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Abstract

Model-free reinforcement learning algorithms,
such as Q-learning, perform poorly in the early
stages of learning in noisy environments, because
much effort is spent unlearning biased estimates
of the state-action value function. The bias re-
sults from selecting, among several noisy esti-
mates, the apparent optimum, which may actu-
ally be suboptimal. We propose G-learning, a
new off-policy learning algorithm that regular-
izes the value estimates by penalizing determin-
istic policies in the beginning of the learning pro-
cess. We show that this method reduces the bias
of the value-function estimation, leading to faster
convergence to the optimal value and the optimal
policy. Moreover, G-learning enables the natural
incorporation of prior domain knowledge, when
available. The stochastic nature of G-learning
also makes it avoid some exploration costs, a
property usually attributed only to on-policy al-
gorithms. We illustrate these ideas in several ex-
amples, where G-learning results in significant
improvements of the convergence rate and the
cost of the learning process.

1 INTRODUCTION

The need to separate signals from noise stands at the cen-
ter of any learning task in a noisy environment. While a
rich set of tools to regularize learned parameters has been
developed for supervised and unsupervised learning prob-
lems, in areas such as reinforcement learning there still ex-
ists a vital need for techniques that tame the noise and avoid
overfitting and local minima.

One of the central algorithms in reinforcement learning is
Q-learning [1], a model-free off-policy algorithm, which
attempts to estimate the optimal value function Q, the
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cost-to-go of the optimal policy. To enable this estima-
tion, a stochastic exploration policy is used by the learn-
ing agent to interact with its environment and explore the
model. This approach is very successful and popular, and
despite several alternative approaches developed in recent
years [2, 3, 4], it is still being applied successfully in com-
plex domains for which explicit models are lacking [5].

However, in noisy domains, in early stages of the learn-
ing process, the min (or max) operator in Q-learning brings
about a bias in the estimates. This problem is akin to the
“winner’s curse” in auctions [6, 7, 8, 9]. With too little ev-
idence, the biased estimates may lead to wrong decisions,
which slow down the convergence of the learning process,
and require subsequent unlearning of these suboptimal be-
haviors.

In this paper we present G-learning, a new off-policy
information-theoretic approach to regularizing the state-
action value function learned by an agent interacting with
its environment in model-free settings.

This is achieved by adding to the cost-to-go a term that pe-
nalizes deterministic policies which diverge from a simple
stochastic prior policy [10]. With only a small sample to
go by, G-learning prefers a more randomized policy, and as
samples accumulate, it gradually shifts to a more determin-
istic and exploiting policy. This transition is managed by
appropriately scheduling the coefficient of the penalty term
as learning proceeds.

In Section 4 we discuss the theoretical and practical as-
pects of scheduling this coefficient, and suggest that a sim-
ple linear schedule can perform well. We show that G-
learning with this schedule reduces the value estimation
bias by avoiding overfitting in its selection of the update
policy. We further establish empirically the link between
bias reduction and learning performance, that has been the
underlying assumption in many approaches to reinforce-
ment learning [11, 12, 13, 14]. The examples in Section 6
demonstrate the significant improvement thus obtained.

Furthermore, in domains where exploration incurs signif-
icantly higher costs than exploitation, such as the classic



cliff domain [2], G-learning with an ε-greedy exploration
policy is exploration-aware, and chooses a less costly ex-
ploration policy, thus reducing the costs incurred during
the learning process. Such awareness to the cost of explo-
ration is usually attributed to on-policy algorithms, such as
SARSA [2, 4] and Expected-SARSA [15, 16]. The remark-
able finding that G-learning exhibits on-policy-like proper-
ties is illustrated in the example of Section 6.2.

In Section 2 we discuss the problem of learning in noisy en-
vironments. In Section 3 we introduce the penalty term, de-
rive G-learning and prove its convergence. In Section 4 we
determine a schedule for the coefficient of the information
penalty term. In Section 5 we discuss related work. In Sec-
tion 6 we illustrate the strengths of the algorithm through
several examples.

2 LEARNING IN NOISY
ENVIRONMENTS

2.1 NOTATION AND BACKGROUND

We consider the usual setting of a Markov Decision Process
(MDP), in which an agent interacts with its environment
by repeatedly observing its state s ∈ S, taking an action
a ∈ A, with A and S finite, and incurring cost c ∈ R. This
induces a stochastic process s0, a0, c0, s1, . . ., where s0 is
fixed, and where for t ≥ 0 we have the Markov properties
indicated by the conditional distributions at ∼ πt(at|st),
ct ∼ θ(ct|st, at) and st+1 ∼ p(st+1|st, at).

