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Abstract

Generative models, while not new, have taken
the deep learning field by storm. However,
the widely used training methods have not
exploited the substantial statistical literature
concerning parametric distributional testing.
Having sound theoretical foundations, these
goodness-of-fit tests enable parts of the black
box to be stripped away. In this paper we use
the Shapiro-Wilk and propose a new multivari-
ate generalization of Shapiro-Wilk to respec-
tively test for univariate and multivariate nor-
mality of the code layer of a generative autoen-
coder. By replacing the discriminator in tradi-
tional deep models with the hypothesis tests,
we gain several advantages: objectively evalu-
ate whether the encoder is actually embedding
data onto a normal manifold, accurately define
when convergence happens, explicitly balance
between reconstruction and encoding training.
Not only does our method produce competitive
results, but it does so in a fraction of the time.
We highlight the fact that the hypothesis tests
used in our model asymptotically lead to the
same solution of the L2-Wasserstein distance
metrics used by several generative models to-
day.

1 INTRODUCTION

Recently a large variety of generative models have been
proposed such as generative adversarial networks and
generative autoencoders. A widely-used way to construct
such a network requires training of a generator and a
discriminator. There are great needs to understand the
statistical foundation of these generative models. On the
other hand, there exists substantial statistical literature

concerning parametric distributional hypothesis testing
with a solid theoretical base. One particular group of deep
generative models which, we show in this study, can ben-
efit from hypothesis testing is the generative autoencoder
(GAE). The objective of these models is to reconstruct
the input as accurately as possible, while constraining
the code layer to a specified distribution, usually normal.
Often times once training has ended, this code layer dis-
tribution does not in fact match the required distribution.
The spirit of these models is to embed data into a distribu-
tion that matches the prior to enable sampling, and thus
it is of utmost importance we have ways to assess the
quality of the fit. In other words, if the embedded distri-
bution does not match the prior that is used to sample and
generate instances, the method does not work in theory.

In this paper we propose to use goodness-of-fit hypothesis
tests of normality on the code layer of an autoencoder as
a new type of critic in both the univariate and multivariate
case. Doing so leads to an adversary-free optimization
problem. These hypothesis tests provide a more direct
way to measure if the data representation, the latent code
layer, matches a pre-specified distribution. More specifi-
cally, we test for normality using a composite test:

H0 : X ∈ G vs H1 : X 6∈ G (1)

where G = {π : π = N (µ,Σ),−∞ < µ <
∞,Σ is positive semi-definite (p.s.d)}. Many tests for
comparing two distributions can be used in our model1.
We specifically focus on the well studied univariate
Shapiro-Wilk test (Shapiro and Wilk, 1965) and propose
a new multivariate generalization of the Shapiro-Wilk test
to demonstrate the effectiveness of the new method. We
further highlight a link between these methods and those
based on the Wasserstein distance by drawing attention to
the fact that the Shapiro-Wilk test and the L2-Wasserstein
distance lead to the same asymptotic solution.

The remainder of the paper follows as such. Section 2
covers existing work that is most closely related to our
method. In section 3 we present the basics of hypothe-



sis testing followed by a recap of the Shapiro-Wilk test
and propose its multivariate generalization. Section 4
describes the new method in detail, followed by theoret-
ical analysis in Section 5 where we explore the linkage
between the hypothesis tests and several distance-based
methods of training. Section 6 discusses the empirical re-
sults. Section 7 presents a discussion of the new method,
followed by a conclusion section 8.

Notation. Boldface capital letters, e.g., Y, denote ma-
trices while boldface lower case, e.g., y, denote vectors.
Scalar values are denoted by lower case letters and no
font change, such as yi. Upper case without font change
denote test statistics. Calligraphic capital letters, e.g., Y ,
denote sets. Probability density functions (PDF) are rep-
resented as p(z), while cumulative distribution functions
are the upper case version P (z). Any modifications to
this are explained in their respective context.

2 RELATED WORK

The original generative adversarial network (GAN)
(Goodfellow et al., 2014) sparked a surge in generative
models, parameterized by neural networks, that has yet
to abate. As this paper is focused on autoencoders, GAN
can be thought of as just the decoder part of a regular au-
toencoder. This decoder, G(·), endeavors to learn a map-
ping from the sampled prior, p(z), to the data distribution
p(x). An auxillary network called the discriminator,D(·),
serves to discern how close the generated data distribu-
tion, pg(z), is to the true data distribution p(x). Training
a GAN amounts to the widely known two-player minimax
game minG maxD V (D,G) = Ex∼pd(x)[logD(x)] +
Ez∼p(z)[log(1−D(G(z)))].

