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MESSENGER OF MATHEMATICS.

FACTORISATION OF .V & N"={x"Ty'f) -s-fc+y), &c.

[when x—y = n].

By Lt.-C'ul. AU1171 Cunningham, RE , Fellow of King's College, London.

[The Author is indebted to Mr. H. J. "Woodall for suggestions and help in

reading the Proofs].

1. Introduction. Using tlie abbreviation

—

M.A.P.F. meaning Max. Algebraic Prime Factor .(')•

and notation

—

N„=m.a.p.f. of (x»—y"), N„ =M a.p.f. of (.v"+y"), [x,y unrestricted]. (2a),

i\'„ = M.A.p.F. of (.v
n—>•"), X.' = M.A.P.F. of (.V +>"'), [.v -y=n] [2b),

2.= M.A.F.F. Of (x'-y), Z,.' = M.A.P.F. of (.V» +/*), [*-y=l] (1c),

/r„ = M. a.p.f. of (y-V), ft,'

=

m.a.p.f. of (y»+i"), [*=i] CM),

it is proposed in this Memoir to study tlie properties of tlie

two quantities N
n , N^ defined in (Jib) above with a special

view to their factorisation.

Tlie eight quantities above are all included under the

generic title of "n-aiis", whilst they will be distinguished as:

General n-ans

;

Sub-n-nns

;

Sub-simple n-ans; Simple n-ans.

N,„ N» ' -V„, _\7 Z„ Z,l H,„ //„'

The subscript n indicates the exponent of the algebraic

form: it will be omitted when not necessary to specify the

exponent, so as to simplify the notation.

It will be seen that the six forms Nn, N*\ Z
n, Z* ; Hn ,

H y

are only special forms of the General /i-ans N
FI

, N,\
The forms H, H^ are the only ones that have been as yet

much studied: the forms Zu, Z^ were studied in the present

Author's previous* Paper on this subject. It will be shown

that the forms Nn, N
t

y

here treated of are closely related to

the forms Z
n, /?„' of that Paper (being in fact generalised

forms thereof) and also to the forms H
n , Hn

\ The treatment

in this Paper closely follows that used in the previous paper.

The main divisions of the Subject are

—

General, Art. 1—5. Sub-Cubans, Art. 24-33.

Congruence Roots, Art. 6-16. Congruence Tables, C3-C1'.

Chains & Aurifeuillians. Art. 17-21. Factorisation tables, F3-F15.

Simplest A„, Art 23.

* "Factorisation of JV Si A" - (*" + //") + <x + y), &c. [when x-// = l], in the

Messenger of Mathematics, vol. xlix, 1919, PP- f—3ti.
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2 Lt.-Col. Cunningham, Factorisation of

la. Notation. All symbols here denote integers.

p, a, b, c denote odd primes, [a4=b4=e] ; / means an integer.

w, Q denote odd numbers ; t, e, E denote even numbers.

M.A.r.r. ; N, N', -V, A", Z. Z\ //, //' are explained in Art. I.

.v, v; x\ y are styled roots of-Y=0, .Y'= (mod/J & p").

z, !( ;
:', !(' are styled roots of Z=0, Z'= (Tnod ;) & p

H
).

ii, ii' are styled roots of //=0, /f = 1) (mod /; & p").

The accented letters .v', /, -', '"'. >)' belong especially to A", Z', H' ; but

the accents will be omitted when there is no risk 'if mistakes.

v= xy or vv' |a contraction for shortness' sake).

(x, r),
i
v', v'l are used as abbreviations for -V, -V, exhibiting the

elements .v. y, x' y.

m, M mean Multiples of.

t(u) denotes the Totient of»; r(a) = a-I, T(a 2
)
= a(a-t),-r(ab) = T(a).T(b).

A, A' denote an AwifeuUlinii (Art. 19) or Ant-Aurifeuilliaii (Art. 21).

lb. Working condition. To avoid unnecessary obvious

factors in N, N\ &c, it is assumed throughout that—
X and j', x' and y' have no common factors (3),

This involves that x.y and x, / are all prime to n (3a).