The objective of the agent is to find a time-invariant pol-
icy π that minimizes the total discounted expected cost

V π(s) =
∑
t≥0

γt E[ct|s0 = s], (1)

simultaneously for any s ∈ S, for a given discount factor
0 ≤ γ < 1. For each t, the expectation above is over all
trajectories of length t starting at s0 = s. A related quantity
is the state-action value function

Qπ(s, a) =
∑
t≥0

γt E[ct|s0 = s, a0 = a]

= Eθ[c|s, a] + γ Ep[V
π(s′)|s, a], (2)

which equals the total discounted expected cost that follows
from choosing action a in state s, and then following the
policy π.

If we know the distributions p and θ (or at least Eθ[c|s, a]),
then it is easy to find the optimal state-action value function

Q∗(s, a) = min
π
Qπ(s, a) (3)

using standard techniques, such as Value Iteration [17].
Our interest is in model-free learning, where the model pa-
rameters are unknown. Instead, the agent obtains samples

from p(st+1|st, at) and θ(ct|st, at) through its interaction
with the environment. In this setting, the Q-learning algo-
rithm [1] provides a method for estimating Q∗. It starts
with an arbitrary Q, and in step t upon observing st, at, ct
and st+1, performs the update

Q(st, at)← (1− αt)Q(st, at) (4)

+ αt

(
ct + γ

∑
a′

π(a′|st+1)Q(st+1, a
′)

)
,

with some learning rate 0 ≤ αt ≤ 1, and the greedy policy
for Q having

π(a|s) = δa,a∗(s); a∗(s) = arg min
a

Q(s, a). (5)

Q(s, a) is unchanged for any (s, a) 6= (st, at). If the learn-
ing rate satisfies∑

t

αt =∞;
∑
t

α2
t <∞, (6)

and the interaction itself uses an exploration policy that re-
turns to each state-action pair infinitely many times, thenQ
is a consistent estimator, converging to Q∗ with probabil-
ity 1 [1, 17]. Similarly, if the update rule (4) uses a fixed
update policy π = ρ, we call this algorithm Qρ-learning,
because Q converges to Qρ with probability 1.

2.2 BIAS AND EARLY COMMITMENT

Despite the success of Q-learning in many situations, learn-
ing can proceed extremely slowly when there is noise in the
distribution, given st and at, of either of the terms of (2),
namely the cost ct and the value of the next state st+1. The
source of this problem is a negative bias introduced by the
min operator in the estimator mina′ Q(st+1, a

′), when (5)
is plugged into (4).

To illustrate this bias, assume that Q(s, a) is an unbiased
but noisy estimate of the optimal Q∗(s, a). Then Jensen’s
inequality for the concave min operator implies that

E[min
a
Q(s, a)] ≤ min

a
Q∗(s, a), (7)

with equality only when Q already reveals the optimal pol-
icy by having arg minaQ(s, a) = arg minaQ

∗(s, a) with
probability 1, so that no further learning is needed. The
expectation in (7) is with respect to the learning process,
including any randomness in state transition, cost, explo-
ration and internal update, given the domain.

This is an optimistic bias, causing the cost-to-go to appear
lower than it is (or the reward-to-go higher). It is the well
known “winner’s curse” problem in economics and deci-
sion theory [6, 7, 8, 9], and in the context of Q-learning
it was studied before in [3, 11, 12, 13]. A similar prob-
lem occurs when a function approximation scheme is used



for Q instead of a table, even in the absence of transition
or cost noise, because the approximation itself introduces
noise [18].

As the sample size increases, the variance in Q(s, a) de-
creases, which in turn reduces the bias in (7). This makes
the update policy (5) more optimal, and the update increas-
ingly similar to Value Iteration.

2.3 THE INTERPLAY OF VALUE BIAS AND
POLICY SUBOPTIMALITY

It is insightful to consider the effect of the bias not only on
the estimated value function, but also on the real value V π

of the greedy policy (5), since in many cases the latter is the
actual output of the learning process. The central quantity
of interest here is the gapQ∗(s, a′)−V ∗(s), in a given state
s, between the value of a non-optimal action a′ and that of
the optimal action.

Consider first the case in which the gap is large compared
to the noise in the estimation of the Q(s, a) values. In this
case, a′ indeed appears suboptimal with high probability, as
desired. Interestingly, when the gap is very small relative
to the noise, the learning agent should not worry, either.
Confusing such a′ for the optimal action has a limited effect
on the value of the greedy policy, since choosing a′ is near-
optimal.