Using an autoencoder styled network to train a generative
model is not new; the main goal being to understand the
code layer distribution given data, q(z|x), while minimiz-
ing a reconstruction error. These GAEs tend to fall into
several classes dictated by their training and generating
mechanisms, and include adversarial methods, variational
methods, MCMC based procedures, and the most closely
related to our work, statistical hypothesis tests.

The adversarial autoencoder (AAE) (Makhzani et al.,
2015) is a modification of the original GAN in which
an encoder network is included, and where the discrim-
inator is shifted from the decoder network to the latent
code space. The encoder creates the encoding distribution
q(z|x) which defines an aggregated posterior distribution
q(z) =

∫
x
q(z|x)pdata(x)dx where pdata(x) is the in-

put data distribution. As in GAN, training the AAE, in
part, amounts to a minimax game between a generator
network, G(·), and a discriminator network, D(·) where
the objective is to have q(z) match p(z), the specified

prior distribution defined over the latent space Z . The
decoder maps back to data space X giving p(x|z). A
reconstruction loss is minimizes as usual.

However, aside from possible mode collapse issues, there
are questions regarding how the generator and discrimina-
tor should be balanced during training, the issue of when
to stop still has not been satisfactorily addressed. Within
the adversarially trained autoencoders it is possible to
vary the loss function used in the discriminator. One pos-
sible change is to use a Wasserstein loss (Arjovsky et al.,
2017) (WGAN) which alieviates the vanishing gradient
problem. Improvements to the WGAN include the ad-
dition of a gradient penalty (Gulrajani et al., 2017). In
(Tolstikhin et al., 2017) the authors modify the AAE to
use a Wasserstein distance between the target distribution
and the model distribution.

Variational autoencoder (VAE) methods include the work
of (Kingma and Welling, 2013; Rezende et al., 2014;
Mnih and Gregor, 2014). Despite being some of the most
successful methods for generation, they have been found
to produce unrealistic or blurry samples (Dosovitskiy and
Brox, 2016). The VAE model makes use of a random
decoder mapping p(x|z). Moreover, there is no auxillery
network needed for discriminaion. A third line of thought
comes from modification of the traditional autoencoder
paradigm so as to recover the density using MCMC. These
include (Rifai et al., 2012; Bengio et al., 2013b, 2014)
and attempt to use contraction operators, or denoising
criteria in order to generate a Markov chain by repeated
perturbations during the encoding phase. However, it
has been a challenge to ensure adequate mixing in that
process (Bengio et al., 2013a).

To the best of our knowledge there is only one method,
aside from our work, that falls into the class of statistical
hypothesis tests for training generative networks. It is
based on the maximum mean discrepancy (MMD) (Gret-
ton et al., 2007, 2012). Two works utilizing the MMD
for training came out simultaneously (Li et al., 2015) and
(Dziugaite et al., 2015), each taking a different approach.
Li et al. used the MMD on features learned from the
autoencoder to shape the distribution of the output layer
of the network to create a generative moment matching
network (GMMN). On the other hand, Dziugaite et al. ap-
plied the MMD to directly compare the generated against
true data. This latter method is the closest to our work.
When using the MMD, the bandwidth parameter in the
kernel plays a crucial role in determining the statistical
efficiency of MMD, and it is still an open problem how to
find its optimal value. Moreover, using kernels in MMD
requires that the computation of the objective function
scales quadratically with the amount of data. This is due
to the requirement of a linear increase in sample size as



dimensionality increases, and is necessary to ensure the
power, covered next, goes to 1 as n → ∞. In (Li et al.,
2017) the authors propose to mitigate the bandwidth prob-
lem by using adversarial kernel learning to replace the
fixed Gaussian kernel in the GMMN, while in (Sutherland
et al., 2016) the authors propose to maximize the power
of the statistical test based on the MMD.

3 STATISTICAL HYPOTHESIS TESTS

Distinguishing between two distributions is often carried
out in the form of a hypothesis test. Suppose θ is a quan-
tity of interest, the format of a hypothesis test between
the null, H0, and the alternative, H1, is: H0 : θ ∈ Θ0

vs H1 : θ ∈ Θc
0. To understand a hypothesis test the

concept of statistical power is required. Two types of
errors associated with hypothesis testing exist: type I, and
type II. A type I error occurs when the null is rejected
when it is true; the rate of this is called α. A type II error
occurs when the null is not rejected when the alternative
is true, its rate defined as β. Power is defined to be 1− β.
It is not possible to control both type I and type II errors;
therefore it is necessary to pre-specify the α one is willing
to tolerate. The more powerful the test, the better. By
utilizing information about the null distribution, a test
statistic can be computed such that, for a given α, if its
value is unlikely to be observed, then H0 is rejected in
favor of the alternative hypothesis’ conclusion. This dis-
cerning threshold is called the critical value, and comes
from the null distribution of the test statistic. When this
distribution is known, a p-value, which is the observed sig-
nificance level of the test, can be calculated. The p-value
is bounded between 0 and 1, and can be interpretted as
the probability the test statistic being at least as extreme
as the test statistic calculated on the sample under H0.
The p-value affords the ability for different users to judge
whether to reject or fail to reject H0.