2. Simpler forms of Nn, X\ The Sub-n-ans (2/;) take

the following simple tonus tor the simpler eases of n = a,

a
2

, ab, 'J(o :
—

1°. « = a; A^= (.V -j") -f(.v -_>•); -Y' = (.v"+ r'Ma'+.V) (»«)

2°. n=a*; 2V= (x
n-y") 4- (*»->*); N' = (x»+y>) + (x»-+y*) ("').

ir (x"-V')(x-v) t.V+y)(x-t-y)
3. »-ab; -n'-

(j|!a_;)WKA.b_jrb)
. - -(.va+^aj^b+^b)-; <"'>

4°. )i = 2w; iV=M.A.p.r. of (.v"-j"') = m.a.p.k. of (.v
' +y )

(id).

The four Cases above are the only ones dealt with in this

Memoir. To have treated more complicated eases (e.g. n = ;\\

a
4
, &c; abc, &c. ; n= e, &c.) would have needed a Memoir

of great length.

3- N uj A" as filiations of x, xg. It will now be shown

that N and JS
S

can always be expressed as functions of /**

and xg.

It is easily seen that N, iV
v

are symmetric functions of x, y
of even degree, which can be arranged as a stun of pairs of

terms of form

—

NSs. A' = l, J, i.vv/"'. (.v
e'fr+/'^) (.5),

where e , = 2'"', P, = iu (5a),

a form which sufficiently exhibits the symmetry (in X, g).



N & i\T = (x"+yn) — [x+y), &c. [token x — y = n~\. 3

And, it will suffice to show lliiit—(under tlie condition

x — ?/ = ")— the quantity (.*;'' '>• 4 y
e
'l
3
') is always expressible as

a function of m*, .r_y. This may be shown by taking

e
r
= 2, 2*, 2

3
, &c,

; j3,. = 1, 3, 5, 7, &c, ..., in succession.

In what follows xy = « is written (tor shortness), and

x —y = n is substituted.

xl+y-=(x—y)1 + 2xy= n*+2v (6n),

A-»+y = (.v
2 +_)^-2i.vv) ! = n 4 + 4»V + 2r- (66),

x*+y*= (n.'+in'v¥2v*),-2vt (6c),

&c. = &c.

.v« +_y
6 = (.*3-y 3p + 2 (xy) 3

=(x-yf.[xi +xy+y'f+2{xyY

=n,(n«+ 3e)»+ 2*» (6rf),

,v'» fy» = (.v
2 + J'")

5- S.v'-YV +J'
6
) - 1 0*yW + J'5

)

=n l »+ 10»H» + 8S»,e,+50»V+25»*B«+ 2o» (6e),

x<>+y"={n,-(n»+3v)*+2v*Y-2v> (6/),

&e. = &c.

The mode in which these are successively formed suffices

to show that

(x
e'l' r +ye'P r

) is always a homogeneous function of n', xy (7),

whence it follows from (5) that

_V& JV" are always expressible as homogeneous functions of «*, .vy.-.(S).

3a. Linear forms of IV, JV\ It is known that— using M
to denote "multiple of"

—

n=a, a'-', a3
, &c, gives |i\7„=l +M(n) (9<i),

« = ab gives N„=l + M(n) (96),

whilst N„' = l + M {») always (9e).

3b. jy& IP as functions of n, v continued. The following

Table shows the quantities JV, iV expressed as functions of n,

and u = xy for all odd values of ;/ ^> 15.

8

5

7

9

11

13

15

N..

32+3»
i>

i+bt'{b-+v)

T+7v{T--n-r
9,+a»(82+o).(3.9a+»)
1 1 "+1 1 r{ 1 I =+»).( 1 1°+3 1 1V+4 11 V-'+r')

1

3

la+l 3»( 1 :;-+D)-( 1 3«+3. 1 3*iH-5.3V+S3
)

158+«( I d'-'+»).(7 1 5'+7. 1 b-v+v'-)

3-+«

b*+v{S.6Hv)
7 6+c(7-+D) (5.7-4 r)

'J°+Ul6» 4+il H'-V-H'-l

] l
l0+u(9.1 l

8+28.l l«iH-S5 IIV-4-ln ll-iHr 1
)

1

3

|,;
+i..( 132+i>).( 1 3»+34.iy8 i>+5(l.l 3V+20. 1

Z Jv'+v')

1

5

s+»(». 1

6

6+26. 1 5V+24. 1 a-ir+r3
)
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The following inferences seem evident from llie Table

(though not easily proved in a general manner). [Here t{h)

means " Totient of n "].