We conclude that the real value V π of the greedy policy (5)
is suboptimal only in the intermediate regime, when the gap
is of the order of the noise, and neither is small. The effect
of the noise can be made even worse by the propagation of
bias between states, through updates. Such propagation can
cause large-gap suboptimal actions to nevertheless appear
optimal, if they lead to a region of state-space that is highly
biased.

2.4 A DYNAMIC OPTIMISM-UNCERTAINTY
LOOP

The above considerations were agnostic to the exploration
policy, but the bias reduction can be accelerated by an ex-
ploration policy that is close to being greedy. In this case,
high-variance estimation is self-correcting: an estimated
state value with optimistic bias draws exploration towards
that state, leading to a decrease in the variance, which in
turn reduces the optimistic bias. This is a dynamic form
of optimism under uncertainty. While in the usual case the
optimism is externally imposed as an initial condition [19],
here it is spontaneously generated by the noise and self-
corrected through exploration.

The approach we propose below to reduce the variance is
motivated by electing to represent the uncertainty explic-
itly, and not indirectly through an optimistic bias. We no-
tice that although in the end of the learning process one
obtains the deterministic greedy policy from Q(a, s) as

in (5), during the learning itself the bias in Q can be ame-
liorated by avoiding the hard min operator, and refraining
from committing to a deterministic greedy policy. This can
be achieved by adding to Q, at the early learning stage, a
term that penalizes deterministic policies, which we con-
sider next.

3 LEARNING WITH SOFT UPDATES

3.1 THE FREE-ENERGY FUNCTION G AND
G-LEARNING

Let us adopt, before any interaction with the environment,
a simple stochastic prior policy ρ(a|s). For example, we
can take the uniform distribution over the possible actions.
The information cost of a learned policy π(a|s) is defined
as

gπ(s, a) = log π(a|s)
ρ(a|s) , (8)

and its expectation over the policy π is the Kullback-
Leibler (KL) divergence of πs = π(·|s) from ρs = ρ(·|s),

Eπ[gπ(s, a)|s] = DKL[πs‖ρs]. (9)

The term (8) penalizes deviations from the prior policy and
serves to regularize the optimal policy away from a de-
terministic action. In the context of the MDP dynamics
p(st+1|st, at), similarly to (1), we consider the total dis-
counted expected information cost

Iπ(s) =
∑
t≥0

γt E[gπ(st, at)|s0 = s]. (10)

The discounting in (1) and (10) is justified by imagining a
horizon T ∼ Geom(1− γ), distributed geometrically with
parameter 1 − γ. Then the cost-to-go V π in (1) and the
information-to-go Iπ in (10) are the total (undiscounted)
expected T -step costs.

Adding the penalty term (10) to the cost function (1) gives

Fπ(s) = V π(s) + 1
β I

π(s), (11)

=
∑
t≥0

γt E[ 1
β g

π(st, at) + ct|s0 = s],

called the free-energy function by analogy with a similar
quantity in statistical mechanics [10].

Here β is a parameter that sets the relative weight between
the two costs. For the moment, we assume that β is fixed.
In following sections, we let β grow as the learning pro-
ceeds.

In analogy with the Qπ function (2), let us define the state-
action free-energy function Gπ(s, a) as

Gπ(s, a) = Eθ[c|s, a] + γ Ep[F
π(s′)|s, a] (12)

=
∑
t≥0

γt E[ct + γ
β g

π(st+1, at+1))|s0 = s, a0 = a],



and note that it does not involve the information term at
time t = 0, since the action a0 = a is already known.
From the definitions (11) and (12) it follows that

Fπ(s) =
∑
a

π(a|s)
[

1
β log π(a|s)

ρ(a|s) +Gπ(s, a)
]
. (13)

It is easy to verify that, given the G function, the above
expression for Fπ has gradient 0 at

π(a|s) =
ρ(a|s)e−βG(s,a)∑
a′ ρ(a′|s)e−βG(s,a′)

, (14)

which is therefore the optimal policy.

The policy (14) is the soft-min operator applied to G, with
inverse-temperature β. When β is small, the information
cost is dominant, and π approaches the prior ρ. When β
is large, we are willing to diverge much from the prior to
reduce the external cost, and π approaches the deterministic
greedy policy for G.

Evaluated at the soft-greedy policy (14), the free en-
ergy (13) is

Fπ(s) = − 1
β log

∑
a

ρ(a|s)e−βG
π(s,a), (15)

and plugging this expression into (12), we get that the op-
timal G∗ is a fixed point of the equation

G∗(s, a) = Eθ[c|s, a] (16)

− γ
β Ep

[
log
∑
a′

ρ(a′|s′)e−βG
∗(s′,a′)

]
≡ B∗[G∗](s,a). (17)

Based on the above expression, we introduce G-learning
as an off-policy TD-learning algorithm [2], that learns the
optimal G∗ from the interaction with the environment by
applying the update rule

G(st, at)← (1− αt)G(st, at) (18)

+ αt

(
ct − γ

β log

(∑
a′

ρ(a′|st+1)e−βG(st+1,a
′)

))
.