Testing for goodness-of-fit takes up the task of testing
whether the underlying data distribution belongs to some
given family of distribution functions. One such exam-
ple is determining if a sample x1, ..., xn is normally dis-
tributed or not, for which the hypothesis test is denoted
in Eq.(1). For a more thorough discussion of hypothesis
testing and goodness-of-fit see (Casella and Berger, 2002;
Lehmann and Romano, 2006).

Hypothesis testing techniques fall into several sub-
categoriess. (Seier, 2002) describes these sub-categories
as those tests belonging to: skewness and kurtosis tests,
empirical distribution function tests, regression and cor-
relation tests, and others. Hypothesis tests can also be
split into parametric vs non-parametric. Parametric hy-
pothesis tests make assumptions about the underlying
distribution while non-parametric hypothesis tests (also

called distribution-free tests) do not. In this paper we
focus on a test containing a parametric null hypothesis.

3.1 UNIVARIATE: SHAPIRO-WILK TEST

A goodness-of-fit test for normality is the Shapiro-Wilk
(SW) test. In a Monte Carlo simulation by (Razali et al.,
2011) the authors compared the power of the SW test to
several non-parametric tests on various alternative distri-
butions concluding it was the most powerful. The SW test
is a composite parametric test to determine if a univari-
ate data sample comes from a normal distribution. The
original SW test was limited to a sample size between 3
and 50, but (Royston, 1982) extended the approach to use
up to 2000 samples. The SW original test statistic, W , is
calculated as

W =
(
∑n
i=i aix(i))

2∑n
i=1(xi − x̄)2

. (2)

In the Eq.(2) x(i) represents the ith ordered statistic of the
sample. The constants ai are given by (a1, a2, ..., an) =

mTV−1

(mTV−1V−1m)1/2
, where m is a vector consisting of the

n expected values of the order statistics of independent
and identically distributed random variables samples from
the standard normal distribution. V is the covariance ma-
trix of those order statistics. The most extreme order
statistics are weighted the largest, and decrease when ap-
proaching the median. This property of the SW test will
be important in later sections. Calculation of the constants
ai can be computationally demanding, prompting Roys-
ton in (Royston, 1992) to approximate these coefficients.
He found that for 12 ≤ n ≤ 2000 a two-parameter log-
normal distribution fitted the upper half of the empirical
distribution of 1−W . The associated p-value for W is
referred to the upper tail ofN (0, 1). Using the hypothesis
test defined in Eq.(1), the SW test fails to reject H0 if
W > Wα, or the p-value is larger than α, where Wα is
the critical value based on the chosen confidence level.
Three analytical properties that will become useful in the
later sections, originally presented as lemmas in (Shapiro
and Wilk, 1965), are cited as follows:

Lemma 3.1. W is scale and origin invariant.

Lemma 3.2. W has a maximum value of 1

Lemma 3.3. The minimum value of W is na21
(n−1)

As our approach makes use of this test as a new loss
function, one must be cognizant of its computational com-
plexity. Enjoying the benefits of a strong test at the cost of
long run time may not be appealing. However, the ai are
calculated a single time prior to training and are stored.
The actual time complexity of the SW test during training
is O(nlog(n)).



3.2 A NEW MULTIVARIATE
GENERALIZATION OF SHAPIRO-WILK

Definition 3.1. (Multivariate Normal (Rao et al., 1973))
A d-dimensional random variable u, that is, a random
variable u taking values in Ed (Euclidean space of d-
dimensions) is said to have a d-variate normal distribution
Nd if and only if every linear function of u has a univari-
ate normal distribution.

In a review by (Mecklin and Mundfrom, 2005) the authors
noted more than 50 methods for testing multivariate nor-
mality. However, finding a multivariate test that is both
powerful, and has low time complexity proved challeng-
ing. This necessitated the creation of a new multivariate
hypothesis test that was able to make use of the strengths
of SW, and relies on a well-known characterization of the
multivariate normal (MVN) distribution.

