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Abstract. Advanced learning technologies are reaching a new phase of their
evolution where they are finally entering mainstream educational contexts, with
persistent user bases. However, as AIED scales, it will need to follow recent
trends in service-oriented and ubiquitous computing: breaking AIED platforms
into distinct services that can be composed for different platforms (web, mobile,
etc.) and distributed across multiple systems.  This will represent a move from
learning platforms to an ecosystem of interacting learning tools. Such tools will
enable new opportunities for both user-adaptation and experimentation. Tradi-
tional macro-adaptation (problem selection) and step-based adaptation (hints
and feedback) will be extended by meta-adaptation (adaptive system selection)
and micro-adaptation (event-level optimization). The existence of persistent
and widely-used systems will also support new paradigms for experimentation
in education, allowing researchers to understand interactions and boundary
conditions for learning principles. New central research questions for the field
will also need to be answered due to these changes in the AIED landscape.

1 Introduction

Initial efforts to bring learning technology into schools faced hardware hurdles, such
as insufficient computing resources.  Later efforts encountered serious barriers related
to matching technology to teachers’ beliefs, pedagogy, and resource constraints.
While all of these barriers are still relevant, learning technology is endemic in higher
education and has made significant footholds in K-12 schools, with estimates of 25-
30% of science classes using technology as early as 2012 (Banilower, Smith, Weiss,
Malzahn, Campbell, & Weis, 2013).  Correspondingly, an influx of investment into
educational technology has occurred, with online learning doubling from a $50b in-
dustry to a $107b industry in only three years (Monsalve, 2014).

Future barriers will not be about getting learning technology into schools: they will
be about competing, integrating, and collaborating with technologies already in
schools.  This is not an idle speculation, as it is already occurring. In a recent multi-
year efficacy study to evaluate a major adaptive learning system, some teachers start-
ed using grant-purchased computers to use other math software as well (Craig, Hu,
Graesser, Bargagliotti, Sterbinsky, Cheney, & Okwumabua, 2013).  After working for
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many years to get teachers to use technology, the point may come where they are
using so many technologies that it is difficult to evaluate an intervention in isolation.

Some research-based artificial intelligence in education (AIED) technologies have
already grown significant user bases, with notable examples that include the Cogni-
tive Tutor (Ritter, Anderson, Koedinger, & Corbett, 2007), ALEKS (Falmagne, Al-
bert, Doble, Eppstein, & Hu, 2013), and ASSISTments (Heffernan, Turner, Lourenco,
Macasek, Nuzzo-Jones, & Koedinger, 2006). Traditionally non-adaptive systems
with large user bases, such as Khan Academy and EdX, have also started to add basic
adaptive learning and other intelligent features (Khan Academy, 2015; Siemens,
2013).

Large-scale online platforms are not just the future of learning, but they are also
the future of research. Traditional AIED studies have been limited to dozens to hun-
dreds of participants, sometimes just for a single session. While such studies will
remain important for isolating new learning principles and collecting rich subject data
(e.g., biometrics), large-scale platforms could be used to run continuously-randomized
trials across thousands of participants that vary dozens or even hundreds of parame-
ters (Beck and Mostow 2006; Liu, Mandel, Brunskill, & Popovic, 2014).  Even for
AIED work not based on such platforms, it is increasingly feasible to “plug in” to
another system, with certain systems serving as active testbeds for 3rd-party experi-
ments (e.g., ASSISTments and EdX).

The difference is qualitative: rather than being limited to exploring a handful of
factors independently, it will be possible to explore the relative importance of differ-
ent learning principles in different contexts and combinations.  In many respects, this
means not just a change to the systems, but to the kinds of scientific questions that can
and will be studied. These opportunities raise new research problems for the field of
AIED. A few areas related areas will reshape educational research: Distributed and
Ubiquitous Intelligent Tutoring Systems (ITS), Four-Loop User Adaptation, AI-
Controlled Experimental Sampling, and Semantic Messaging. Some new frontiers in
each of these areas will be discussed.