3.2 THE ROLE OF THE PRIOR

Clearly the choice of the prior policy ρ is significant in the
performance of the algorithm. The prior policy can en-
code any prior knowledge that we have about the domain,
and this can improve the convergence if done correctly.
However an incorrect prior policy can hinder learning. We
should therefore choose a prior policy that represents all of
our prior knowledge, but nothing more. This prior policy
has maximal entropy given the prior knowledge [20].

In our examples in Section 6, we use the uniform prior pol-
icy, representing no prior knowledge. Both in Q-learning

and in G-learning, we could utilize the prior knowledge
that moving into a wall is never a good action, by elimi-
nating those actions. One advantage of G-learning is that
it can utilize softer prior knowledge. For example, a prior
policy that gives lower probability for moving into a wall
represent the prior knowledge that such an action is usually
(but not always) harmful, a type of knowledge that cannot
be utilized in Q-learning.

We have presented G-learning in a fully parameterized for-
mulation, where the function G is stored in a lookup table.
Practical applications of Q-learning often resort to approx-
imating the function Q through function approximations,
such as linear expansions or neural networks [2, 3, 4, 21, 5].
Such an approximation generates inductive bias, which
is another form of implicit prior knowledge. While G-
learning is introduced here in its table form, preliminary
results indicate that its benefits carry over to function ap-
proximations, despite the challenges posed by this exten-
sion.

3.3 CONVERGENCE

In this section we study the convergence ofG under the up-
date rule (18). Recall that the supremum norm is defined as
|x|∞ = maxi |xi|. We need the following Lemma, proved
in the Supplementary Material.

Lemma 1. The operator B∗[G](s,a) defined in (17) is a
contraction in the supremum norm,∣∣B∗[G1]−B∗[G2]

∣∣
∞ ≤ γ

∣∣G1 −G2

∣∣
∞. (19)

The update equation (18) of the algorithm can be written as
a stochastic iteration equation

Gt+1(st, at) = (1− αt)Gt(st, at) (20)
+ αt(B

∗[Gt](st,at) + zt(ct, st+1))

where the random variable zt is

zt(ct, st+1) = −B∗[Gt](st,at) (21)

+ ct − γ
β log

∑
a′

ρ(a′|st+1)e−βGt(st+1,a
′).

Note that zt has expectation 0. Many results exist for iter-
ative equations of the type (20). In particular, given condi-
tions (6) for αt, the contractive nature of B∗, infinite visits
to each pair (st, at) and assuming that |zt| < ∞ , Gt is
guaranteed to converge to the optimal G∗ with probabil-
ity 1 [17, 22].

4 SCHEDULING β

In the previous section, we showed that running G-learning
with a fixed β converges, with probability 1, to the opti-
mal G∗ for that β, given by the recursion in (12)–(14).



When β = ∞, the equations for G∗ and F ∗ degenerate
into the equations for Q∗ and V ∗, and G-learning becomes
Q-learning. When β = 0, the update policy π in (14) is
equal to the prior ρ. This case, denoted Qρ-learning, con-
verges to Qρ.

In an early stage of learning, Qρ-learning has an advan-
tage over Q-learning, because it avoids committing to a de-
terministic policy based on a noisy Q function. In a later
stage of learning, whenQ is a more precise estimate ofQ∗,
Q-learning gains the advantage by updating with a better
policy than the prior. This is demonstrated in section 6.1.

We would therefore like to schedule β so that G-learning
makes a smooth transition from Qρ-learning to Q-learning,
just at the right pace to enjoy the early advantage of the
former and the late advantage of the latter. As we argue
below, such a β always exists.

4.1 ORACLE SCHEDULING

To consider the effect of the β scheduling on the correction
of the bias (7), suppose that during learning we reach some
G that is an unbiased estimate of G∗. G(st, at) would re-
main unbiased if we update it towards

ct + γG(st+1, a
∗) (22)

with

a∗ = arg min
a′

G∗(st+1, a
′), (23)

but we do not have access to this optimal action. If we
use the update rule (18) with β = 0, we update G(st, at)
towards

ct + γ
∑
a′

ρ(a′|st+1)G(st+1, a
′), (24)

which is always at least as large as (22), creating a positive
bias. If we use β =∞, we update G(st, at) towards

ct + γmin
a′

G(st+1, a
′), (25)

which creates a negative bias, as explained in Section 2.2.
Since the right-hand side of (18) is continuous and mono-
tonic in β, there must be some β for which this update rule
is unbiased.