JV„ = »T (") + (•.</>,(«, -), N»=>An
)+ v.<h{n, v), always (11),

N„=n'r^l1+v{iii +v).<p(n, r), when u>3 (11«).

[The whole of the llesulls of Art. 3, 3a, 36 above merge into the

similarly numbered Results of Art. 3, 3a, 34 of the previous Paper, by-

writing x—y=n=l; and may also be derived from those Results by

introducing powers of u* therein, so as to render them homogeneous in »-, »].

4. Quadratic Forms. The numbers N, Nv

are known to

be expressible in the following 2
ic forms (when n has no

square factors)

—

»= 44+ l has N„ = X--»1'=, N.%=X^-nY" (12a),

N„=r-'-«.vvtT
-, NH'=T"+nxyU" (126),

»=4A—lhas N" = A'-' + «l'-, N» =X'*+hY" (12c),

N„=T2+nxyU*. N„' = T ,

--n.\vU'- (I2rf).

When ii = a", a
3

, &c, then a should he substituted for n

in the above formulae; and when n contains square factors

(as well as other factors) certain modifications are necessary.

The forms for X, Y, 2\ U, &c, for If
m, X v

are the same

as for the general u-ans N„, N„\ so need not be detailed here.

It will suffice to say that the 2
,c
parts (A*, Y, &c.) of A'

n , Ar

n

"

are not generally expressible as functions of X, y.

5. Factorisation by the Factor-Tables. This factorisation

of N, N y may be effected to a certain extent (up to the limit

of } N&N"^> 10,017,000) by the large* Factor-Tables: hut

this can he done only to the very limited extent shown below:

»= I 3 I 5 7 I 9 I 11 I 1.

5

t f (in A' 5477 85 17 16 6 '8
Limit of x { ... ii',i ,0 ,_ ,, .

( m A 3106 5S 15 14
J

5 ,

so that, to push it further, other means— (explained in next

Article)—must be sought

6. Congruence-Tables. Solutions (x, y, x"~, y
%

) of the

Congruences
N„=0, and N„' = (mod p Sep") (13),

for all primes [p) capable of acting as divisors of the forms

If
n
& N^ would evidently supply divisors of JST

n
& iVn\

It will now be shown how to find solutions (r, y), [x~,y
y

)
—

or (as they arc often called)

—

Roots of those congruences.

* Factor-Tables for the first ten millions, by D. N. Lelmier, Washington, 1909;
these extend to luiiKUOU.



N ds N y = (x" + >/") ~ [x + y), &c. [when x—y=n~\. 5

And, since tlie differences are constant, viz. x - y = xy —yy=n,
it will evidently suffice to record one —say x & xK

)
—of eacli

pair of tliese roots [x, y), (%\ >/) in Tables of Solutions. It

will be shown that they are intimately connected with the
roots of the associated Congruences

7a. Special divisor n, (or a). The Theory of Numbers
shows that

h is a non-divisov of every A'',,' (Ion,,

n is a divisor of every Nn , when—and only when—« = a (156),

a is a divisor of every JV
n , when—and only when—H = a" (loc),

'i* and a- are non-divisors of all A'„ and A'„' (lod),

As every iVJ, is divisible by either u or a (when >< = a, a2
, a3

, &c.) it is

convenient to deal in general (in those cases) in what follows with J;.A„ or

J.V„, instead of with A*„ itself.

7b. Form of divisors. Excluding the exceptional divisor

(n or a)—see Art. "ta— it is known that

—

Every divisor (7;) of N & A7 ' must be of form7>= 2wii + l (16).

7c. Number of roots [x, x) of Gonqruences. It is known
that

The number of incongruous roots (x, v') of each of the

Congruences (18) is =t(h), [u being odd]... (I"),

where t(h) means the Tolient of it.