2 Distributed and Ubiquitous AIED

As implied by the title, AIED technologies are approaching a juncture where many
systems will be splitting up into an ecosystem of reusable infrastructure and plat-
forms. The next generation of services will be composed of these services, which may
be hosted across many different servers or institutions. More specifically, we may be
reaching the end of the traditional four-component ITS architecture with four mod-
ules: Domain, Pedagogy, Student, and Communication (Woolf, 2010).  While the
functions of all these modules will still be necessary, there is no reason to think that
any given ITS must contain all these components, in the sense of building them, con-
trolling them, or owning them.  The future for ITS may be to blow them up so that
each piece can be used as a web-service for many different learning systems.

With respect to other online technologies, learning technology is already behind.
On even a basic blog site, a user can often log in using one of five services (e.g.,
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Google, Facebook), view adaptively-selected ads delivered by cloud-based web ser-
vices that track users across multiple sites, embed media from anywhere on the inter-
net, and meaningfully interact with the site on almost any device (mobiles, tablets,
PC).  In short, most web applications integrate and interact with many other web ser-
vices, allowing them to be rapidly designed with robust functionality and data that no
single application would be able to develop and maintain.

From the standpoint of AIED, moving in this direction is an existential necessity.
Without pooling capabilities or sharing components, serious academic research into
educational technologies may be boxed out or surpassed by the capabilities of off-the-
shelf systems, many of which will have closed architectures. Unfortunately, while
industry research can offer powerful results, competing pressures can lead to under-
reporting: publishing research is costly, time-consuming, and can risk disclosing trade
secrets or unfavorable empirical findings. While some companies make the invest-
ment to generalize their research, many others do not.  By comparison, academic
institutions and research-active commercial systems should be motivated to share and
combine technologies to build more effective and widely-used learning technology.
This model of collaborative component design stands alone in making platforms that
co-exist with major commercial endeavors, such as web-browsers (FireFox), operat-
ing systems (Linux), and statistical packages (R; R Core Team, 2013). Moreover,
service-oriented computing allows for a mixture of free research development and
commercial licensing of the same underlying technologies.

The benefits of moving toward service-oriented AIED will be substantial.  First,
they should enable AIED research to deeply specialize, while remaining widely appli-
cable due to the ability to plug in to other platforms with large and sustained user
bases. In such an ecosystem, user adaptation will be free to expand beyond the ca-
nonical inner loop and outer loop model (VanLehn, 2006). Composing and coordi-
nating specialized AIED services will also demand greater standardization and focus
on data sharing between systems.  While this process may be painful initially, stand-
ards for integrating data across multiple systems would enable the development of
powerful adaptation, analytics, and reporting functionality that would greatly reduce
barriers for developing AIED technology and studying its effects on learners.

3 Four-Loops: Above Outer Loops and Under Inner Loops

One implication of scaling up AIED and moving beyond the standard four-component
ITS model is that adaptation to users may become prevalent at grain sizes larger and
smaller than traditional ITS. VanLehn (2006) framed the adaption from tutoring sys-
tems as consisting of an outer loop (selecting problems) and an inner loop (providing
help and feedback on specific problem steps). These are often referred to as “macro-
adaptivity” and “step-based adaptivity.” However, recent developments have shown
the first steps toward “meta-adaptivity,” where the system adapts to the user by shift-
ing the learner to an entirely different ITS system (which may then adapt to the user
differently). Likewise, research on “micro-adaptivity” has looked at the benefits for
using data to fine-tune interactions below the problem step level (e.g., keystroke-level
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inputs, emotion detection, presentation modes or timing of feedback). This implies a
four-loop model for user adaptation, as shown in Figure 1.