This is a non-constructive proof for the existence of a β
schedule that keeps the value estimators unbiased (or at
least does not accumulate additional bias). We can imagine
a scheduling oracle, and a protocol for the agent by which
to consult the oracle and obtain the β for its soft updates.
At the very least, the oracle must be told the iteration index
t, but it can also be useful to let β depend on any other as-
pect of the learning process, particularly the current world
state st.

4.2 PRACTICAL SCHEDULING

A good schedule should increase β as learning proceeds,
because as more samples are gathered the variance of G
decreases, allowing more deterministic policies. In the ex-
amples of Section 6 we adopted the linear schedule

βt = kt, (26)

with some constant k > 0. Another possibility that we
explored was to make β inversely proportional to a running
average of the Bellman error, which decreases as learning
progresses. The results were similar to the linear schedule.

The optimal parameter k can be obtained by performing
initial runs with different values of k and picking the value
whose learned policy gives empirically the lower cost-to-
go. Although this exploration would seem costly com-
pared to other algorithms for which no parameter tuning
is needed, these initial runs do not need to be carried for
many iterations. Moreover, in many situations the agent is
confronted with a class of similar domains, and tuning k
in a few initial domains leads to an improved learning for
the whole class. This is the case in the domain-generator
example in Section 6.1.

5 RELATED WORK

The connection between domain noise or function ap-
proximation, and the statistical bias in the Q function,
was first discussed in [18, 3]. An interesting modifica-
tion of Q-learning to address this problem is Double-Q-
learning [11, 14], which uses two estimators for the Q
function to alleviate the bias. Other modifications of Q-
learning that attempt to reduce or correct the bias are sug-
gested in [12, 13].

An early approach to Q-learning in continuous noisy do-
mains was to learn, instead of the value function, the ad-
vantage functionA(s, a) = Q(s, a)−V (s) [23]. The algo-
rithm representsA and V separately, and the optimal action
is determined from A(s, a) as a∗(s) = arg minaA(s, a).
In noisy environments, learning A is shown in some exam-
ples to be faster than learning Q [23, 24].

More recently, it was shown that the advantage learning al-
gorithm is a gap-increasing operator [25]. As discussed in
Section 2.2, the action gap is a central factor in the genera-
tion of bias, and increasing the gap should also help reduce
the bias. In Section 6.1 we compare our algorithm to the
consistent Bellman operator TC , one of the gap-increasing
algorithms introduced in [25].

For other works that study the effect of noise in Q-learning,
although without identifying the bias (7), see [26, 27, 28].

Information considerations have received attention in re-
cent years in various machine learning settings, with the
free energy Fπ and similar quantities used as a design



principle for policies in known MDPs [10, 29, 30]. Other
works have used related methods for reinforcement learn-
ing [31, 32, 33, 34, 35]. A KL penalty similar to ours is
used in [35], in settings with known reward and transition
functions, to encourage “curiosity”.

Soft-greedy policies have been used before for explo-
ration [2, 36], but to our knowledge G-learning is the first
TD-learning algorithm to explicitly use soft-greedy poli-
cies in its updates.

Particularly relevant to our work is the approach studied
in [32]. There the policy is iteratively improved by optimiz-
ing it in each iteration under the constraint that it only di-
verges slightly, in terms of KL-divergence, from the empir-
ical distribution generated by the previous policy. In con-
trast, in G-learning we measure the KL-divergence from a
fixed prior policy, and in each iteration allow the divergence
to grow larger by increasing β. Thus the two methods
follow different information-geodesics from the stochastic
prior policy to more and more deterministic policies.

This distinction is best demonstrated by considering the Ψ-
learning algorithm presented in [33, 34], based on the same
approach as [32]. It employs the update rule

Ψ(st, at)← Ψ(st, at) (27)
+ αt(ct + γΨ̄(st+1)− Ψ̄(st)),

with

Ψ̄(s) = − log
∑
a

ρ(a|s)e−Ψ(s,a), (28)

which is closely related to our update of G in (18).

Apart from lacking a β parameter, the most important
difference is that the update of Ψ involves subtracting
αtΨ̄(st), whereas the update of G involves subtracting
αtG(st, at). This seemingly minor modification has a large
impact on the behavior of the two algorithms. The up-
date of G is designed to pull it towards the optimal state-
action free energyG∗, for all state-action pairs. In contrast,
subtracting the log-partition Ψ̄(st), in the long run pulls
only Ψ(st, a

∗), with a∗ the optimal action, towards its true
value, while for the other actions the values grow to infinity.
In this sense, the Ψ-learning update (27) is an information-
theoretic gap-increasing Bellman operator [25].