Proposition 3.4. x ∼ Nd(µ,Σ) if and only if z =

Σ−
1
2 (x− µ) ∼ Nd(0, I).

Letting x̄ and S be respectively the sample mean and
covariance matrix, define S−

1
2 as the symmetric posi-

tive definite square root of the inverse of S. Therefore,
when x1,x2, ...,xn ∼ Nd(µ,Σ), then zi = S−

1
2 (xi −

x̄) ∀i = 1, ..., n should be approximatelyNd(0, I). Un-
der the assumption that observations are independent, and
writing zi = (zi1, zi2, ..., zid)

T , then zij ∼ N (0, 1) ap-
proximately for each j = 1, ..., d and i = 1, ..., n.

To test the null hypothesis that the sample x1,x2, ...,xn is
from Nd(µ,Σ) where µ and Σ are unknown we propose
to vectorize the entire Z matrix as zvec = vec(z) =
(z11, z12, ..., znd)

T , and then use the SW test statistic of
Eq.(2) on zvec. Under H0, W is expected to be close to
1. This multivariate generalization of the Shapiro-Wilk
test (MSW) does not require any corrections for multiple
testing, nor any simulation to calculate new critical values.
Furthermore, it inherits the same good power properties
while keeping the test complexity at O(ndlog(nd)).

3.3 SHAPIRO-WILK ASYMPTOTICS

For years after the original (Shapiro and Wilk, 1965)
paper, the distribution of W remained unknown. While
variations of the originalW statistic were proposed, it was
the modification by (De Wet et al., 1972) that produced
the first correlation normality test with known asymptotic
distribution. The de Wet-Venter statistic W ? is defined as

W ? =
∑
i

(
x(i) − x̄
sn

− Φ−1

[
i

(n+ 1)

])2

, (3)

where Φ−1(·) is the inverse normal cumulative density
function. In their paper it was shown that W ? converges

in distribution to

2n(1−W ?
1
2 )− an D−→ ξ, (4)

where ξ =
∑∞

3
y2i−1
i , {yi, i ≥ 1} is a sequence of inde-

pendent and identically distributed N (0, 1) random vari-

ables, and with an = 1
n+1

{∑n
i=1

j(1−j)
(φ{Φ−1(j)})2 − 3

2

}
,

where j = i
n+1 , and φ(·) is the standard normal den-

sity. (Verrill and Johnson, 1983; Fotopolous et al., 1984)
showed that the Shapiro-Francia (Shapiro and Francia,
1972) statistic W † and the de Wet-Venter statistic W ?

were asymptotically equivalent via convergence in prob-

ability n(W ?
1
2 −W †

1
2 )
P−→ 0. (Leslie et al., 1986) pro-

duced the final result connecting Shapiro-Wilk to Shapiro-

Francia showing that n(W
1
2 −W †

1
2 )
P−→ 0.

4 PROPOSED GENERATIVE MODEL

We propose to replace the discriminator neural network
with a goodness-of-fit hypothesis test; specifically the
Shapiro-Wilk hypothesis test, and its multivariate general-
ization. As the main idea here, maximizing the associated
test statistic forces the encoder to encode data to a distri-
bution (from which the decoder learns to generate data)
so that the null hypothesis is not rejected, hence allow-
ing q(z) to be indistinguishable from the true distribution
p(z). Lemma 3.2 gives a target value for maximization,
and from lemma 3.1 it can be seen that maximizing W to
W ≥ Wα results in the encoding distribution q(z|x) in-
distinguishable from the family G = {π : π = N (µ,Σ)}.
Constraining the network to map q(z|x) to a specific dis-
tribution in the Gaussian class, for instance N (0, I), as
is often done, is not necessary. It may present challenges
when generating data if the decoder is not robust to de-
viations from the prior, p(z). Our new model allows the
network to find the right q(z) = π? ∈ G = {π : π =
N (µ,Σ)} that minimizes the reconstruction loss without
requiring a specific prior as long as it is in the class. In
the univariate case, SW is directly applied to the encoded
data, and the decoder works off of this code layer. When
training is complete, (µ̂, Σ̂) are estimated using all data
and the decoder generates data from N (µ̂, Σ̂). In the
multivariate case, however, we include a whitening step
in the code layer, which is necessary in order to use the
proposed multivariate SW. In other words, let y be the
encoded data of k samples, and (ȳ,S) be the respective
sample mean and covariance, we whiten the encoded data
as S−

1
2 (y − ȳ). Then, Prop.3.4 allows the decoder to

work off samples coming from N (0, I). In our empirical
evaluation, we found that this whitening step also helped
when other hypothesis tests were used in the proposed
approach (see the supplement).