8. Roots (x, X
y

) from factorisations. Every actually

factorised number N, N y

evidently supplies one root (x or xK

)

tor every prime (p) and prime-power [p") contained in N or

iV*: so that a few roots [x, x) of the Congruences (13) will

be supplied by the factorisations found from the Factor- Tables

(Art. 5); but this number is evidently very limited when
11 > 3 (see Art. 5).

9. Connexion of roots x, Xy

with 77, ?/. By a process

precisely similar to that used in Art. 9 of the previous Paper

(2, v), it may be shown that

*= -, *=-;—-; x=-—-, x =—- (moip &/>")... 18.
>j — 1 'i+l i) — 1 'j+1

Now extensive Tables* exist of the roots 17, rf modulo

* The Author has prepared extensive Tables of n, ij' for nil exponents n "£> IS

for all prime! and prime-powers ft & //* 3> 100000 ; most of these are in type, anil

printed off, in u series of se?en volumes styled Binominal Factorisations. Mr.
X. 01 Creak has prepared similar Tables for 15 to 40 for p^f> IUU11O, and in

some cases up to "")>/) 40000, or even 100000.

B2



6 Lt.-Col. Cunningham, Factorisation of

p & p". Thus the roots x, x may be computed from the

known roots •>;, if by means of the Congruences (18) and this

affords one of the readiest means of computing x, x.

9ii. Connexion of roots x, x" ivith z, z

.

Nn= gives (ylx)
n= + 1 (modp); Z„=0 gives (w/s)"= + 1 (mod/>).

Hence y/x=ui/* (mod;;);

Here y=x— n, andw = :-l; whence x =nx (mod p) (l8o).

Similarly it will be found that x' = uz (mod p) (186),

and similar results may be found for the modulus p".

By these simple formulae (18a, b) it is easy to compile

Tables of solution (x, .'•') of the Congruences (13) from known*
solutions (2, z) of Z= 0, Z' = 0.

From Results (18a, //) follow the important consequences

that all relations between several roots z, * are easily con-

verted into similar relations between their corresponding roots

x, x\ and—in particular

—

Homogeneous relations between several roots z, z' are converted
into the similar relations between x, x' by simply
changing z, z into x, x ( 18c).

The Results 19a—of Art. 10—of the previous Paper will

accordingly be converted into t lie similar theorems for the

x, x of the present, and simply stated below (without separate

proof)

.

[To facilitate comparison the previous Results bear the same numbering
as those from which they are derived in the previous Paper: noting that

the .v, .v' of that Paper become the z, z' of the present Paper'.

10- Conjugate Roots [x
r, x

t ),
(re ', a','). The whole set of

l'oots ,r, and similarly the set of roots x\ may be grouped in

pairs (.«,., rej, (.r.', xf) derived from [i}
r, i)

t ),
(?;,.', jjJ where

»j r.'),= + l, and ii,.'.i/
1

' = + 1 [mod p oi p"

i

(19).

From Art. 10 of the previous Paper, it follows that in the

present case

—

xr+x,=n, ox p + n, (or p*+n) ..(20a),

.v, ' + .»,' = ", or p+n, (or p" + n) (206).

These results show that it suffices to compute one-half of

the complete set of r (n) roots of each kind (re, x) ; the other

half being obtained by simple subtraction from ('20a, b).

* A set of such Tables were given in the previous Paper for all odd values of
« = 3,5, 7, 'J, 11, 15 for all primes (p), and prime-powers ^^ T> 1000 : the ar, x
of those Tables are changed into z, z' 111 the present Paper.



2? & N s = (x" -r-y")-r (x + y), &c. [when x—y=n~]. 7

11. Associate Roots. Let x
r, x

r
' be the roots obtained

from the "associate pair" v
r
, i),, which are such that

v r +'h'= 0, (mod p or p
K
) (21),

Then from Art. 11 of the previous Paper it follows that in

the present case

—

.v, + .17' = 2.i\ r ,
(mod p or p«) (22«)>

AV . .vr
' = iia-j,

,
(mod p or p*) (226),

ljXr+ l/x,
x= 2/», (mod p or p') (22c).