The growth to infinity of suboptimal values separates them
from the optimal value, and drives the algorithm to conver-
gence. In G-learning, this parallels the increase in β with
the accumulation of samples. However, there is a major
benefit to keeping G reliable in all its parameters, and con-
trolling it with a separate β parameter. In Ψ-learning, the
Ψ function penalizes actions it deems suboptimal. If early
noise causes an error in this penalty, the algorithm needs
to unlearn it - a similar drawback to that of Q-learning. In
Section 6, we demonstrate the improvement offered by G-
learning.

Figure 1: Gridworld domain. The agent can choose an ad-
jacent square as the target to move to, and then may end up
stochastically in a square adjacent to that target. The color
scale indicates the optimal values V ∗ with a fixed cost of 1
per step.

6 EXAMPLES

This section illustrates how G-learning improves on exist-
ing model-free learning algorithms in several settings. The
domains we use are clean and simple, to demonstrate that
the advantages of G-learning are inherent to the algorithm
itself.

We schedule the learning rate αt as

αt = nt(st, at)
−ω , (29)

where nt(st, at) is the number of times the pair (st, at)
was visited. This scheme is widely used, and is consistent
with (6) for ω ∈ (1/2, 1]. We choose ω = 0.8, which is
within the range suggested in [37].

We schedule β linearly, as discussed in Section 4.2. In each
case, we start with 5 preliminary runs of G-learning with
various linear coefficients, and pick the coefficient with the
lowest empirical cost. This coefficient is used in the subse-
quent test runs, whose results are plotted in Figure 2.

In all cases, we use a uniform prior policy ρ, a discount
factor γ = 0.95, and 0 for the initial values (Q0 = 0
in Q-learning, and similarly in the other algorithms). Ex-
cept when mentioned otherwise, we employ random explo-
ration, where st and at are chosen uniformly at the begin-
ning of each time step, independently of any previous sam-
ple. This exploration technique is useful when comparing
update rules, while controlling for the exploration process.

6.1 GRIDWORLD

Our first set of examples occurs in a gridworld of 8 × 8
squares, with some unavailable squares occupied by walls
shown in black (Figure 1). The lightest square is the goal,
and reaching it ends the episode.

At each time step, the agent can choose to move one square
in any of the 8 directions (including diagonally), or stay in
place. If the move is blocked by a wall or the edge of the



board, it effectively attempts to stay in place. With some
probability, the action performed by the agent is further fol-
lowed by an additional random slide: with probability 0.15
to each vertically or horizontally adjacent available posi-
tion, and with probability 0.05 to each diagonally adjacent
available position.

The noise associated with these random transitions can be
enhanced further by the possible variability in the costs in-
curred along the way. We consider three cases. In the first
case, the cost in each step is fixed at 1. In the second case,
the cost in each step is distributed normally i.i.d, with mean
1 and standard deviation 2. In the third case we define a
distribution over domains, such that at the time of domain-
generation the mean cost for each state-action is distributed
uniformly i.i.d over [1, 3]. Once the domain has been gen-
erated and interaction begins, the cost itself in each step is
again distributed normally i.i.d, with the generated mean
and standard deviation 4.

We attempt to learn these domains using various algo-
rithms. Figure 2 summarizes the results for Q-learning,
G-learning, Double-Q-learning [11], Ψ-learning [33, 34]
and the consistent Bellman operator TC of [25]. We also
include Qρ-learning, which performs updates as in (4) to-
wards the prior policy ρ. Comparison with Speedy-Q-
learning [12] is omitted, since it showed no improvement
over vanilla Q-learning in these settings. In our experi-
ments, these algorithms had comparable running times.

The β scheduling used in G-learning is linear, with the co-
efficient k equal to 10−3, 10−4, 5 · 10−5 and 10−6, respec-
tively for the fixed-cost, noisy-cost, domain-generator and
cliff domains (see Section 6.2).

For each case, Figure 2 shows the evolution over 250,000
algorithm iterations of the following three measures, aver-
aged over N = 100 runs:

1. Empirical bias, defined as

1
Nn

N∑
i=1

n∑
s=1

(Vi,t(s)− V ∗i (s)), (30)

where i indexes the N runs and s the n states. Here
Vi,t is the greedy value based on the estimate obtained
by each algorithm (Q, G, etc.), in iteration t of run i.
The optimal value V ∗i , computed via Value Iteration,
varies between runs in the domain-generator case.