Fig. 1. Four-Loop User Adaptation

3.1 Meta-Adaptation: Handoffs Between Systems

Meta-adaptation has only become possible recently, due to increasing use and maturi-
ty of AIED technology. In the past, learning technologies such as ITS were trapped in
sandboxes with no interaction.  Due to service-oriented approaches, systems have
taken the first steps toward real-time handoffs of users between systems. For example,
in the recent Office of Naval Research STEM Grand Challenge, two out of four teams
integrated multiple established adaptive learning systems: Wayang Outpost with AS-
SISTments (Arroyo, Woolf, & Beal, 2006; Heffernan et al., 2006) and AutoTutor
with ALEKS (Nye, Windsor, Pavlik, Olney, Hajeer, Graesser, & Hu, in press).  Other
integration efforts are also underway as part of the Army Research Lab (ARL) Gener-
alized Intelligent Framework for Tutoring (GIFT) architecture, which is built to inte-
grate external systems (Sottilare, Goldberg, Brawner, & Holden, 2012) and version of
AutoTutor has also been integrated with GIFT.

These initial integrations represent the first steps toward meta-adaptation: transfer-
ring the learner between different systems based on their needs and performance.
This type of adaptation would allow learners to benefit from the complementary
strengths of multiple systems. For example, learners that benefit most from animated
agents might be sent to systems such agents (i.e., trait-based adaptation).  Alternative-
ly, different types of learning impasses or knowledge deficiencies may respond best to
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learning activities in different systems (i.e., state-based adaptation). One problem that
this approach might mitigate is the issue of wheel spinning, where an adaptive system
detects that it cannot serve the learner’s current needs (Beck & Gong, 2013). Meta-
adaptation might also mean referring the learner to a human instructor, tutor, or peer.
In general, meta-adaptation would focus on passing students and knowledge between
different adaptive learning contexts (both AI-based and human).

Meta-adaptation is the maximum possible grain size, which makes it somewhat dif-
ferent from standard adaptation because users are transferred to an entirely different
system. This type of adaptation likely requires either distributed adaptation or bro-
kered adaptation.  Distributed adaptation would involve individual systems deciding
when to refer a learner to a different system and possibly trusting the other system to
transfer the student back when appropriate. This would be analogous to doctors in a
hospital, who rely on networks of specialists who share charts and know enough to
make an appropriate referral, but may use their own judgment about when and how
they make referrals. On the converse, brokered adaptation would require a new type
of service whose purpose is to monitor student learning across all systems (i.e., a stu-
dent model integrator) and make suggestions for appropriate handoffs. This service
would be consulted by each participating AIED system, probably as part of their outer
loop. In the long term, such a broker may be an important service, because it could
help optimize handoffs and ensure that students are transferred appropriately. Such
brokers might also play a role for learners to manage their data and privacy settings.
Other models for coordinating handoffs might also emerge over time.

3.2 Micro-Adaptation: Data-Optimization and Event Streams

In addition to adaptivity at the largest grain size (selecting systems), research on the
smallest grain sizes (micro-adaptation) is also an important future area. Micro-
adaptation involves optimizing for and responding to the smallest level of interac-
tions, even those that are not associated with a traditional user input on a problem
step. For anything but simple experiments, this type of optimization and adaptation is
too fine-grained and labor-intensive to perform by hand at scale, meaning that it will
need to rely on data-driven optimizations such as reinforcement learning. Chi, Jordan
and VanLehn (2014) used reinforcement learning to optimize dialog-based ITS inter-
actions in the Cordillera system for Physics, which showed potential gains of up to 1σ
over poorly-optimized dialog or no dialog. Dragon Box has taken a related approach
by optimizing for low-level user interface and click-level data, by applying trace-
based models to find efficient paths for learning behavior and associated system re-
sponses (Andersen, Gulwani, & Popovic, 2013).

