2 < 80. Since Chiron considers the CPU usage on its 
scheduling algorithm, we can state that there is a load balancing 
among the machines from the CPU usage perspective, i.e., all 
machines present an equivalent CPU use, considering the metrics idle 
(in light blue), iowait (dark blue), sys (green), and user (red). 
However, the same behavior is not found when we consider both 
memory and disk usage statistics. 

 

Figure 4. The CPU statistics for activations executed 

4. CONCLUSIONS AND FINAL REMARKS 

Performing analytical queries in workflows in distributed 
environments is an open, yet important, issue. It is fundamental to 
follow the status of the workflow execution, especially when they 
execute for weeks or even months. To be aware of the bottlenecks, 
resource consumption, and other performance issues is essential. 

Most SWfMS already provide some level of monitoring capabilities. 
However, their monitoring mechanisms are limited to following the 
amount of activations executed, the volume of data transferred, the 
average execution time of activities, etc. In this paper, we provided 
an important opportunity to understand the behavior of the data 
derivation based on the performance and resource consumption 
metrics. When performance data and resource consumption data are 
not related to domain data, users may not see that a certain data value 
is presenting an anomalous behavior.  

This paper proposes an approach that integrates provenance data, 
domain data, performance information and resource consumption 
information in the same integrated database. To achieve this, we 
introduce PerfMetricEval, a component for capturing performance 
and resource consumption data using specialized tools such as SAR 
and TAU. We integrated PerfMetricEval to Chiron SWMS. We 
evaluated the present approach by monitoring the Montage workflow 
and performing analytical queries that mix different types of data, 
thus leaving room for domain specialists and code developers to fine 
tune activities such as investigating input and output data for that 
particular activity execution when its execution is taking too long.  

Using the Montage workflow, we also noticed that the overhead is 
negligible when compared to the total time needed to execute the 
workflow without PerfMetricEval. In this experiment, it was around 
0.6% of the total workflow execution. Although the results are 
promising, we still have to evaluate Chiron + PerfMetricEval in large 
scale scientific experiments. Despite our component has been only 
integrated to Chiron SWfMS, we intend to adapt/integrate it to other 
SWfMS in the near future. The only restriction is that the SWfMS 
needs to store provenance in a database, like Pegasus and Swift/T do. 
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