Now the presence of normality for q(z) can be directly
tested, i.e., cannot be rejected if W passes a critical value
Wα. The overall optimization problem that our neural
network solves is formulated as

min ||X− Fψ(Gθ(X))||22 s.t. W (Gθ(X)) > Wα, (5)

where Gθ(·) is the encoder, and Fψ(·) is the decoder, re-
spectively parameterized by θ and ψ. Using the mathemat-
ically equivalent multi-objective loss, we can also find the
solution G?θ, F

?
ψ = arg minGθ,Fψ ||X−Fψ(Gθ(X))||22−

λW (Gθ(X)) for some proper value of λ > 0 although
we propose an algorithm that directly solves Eq.(5).

4.1 OPTIMIZATION OF W

Eq.(5) is commonly optimized using a flavor of gradient
descent with mini-batches, e.g., Adam (Kingma and Ba,
2014) which is used in Alg.1. The following proposition
characterizes how to compute the gradient of W .

Proposition 4.1. Let k be the size of the mini-batch. For
any layer `, denote Y` = Θ`Y(`−1), where Y(`−1) is an
(n× k) matrix of arbitrary activation from layer (`− 1),
Y` is an (m× k) matrix of linear activation for layer `,
and Θ` is the (m× n) matrix of parameters connecting
the layers. Let y be the (mk × 1) ascendingly sorted vec-
torization of Y`. Then, y can be computed by Aθ where
A and θ are the re-organized Y`−1 and the vectorization
of Θ`. Specifically, A is an (mk×mn) matrix with each
row containing the relevant Y(`−1) data for a particular
node’s activation. The gradient of W can be computed by

∇θW =
2aTAθ

θTZθ
aTA

[
I− θθTZ

θTZθ

]
, (6)

where Z = A(I− J
mk )AT , I is mk-dimensional identity

matrix, and J is a (mk ×mk) matrix of ones.

Unlike the adversarial framework the hypothesis testing
model is straightforward to train. As shown in the pseudo-
code for this method in Alg.1, only the encoder part of
the GAE updates when H0 is rejected (by re-optimizing
Gθ to reach W > Wα or a p-value if available). When
whitening is used, and if W > Wα, the decoder can
generate new data by sampling with respect to N (0, I).
It must be reiterated that failure to reject does not imply
normality, however in practice this procedure works well.

4.2 INNER LOOP TERMINATION

Alg.1 follows a conditional alternating optimization pro-
cedure, or can also be referred to as a feasible direction
method. The outer loop seeks to minimize the reconstruc-
tion loss, whereas the inner loop evaluates the hypoth-
esis testing and identifies the updates of θ that satisfy:

Algorithm 1 Hypothesis Testing Autoencoder

Require: X=training data, N=number of iterations,
Wα=critical value, λ=regularization coefficient,
m=size of mini-batch > d = dimension of latent code
layer to be tested

1: Initialize: θ, ψ
2: for i = 0 to N do
3: Sample next mini-batch from training data Xm

4: (θ, ψ)← Adam(∇(θ,ψ)||Xm − Fψ(Gθ(Xm))||22)
5: Compute W (Gθ(Xm))
6: while W (Gθ(Xm)) ≤Wα do
7: Sample next mini-batch from training data Xm

8: θ ← Adam(∇(θ)(−λW (Gθ(Xm))))
9: Compute W (Gθ(Xm))

10: end while
11: end for
12: Estimate (µ̂d, Σ̂d) (Not necessary if whitened)

W > Wα, a constraint that implies failure to reject H0.
Note that the inner loop is activiated only when the con-
dition is not already met. A fundamental question is
whether this “while” loop will terminate given we solve
a highly non-convex optimization problem (ultimately,
whether we can find a θ such that the q(z) stays within
the Gaussian class). In (Bottou, 1991a) results were given
for a general non-convex setting and show that under
specific conditions the computation will converge. The
following theorem is cited from that paper for which the
proof can be found in (Bottou, 1991b).

Theorem 4.2. For any measure dP (z), if the cost
C(θ) = E(J(z, θ)) is differentiable up to the third deriva-
tives where J is an objective function to be optimized, with
bounded second and third derivatives, and if the following
assertions are true,

(i) ∀θ,E(H(θ)) = ∇θC(θ)

(ii)
∑∞
t=1 εt =∞, ∑∞

t=1 ε
2
t <∞

(iii) ∃A,B, ∀θ, E(H(θ)2) < A+BC(θ)

(iv) ∃Cmin, ∀θ, Cmin < C(θ)

then C(θt) converges with probability 1 and ∇θC(θt)
converges to 0 with probability 1.