These lines of research represent the tip of the iceberg for opportunities for micro-
adaptation. A variety of low-level data streams have not yet been leveraged.  Contin-
uous sensor data, such as emotion sensors or speech input waveforms, may present
rich opportunities for exploring fine-grained user-adaptation based on algorithmic
exploration of possible response patterns. Low-level user interface optimization may
also help improve learning, such as human-computer interaction design or keystroke-
level events or mouse-over actions (i.e., self-optimizing interfaces).
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Both the strength and the drawback of micro-optimization is that it is will tightly fit
the specific user interface or content (even down to specific words in text descrip-
tions). Optimizing for a particular presentation of a problem can lead to learning effi-
ciency gains by emphasizing parts that are salient to learning from that specific case,
while skipping or downplaying other features. However, micro-level optimization
will likely suffer from versioning issues (e.g., changes to small problem elements
potentially invalidating prior data and policies) and also transferability issues (e.g., an
optimized case not transferring well from a desktop to a mobile context). Solutions to
weight the relevance of prior data will be required to address issues related to altered
problems or new contexts (e.g., mobile devices, classroom vs. home, different cultural
contexts).

4 AI-Controlled Experimental Sampling

Techniques for micro-adaptation may also reshape experimental methods. Artificial
intelligence can play a major role in the experimental process itself, which is a type of
efficient search problem. Educational data mining research has already started look-
ing at dynamically assigning subjects to different learning conditions based on multi-
armed bandit models (Liu, Mandel, Brunskill, & Popovic, 2014).  Multi-armed bandit
models assume that each treatment condition is like a slot machine with different
payout distributions (e.g., student learning gains). These models are common in medi-
cal research, where it is important to stop treatments that show harms or a consistent
lack of benefit.  They allow building intelligent systems that explore new strategies,
while pruning ineffective ones.

The field is only taking its first baby steps for these types of experimental designs.
Fundamental research is needed to frame and solve efficient-search problems present
in AIED experiments. Based on varying different parameters and interactions in the
learning experience, learning environments can search for interpretable models that
predict learning gains. In the long term, models for automated experimentation may
even allow comparing the effectiveness of different services or content modules, by
randomly selecting them from open repositories of content.

The most difficult aspect of this problem is likely to be the interpretability.  While
multi-arm bandit models can be calibrated to offer clear statistical significance levels
between conditions, models that traverse the pedagogical strategy space are often too
granular to allow for much generalization.  For example, some popular models for
large learning environment focus on efficient paths or traces of learning behavior and
associated system responses (Andersen, Gulwani, & Popovic, 2013).  Unfortunately,
these models are often not easily generalizable: they may capture issues tied to the
specific system or may tailor instruction to specific problems so tightly that it is diffi-
cult to infer theoretical implications (Chi, Jordan & VanLehn, 2014).

New techniques are needed that can automatically explore the space of pedagogical
designs, but that can also output interpretable statistics that are grounded in theories
and concepts that can be compared across systems.  This is a serious challenge that
probably lacks a general algorithmic solution. Instead, such mappings will probably
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be determined by the constraints of learning and educational processes. A second
major challenge is the issue of integrating expert knowledge with statistically-
sampled information. Commonly, expert knowledge is used to initially design a sys-
tem (e.g., human-defined knowledge prerequisites), which is later replaced by a statis-
tically-inferred model after enough data is collected. However, in an ideal world,
these types of heterogeneous data would be gracefully integrated (e.g., treating expert
knowledge as Bayesian prior weights). Future research in AIED will need to identify
where this sort of expert/statistical hybrid modeling is needed, and match these prob-
lems with techniques from fields of AI and data modeling that specialize in these
issues. Ultimately, a goal of this work should be to blur the lines between theory and
practice by building systems that can both report and consume theoretically-relevant
findings.