2. Mean absolute error in V

1
Nn

N∑
i=1

n∑
s=1

|Vi,t(s)− V ∗i (s)|. (31)

A low bias could result from the cancellation of terms
with high positive and negative biases. A convergence
in the absolute error is more indicative of the actual
convergence of the value estimates.

3. Increase in cost-to-go, relative to the optimal policy

1
Nn

N∑
i=1

n∑
s=1

(V πi,t(s)− V ∗i (s)). (32)

This measures the quality of the learned policy. Here
πi,t is the greedy policy based on the state-action
value estimates, and V πi,t is its value in the model,
computed via Value Iteration.

An algorithm is better when these measures reach zero
faster. As is clear in Figure 2, in the domains with noisy
cost (Rows 2 and 3), G-learning dominates over all the
other competing algorithms by the three measures. The
results are statistically significant, but plotting confidence
intervals would clutter the figure.

An important and surprising point of Figure 2 is that Qρ-
learning always outperforms Q-learning initially, before
degrading. The reason is that the Q-learning updates ini-
tially rely on very few samples, so these harmful updates
need to be undone by later updates. Qρ-learning, on the
other hand, updates in the direction of a uniform prior. This
gives an early advantage in mapping out the local topology
of the problem, before long-range effects start pulling the
learning towards the suboptimal Qρ.

The power of G-learning is that it enjoys the early advan-
tage of Qρ-learning, and smoothly transitions to the conver-
gence advantage of Q-learning. When β is small, the infor-
mation cost gt (8) outweighs the external costs ct, and we
update towards ρ. As samples keep coming in, and our esti-
mates improve, β increases, and the updates gradually lean
more towards a cost-optimizing policy. Unlike early stages
in Q-learning, at this point Gt is already a good estimate,
and we avoid overfitting. As mentioned above, Figure 2
shows that this effect is more manifest in noisier scenarios.

Finally, Figure 3 shows running averages of the Bellman
error for the different algorithms considered. The Bellman
error in G-learning is the coefficient multiplying αt in (18),

∆Gt ≡ ct − γ
β log

(∑
a′

ρ(a′|st+1)e−βGt(st+1,a
′)

)
−Gt(st, a). (33)

When learning ends and G = G∗, the expectation of ∆Gt
is zero (see (16)). Similar definitions hold for the other
learning algorithms we compare with. As is clear from Fig-
ure 3, G-learning reaches zero average Bellman error faster
than the competing methods, even while β is still increas-
ing in order to make G∗ converge to Q∗.

6.2 CLIFF WALKING

Cliff walking is a standard example in reinforcement learn-
ing [2], that demonstrates an advantage of on-policy algo-
rithms such as SARSA [2, 4] and Expected-SARSA [15,



Figure 2: Gridworld (Rows 1-3): Comparison of Q-, G-, Qρ-, Double-Q-, Ψ- and TC-learning. Row 1: The cost in each
step is fixed at 1. Row 2: The cost in each step is distributed as N (1, 22). Row 3: In each run, the domain is generated
by drawing each E[c|s, a] uniformly over [1, 3]. The cost in each step is distributed as N (E[c|s, a], 42). Note that in the
noisy domains (Rows 2 and 3), G-learning dominates over all the other algorithms by the three measures. Cliff (Row 4):
Comparison of Q- and G-learning, and Expected-SARSA. The cost in each step is 1, and falling off the cliff costs 5.
Left: Empirical bias of V , relative to V ∗ (30). Middle: Mean absolute error between V and V ∗ (31). Right: Value of
greedy policy, with the baseline V ∗ subtracted (32); except in Row 4, which shows the value of the exploration policy.

16] over off-policy learning approaches such as Q-learning.
We use it to show another interesting strength of G-
learning.

In this example, the agent can walk on the grid in Fig-
ure 4 horizontally or vertically, with deterministic transi-
tions. Each step costs 1, except when the agent walks off

the cliff (the bottom row), which costs 5, or reaches the
goal (lower right corner), which costs 0. In either of these
cases, the position resets to the lower left corner.

Exploration is now on-line, with st taken from the end of
the previous step. The exploration policy in our simulations
is ε-greedy with ε = 0.1, i.e. with probability ε the agent



Figure 3: Running average of the Bellman error in the grid-
world domain-generator example for Q-, G-, Qρ-, Double-
Q-, Ψ- and TC-learning. The results for the other two grid-
worlds of Figure 2 are similar.

chooses a random action, and otherwise it takes determin-
istically the one that seems optimal. In practice, ε can be
decreased after the learning phase, however it is also com-
mon to keep ε fixed for continued exploration [2].