In our case, W (θ) is C, thus H(θ)) ≡ ∇θW (θ), and εt
is the learning rate. The inner loop terminates according
to Thm.4.2 if its conditions are all satisfied (the detailed
proof is given in a supplement). Using the same argument
of (Bottou, 1991b) regarding the similarity of simulated
annealing, denoting qt(θ) the density of probability that
θt follows, by Thm.4.2 the support of qt(θ) converges to
the set of extrema of W (θ), i.e., θt → {θ|W (θ) = 1}



thus W (θt)→ 1. In fact, it is not necessary to train until
W (θ) = 1, so the procedure exits once W > Wα.

5 THEORETICAL EQUIVALENCY

There exists a link between a distance based method for
comparing the goodness-of-fit of two distributions and
hypothesis testing discovered in (del Barrio et al., 1999).
The general class of Wasserstein distances is studied in
(Villani, 2008). We recite the definition here.

Definition 5.1. (Wasserstein Distances) Let (χ, d) be a
Polish metric space, and let p ∈ [1,∞). For any two
probability measures µ, ν on χ, the Wasserstein distance
of order p between µ and ν is defined by

Wp(µ, ν) =

(
infπ∈Π(µ,ν)

∫
χ
d(x, y)pdπ(x, y)

) 1
p

= inf

{[
Ed(X,Y )p

] 1
p

, law(X) = µ, law(Y ) = ν

}
,

where Π(µ, ν) is the set of all joint probability measures.
When the Polish metric space under consideration is the
one-dimensional Euclidean space, W (µ, ν) = W2(µ, ν).

Of primary interest is the L2-Wasserstein distance. It is
possible to consider the distance between distributions
P1 and P2, defined by W(P1, P2) =

[ ∫ 1

0
(F−1

1 (t) −

F−1
2 (t))2dt

] 1
2

, where F−1
1 and F−1

2 are the quantile

functions of P1 and P2 defined to be F−1
i (t) = inf{s :

Fi(s) ≥ t} for i = 1, 2. The distance between a distri-
bution with cumulative distribution function (CDF) F ,
mean µ0 and standard deviation σ0, and the class of
all normal distributions can be written asW2(F,G′) =
inf{W2(F, π), π ∈ G′}, where G′ = {π : π =

Φ
(
x−µ
σ

)
,−∞ < µ <∞, σ > 0}.

By expressing a normal random variable with mean µ
and variance σ2 as F−1(p) = µ + σΦ−1(p), it can be

shown that W
2(F,G′)
σ2
0

= 1−

( ∫ 1
0

(F−1(t))Φ−1(t)dt

)2

σ2
0

. With
a random sample of data, x1, x2, ..., xn, with underlying
CDF F , defineRn = W2(Fn,G′)

S2
n

= 1− σ̂2

S2
n

, where σ̂n =∫ 1

0
F−1
n (t)Φ−1(t)dt and S2

n is the sample variance. Rn
can be utilized as a test statistic for testing the composite
null hypothesis that the data are normally distributed, and
it belongs to the class of minimum distance tests.

5.1 L2-WASSERSTEIN ASYMPTOTICS

To study the null asymptotics ofRn, assuming normality,
(del Barrio et al., 1999) used approximations of quantile
processes by Brownian bridges, B(t). Under normal-

ity del Barrio et al. show that there exist constants an
such that nRn − an

D−→
∫ 1

0
B̂2(t) − EB̂2(t)dt where

B̂ = (B−〈B,1〉1−〈B,Φ−1〉Φ−1

φ(Φ−1) . By applying principle com-
ponent decomposition, (del Barrio et al., 1999) obtains
the final result and is repeated here for clarity.
Theorem 5.1. Let {Xn}n be a sequence of i.i.d normal
random variables. Then

Rn − an D−→ −
3

2
+

∞∑
j=3

Y 2
j − 1

j
,

where {Yn}n is a sequence of i.i.d N (0, 1) random vari-

ables with an =
∫ n

(n+1)
1

(n+1)

t(1−t)
(φ(Φ−1(t)))2 dt

Cross referencing the asymptotics in Section 3.3, we find
the L2-Wasserstein normality test to be equivalent to the
Shapiro-Wilk test, thus attaining similar power properties.