5 Semantic Messaging: Sharing Components and Data

To share technology effectively, AIED must move toward open standards for sharing
data both after-the-fact (i.e., repositories) and also in real-time (i.e., plug-in architec-
tures).  The first steps in these directions have already been taken.  Two notable data
repository projects with strong AIED roots exist: the Pittsburg Science for Learning
Center (PSLC) DataShop (Koedinger, Baker, Cunningham, Skogsholm, Leber, &
Stamper, 2010) and the Advanced Distributed Learning (ADL) xAPI standards for
messaging and learning record stores (Murray & Silvers, 2013). The IMS Global
Specifications are also a move in this direction (IMS Global, 2015).

Due to solid protocols in messaging technologies, the technical process of ex-
changing data between systems at runtime is not onerous.  The larger issue is for a
receiving system to actually apply that data usefully (e.g., understand what it means).
Hidden beneath this issue is a complex ontology alignment problem.  In short, each
learning technology frames its experiences differently.  When these experiences and
events are sent off to some other system, the designers of each system need to agree
about what different semantics mean.  For example, one system may say a student has
“Completed” an exercise if they viewed it.  Another might only mark it as “Complet-
ed” if the learner achieved a passing grade on it. These have very different practical
implications. Likewise, the subparts of a complex activity may be segmented differ-
ently (e.g., different theories about the number of academically-relevant emotions).
While efforts have been made to work toward standards, this seldom solves the prob-
lem: the issue with standards is that there tends to be so many of them.

So then, ontology development must play a key role for the future of ITS interop-
erability.  There are multiple ways that this might occur.  Assuming the number of
standards is countable, it would be sufficient to have an occasional up-front invest-
ment to develop and update explicit mappings between ontologies by hand.  While
this is low-tech, it works when the number of terms is fairly small.  For larger ontolo-
gies of AIED behavior and events, it may be possible to align ontologies by applying
both coding systems to a shared task (e.g., build benchmark tasks that are then marked
up with messages derived from that ontology).
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By collecting data on messages from benchmark tasks, it may be possible to auto-
mate much of the alignment between ontologies, particularly for key aspects such as
assessment. Research on Semantic Web technologies is also very active, and may
offer other effective solutions to issues of ontology matching and alignment (Shvaiko
& Euzenat, 2013). The final approach is to simply live without standards and allow
the growth of a folksonomy: common terms that are frequently used. These terms can
then become suggested labels, with tools that make their use more convenient and
prevalent.  The one approach that should not be taken is to try to develop a super-
ontology or new top-down standard for the types of information that learning systems
communicate. While there are roles for such ontologies, top-down ontologies have
never achieved much support within research or software development communities.

6 Closing Remarks

The future for AIED should be a bright one: expansion of learning software into
schools will ultimately result in unprecedented diversity and size of user bases. The
areas noted in this paper are only the first wave for new AIED opportunities. In time,
it will be possible to explore entirely new classes of questions, such as mapping out
continuous, multivariate functional relationships between student factors and peda-
gogical effectiveness of certain behaviors. Systems such as personal learning lockers
for data would allow for longitudinal study of learning over time, either in real-time
or retrospectively. A major game-changer for future learning research will probably
be data ownership and privacy issues: data will exist, but researchers will need to
foster best-practices for data sharing, protection, and archiving.

With this wealth of data, researchers will be able to connect learning to other rela-
tionships and patterns from less traditional data sources. In 20 years, the range of
commonly-available sensor data will be dizzying: geolocation, haptic/acceleration,
camera, microphone, thermal imaging, social ties, and even Internet-of-Things devic-
es such as smart thermostats or refrigerators. Moreover, the ecosystem of applications
leveraging this data will likewise be more mature: your phone might be able to tell a
student not only that their parents left them a voicemail, but that they sounded angry.
This event might then be correlated with a recent report card, and the consequences of
the interaction might be analyzed. Learning is a central facet of the human experience,
cutting across nearly every part of life. To that end, as life-long learning becomes the
norm, the relationship between life and learning will become increasingly important.
By consuming and being consumed in a distributed and service-oriented world, AIED
will be able to play a major role in shaping both education and society.
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