In this setting, as shown in the bottom row of Figure 2,
an off-policy algorithm like Q-learning performs poorly in
terms of the value of its exploration policy, and the empiri-
cal cost it incurs. It learns a rough estimate of Q∗ quickly,
and then tends to use it and walk on the edge of the cliff.
This leads to the agent occasionally exploring the possibil-
ity of falling off the cliff. In contrast, an on-policy algo-
rithm like Expected-SARSA [15, 16] learns the value of its
exploration policy, and quickly manages to avoid the cliff.

Figure 4 compares Q-learning, G-learning and Expected-
SARSA in this domain, and shows that G-learning learns
to avoid the cliff even better than an on-policy algorithm,
although for a different reason. As an off-policy algorithm,
G-learning does learn the value of the update policy, which
prefers trajectories far from the cliff in the early stages of
learning. This occurs because near the cliff, avoiding the
cost of falling requires ruling out downward moves, which
has a high information cost. On the other hand, trajecto-
ries far from the cliff, while paying a higher cost in overall
distance to the goal, enjoy lower information cost because
acting randomly is not costly for them.

As shown in the bottom row of Figure 2, by using a greedy
policy for G as the basis of the ε-greedy exploration, we
enjoy the benefits of being aware of the value of the ex-
ploration policy during the learning stage. At the same
time, G-learning converges faster than either Q-learning or
Expected-SARSA to the correct value function. In this case
the “noise” that G-learning mitigates is related to the vari-
ability associated with the exploration.

7 CONCLUSIONS

The algorithm we have introduced successfully mitigates
the slow learning problem of early stage Q-learning in

Figure 4: Cliff domain. The agent can choose a horizon-
tally or vertically adjacent square, and moves there deter-
ministically. The color scale and the arrow lengths indi-
cate, respectively, the frequency of visiting each state and
of making each transition, in the first 250,000 iterations of
Q-learning, Expected-SARSA and G-learning. The near-
greedy exploration policy of Q-learning has higher chance
of taking the shortest path near the edge of the cliff at the
bottom, than that of G-learning. As an off-policy algo-
rithm, Q-learning fails to optimize for the exploration pol-
icy, whereas G-learning succeeds.

noisy environments, that is caused by the bias generated
by the hard optimization of the policy.

Although we have focused on Q-learning as a baseline, we
believe that early-stage information penalties can also be
applied to advantage in more sophisticated model-free set-
tings, such as TD(λ), and combined with other incremental
learning techniques, such as function approximation, expe-
rience replay and actor-critic methods.

G-learning takes a Frequentist approach to estimating the
optimal Q function. This is in contrast to Bayesian
Q-learning [38], which explicitly models the uncertainty
about theQ function as a posterior distribution. It would be
interesting to study the bias that hard optimization causes
in the mean of this posterior, and to consider its reduction
using methods similar to G-learning.

An important next step is to apply G-learning to more chal-
lenging domains, where an approximation of the G func-
tion is necessary. The simplicity of our linear β sched-
ule (26) should facilitate such extensions, and allow G-
learning to be combined with other schemes and algo-
rithms. Further study should also address the optimal
schedule for β. We leave these important questions for fu-
ture work.
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[4] Csaba Szepesvári. Algorithms for reinforcement learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 4(1):1–103, 2010.

[5] Volodymyr Mnih et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[6] Edward C Capen, Robert V Clapp, William M Campbell,
et al. Competitive bidding in high-risk situations. Journal
of petroleum technology, 23(06):641–653, 1971.

[7] Richard H Thaler. Anomalies: The winner’s curse. The
Journal of Economic Perspectives, pages 191–202, 1988.

[8] Eric Van den Steen. Rational overoptimism (and other bi-
ases). American Economic Review, pages 1141–1151, 2004.

[9] James E Smith and Robert L Winkler. The optimizer’s curse:
Skepticism and postdecision surprise in decision analysis.
Management Science, 52(3):311–322, 2006.

[10] Jonathan Rubin, Ohad Shamir, and Naftali Tishby. Trading
value and information in MDPs. In Decision Making with
Imperfect Decision Makers, pages 57–74. Springer, 2012.

[11] Hado V Hasselt. Double Q-learning. In NIPS, 2010.

[12] Mohammad Ghavamzadeh, Hilbert J Kappen, Moham-
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Thomas, and Rémi Munos. Increasing the action gap: New
operators for reinforcement learning. In AAAI, 2016.

[26] Mark D Pendrith and C Sammut. On reinforcement learn-
ing of control actions in noisy and non-Markovian domains.
Technical report, 1994.

[27] Mark D Pendrith and Malcolm RK Ryan. Estimator vari-
ance in reinforcement learning: Theoretical problems and
practical solutions. In AAAI Workshop on On-Line Search,
1997.
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