6 EMPIRICAL EVALUATION

We evaluated our method, the hypothesis testing based
autoencoder using univariate Shapiro-Wilk (HTAE-SW),
and its multivariate generalization (HTAE-MSW) on the
standard MNIST digits dataset (LeCun et al., 1998), com-
paring it against the models believed to be the most closely
related: the adversarial autoencoder (Makhzani et al.,
2015) (AAE), the adversarial autoencoder with Wasser-
stein discriminator loss (WAAE), and autoencoder with
maximum mean discrepancy loss for the critic (MMDAE
as the model is not adversarial). We note that MMD
constitutes a true hypothesis test where an α-level test
may be performed by way of permutation or approxi-
mation tests. Using it as such would lead to the HTAE-
MMD model, a variant of our model. However, we used
it as others did by simply optimizing it for comparison
against the HTAE. To further evaluate the proposed ap-
proach, four additional goodness-of-fit tests were used
to replace the (M)SW test. A supplementary material
provided more results and discussion on Royston’s H
(Royston, 1983) (HTAE-R), Mardia’s Skewness (Mar-
dia, 1970) (HTAE-M), Malkovich-Afifi (Malkovich and
Afifi, 1973) (HTAE-MA), and Henze-Zirkler (Henze and
Zirkler, 1990) (HTAE-HZ). All models used ||x − x̂||22
for the reconstruction loss.

The network architecture was a fully connected class
conditional autoencoder with conditioning done at the
code layer. Two hidden layers are used between the in-
put and code layer, each consisting of 784 nodes. The
decoder contained the same structure. For AAE and
WAAE, discriminators contained 2 layers each of 784
nodes with their respective losses. Models requiring
sampling from p(z) used Gaussian priors of appropri-
ate dimension p(z) = Nd(0, I). Dropout (Srivastava



et al., 2014) was used with a “keep” probability equal
to 0.9. The Adam optimizer was used with β1 = 0.9,
β2 = 0.999, ε = 10−8, and η = 0.001. The hypothesis
test was computed at the mini-batch level consisting of
100 samples. The hypothesis tests require an α to be set.
While techinically a hyperparameter, it is the level of the
test with a clear meaning that training proceeds with re-
spect to this level of confidence. A more stringent α-level
tends to increase inner loop iterations. We found the com-
monly used α = 0.05 to work well. Two experiments
were conducted to guage the efficacy of the hypothesis
testing method: a univariate and multivariate test.

Several criteria were used to assess each model: recon-
struction loss, generative quality, normality constraints,
prior matching (where applicable), and run-time. We
generated images of hand-written digits, and monitored
the reconstruction loss during training. By considering
the hypothesis test statistic as an objective measure for
rejecting normality, the test statistic was monitored for
each iteration, and its corresponding p-value was plot-
ted, during training for all models. In particular, the null
hypothesis was rejected when the p-value was less than
0.05; larger p-values were preferred. Q-Q plots were
also provided. By plotting the theoretical quantiles of the
normal distribution against the empirical quantiles of the
data in a Q-Q plot, any departure from the straight line
provides evidence against normality. This can be used as
a diagnostic measure after training has completed. The
run times are included in Table 1.

6.1 UNIVARIATE: SHAPIRO-WILK

There was only a single node in the latent code layer in
the univariate case. Results from the univariate case can
be seen in Fig.1. Along with the plots mentioned above,
the univariate case presented an opportunity to monitor
the trajectory of (µ̂, σ̂). Initial (µ̂, σ̂) were calculated us-
ing the initialized network weights. By monitering the
p-values, it appeared that the q(z) distributions from many
other methods were not in fact normal. Of the Q-Q plots,
only HTAE-SW maintained close enough proximity to
the straight line. Based on the final batch, WAAE and
MMDAE were able to match the prior distribution (µ, σ)
parameters fairly closely, however neither maintained nor-
mality. AAE could neither match parameters nor maintain
normality. As HTAE-SW was not restricted to a specific
normal, it had the opportunity to explore the normal class
for an optimal distribution for the given data.

6.2 MULTIVARIATE GENERALIZATION OF
SHAPIRO-WILK

For the multivariate methods a latent code dimension of
8 was used. By employing the new multivariate gener-

alization of the SW test (MSW) it was possible to use
Q-Q plots to lend visual support to the p-value outcome,
however trajectory plots were no longer an option. Each
model was run for 100,000 iterations with plots shown
in Fig.2, and run time shown in Table 1 when the code
layer had 8 nodes. The generated images seemed to get
visually better the higher the simple moving average of
the p-values was. Q-Q plots for the last mini-batch show
improper tail behaviors, for normality, in all models but
HTAE-MSW. As before, the p-value should be greater
than α = 0.05 to fail to reject the null; again the higher
the p-value the better. For models that failed to reject H0

but had poor generative quality, this suggested several
possibilities: training time needed to be increased, more
focus should be given to reconstruction, or the network
size should be increased. As can be seen in Table 1 HTAE
methods were substantially faster in all cases.

Table 1: Run time in seconds for 105 iterations in the 1-D
and 8-D cases using an NVIDIA GTX 1080Ti GPU.

Method 1-D 8-D
AAE 765.39 982.61
WAAE 904.95 1092.19
MMDAE 597.67 756.69
HTAE-(M)SW 346.16 548.08

7 DISCUSSION

Our empirical results suggest that substituting a hypoth-
esis test, notably W and its the new multivariate gener-
alization, which do not require pre-specifying a mean
and covariance, may be a competitive alternative to other
members of the GAE class. Allowing q(z) to deviate in
the feasible space, G, during training means sampling is
done with respect to q(z) = π̂ = N (µ̂, Σ̂) ∈ G where
(µ̂, Σ̂) are estimated (or when whitening is used in the
multivariate case, with respect toN (0, I)). Consequently,
there is less need to worry about discrepancy between the
distribution we want to sample from, and the distribution
we are sampling from, as we tacitly interpret failure to
reject as within the class of normals. This need not be
the case in the other models. However, as HTAE-MSW
does make use of whitening, ensuring enough samples to
adequately estimate Σ̂−

1
2 and µ̂ is a necessity.

The AAE and WAAE both require training of a discrim-
inator network. This network, with size on the order of
the encoder or decoder, increases training time. More-
over, training of the discriminator needs to be scheduled
in balance with that of the generator, and how exactly this
should be done is still an open problem. On the other
hand, using the hypothesis test abolishes this problem
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Figure 1: Row one illustrates sample digits generated by each model. Row two shows the reconstruction loss, and
the simple moving average (SMA) of the p-value for a batch size of 100, along with the final mini-batch terminating
p-value. Row three contains the Q-Q plots, and row four plots the trajectory of (µ̂, σ̂) over the course of training.

completely. By utilizing the critical values (or p-values)
for the test statistic it is now possible to know precisely
when to alternate between enforcing prior constraints,
and minimizing the reconstruction loss. In our empirical
evaluation, we also observed that using a parametric hy-
pothesis test could improve gradient updates by utilizing
information about the null distribution. A full exploration
into this mechanism is left for future investigation.

A concern may be raised that Thm.4.2 merely guarantees
the “while” loop will terminate, yet provides no indication
of when it terminates. In all experiments, the speed never
proved to be an issue. The inner loop was able to ensure
q(z) ∈ G in a very small number of iterations as can be

seen in Fig.3 in supplementary materials. We attempt to
understand why this is the case in the near future.

We experimented with four other goodness-of-fit tests (see
the supplement please), but none provided the benefits
that the Shapiro-Wilk and its generalization did. Issues
included longer run times, and weaker power. The search
for greater power motivates the following conjecture.

Conjecture 1. The more powerful the hypothesis test, the
more precise the null distribution information contained
within the test statistic that can be transmitted to the en-
coder to update θ via the gradient.

A trade-off between the power of the test, time complex-
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Figure 2: Similar to Fig.1, the top row plots random samples generated from each model. Row two contains the p-values
with a 100 batch SMA. Row three are Q-Q plots associated with MSW.

ity and reconstruction quality likely exists. What is the
cheapest computational complexity of a hypothesis test
available for a given power? We expect that future re-
search will reveal more on these questions.

8 CONCLUSION AND FUTURE WORK

In this paper we have proposed a new method for training
generative autoencoders by explicitly testing the distribu-
tion of the code layer output via univariate and multivari-
ate parametric hypothesis tests. We have shown a number
of benefits to using such an approach including: objec-
tively verifying if training has indeed pushed q(z) ∈ G,
the ability to utilize the critical value of a hypothesis test
as a threshold for determining when to switch between
reconstruction and encoding iterations. Our method pro-
duces competitive results while showing computational
efficiency. Moreover, we explored the link between the
Shapiro-Wilk hypothesis test and the L2-Wasserstein dis-
tance between two distributions.

Given the large numbers of univariate and multivariate

parametric hypothesis tests available, it remains to be seen
how others compare when used in a generative autoen-
coder. In fact, any distribution for which a hypothesis
test can be derived can be used for training a latent code
layer. Furthermore, the proposed method of training can
be applied to any of the models that takes a generative
autoencoder style network. This initial work brings up
additional interesting problems, so our future work will
dive into the questions raised. It is also worth asking how
other hypothesis testing methods can be included into
neural network training.
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