The above three Results are true for all values of r (prime
to n), and may be used as succession-formula for computing
the complete sets of roots (x and x) of any prime [p), or

prime-power (p
K

) from one given root x or x

.

Thus jEj'j or x
{
, may be computed from a given tr,, or x

t
\ by

, (mod p otp") (23),
'-2.v,-«' '" 2 .

and x
3
may be computed from

x2 =},(.\;xi'), (mod p or p
K
)

(23a),

and the formula (22a)

.v, = A(.v, +*,'), (mod p or p") (236),

may be used as a check on the work, and so on.

12. Simpleformula for X (n prime). Take

X K

=>i+ ii
3 +>>'i +...+')'*-2 (24),

Then from Art. 12 of the previous Paper, it follows that in

the present case

—

x' = X', (mod p) (24n>.

This formula is easy to use for computing x' (when n is prime),

especially when n is small, ill which case it takes the following

si in pie forms

—

« = 3
3(n,', 5(>ir+i3

')
7('ll' + >ls' + >?s') ll('ir + 'l3' + "s' + 'l;' + 'i 9

') (244).

[But, to use these formulae at all conveniently, it is necessary to have
Tables of i/' airanged* so as to show each root i;,-', along with the index r,

showing thereby its derivation from ni- Any root may then be taken
for '),', and the corresponding ij/ can be pretty easily picked outj.

There appears to be no simple formula for the roots x
similar to the above for x".

* The Tables I. for each value of n in Iteitscble's Tafeln Complexer Primzaklen,

dc, give the roots of the m.a.p.f. of y
n-l=0 (mod p) arranged in this way for

most values of n<f 105 for all suitable primes p> llOJ. The present Author's
Tables of i), i;'—(quoted in footnote of Art. 9)—are arranged in the numerical

order of the roots ij, ij' ; so aie not convenient for tlie purpose of this Article.
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13. Sum of Roots. From Art. 13 of the previous Paper
it follows that here

v(.v) = I(.v'
)
= £„.t(„), [for p & ;-*] (25).

14. Product of Roots. From Art. 14 of the previous

Paper it follows that here the Residues of the continued

products of the whole set of roots .r, and of the whole set x,
are as shown helow :

n=& gives n(-v) = »i

T("
,
~I

; U (v') = «
T( " >

(mod;)) (26a),

« = a* gives n(*)=a ; D (x')=n ' (mod p) (266),

»= ab gives \\ix) = n
{n)

; U(x')=n ("' (26c).

[These results may be used as a Test of the accuracy of the Tables].

15- Congruence- Tables. The Tables* C
n
, C 5

, C
7
, C

9
, &c.

—

at end of tliis Memoir—give the complete set of roots (x, x)
of both Congruences Ifn = 0, JV'= (mod p & jf) for the

'

odd values of n — 3, 5, 7, 9, 11, 15 for all primes and prime-

powers [p & p") proper to each index n, up to p & p" If- 1000.

16. Factorisation-Tables. The Tables* F., F„ F„, F„,

F
]5
— (at end of the Text)— give the factorisation into prime

factors— (as far as found possible with the means available)

—

of both I? & iV' up to following limits of X, X—
n = 5, 7, 9, II, 15;

.v & .v'> 1ST, 60, 74, 43, 49.

The aids to factorisation used were :

—

1°. The Congruence-Tables quoted ill Art. 15: these have enabled all

divisors ^> 1000 to be cast out (none available for n = 13, 17).

2°. Certain Numerical^ MS. Canons (2"'«, '.','"'\
.6
0r

», ..., 11°'!'), which
<;ive the residues (/?, both +) of x' (mod p & p

K
)) for each of the Bases

2, 3, 5, ..., II, up top & p*> 10000; and up to the limit r = 100 for Base 2,

and r=30 for the other Basts.

These Canons have enabled all divisors ^> 10000 to be cast out when x~?f>\\.

16«. Explanation of signs (., ;, :, ?, t, i) in the Tables

F F
1°. A semi-colon (;) on the extreme right shows that the factorisation

(into prime factors) is complete.

2°. A full stop (.) on the extreme right shows the presence of other

(unknown) factors (each > 1 000).

* These Tables were computed partly by the Author, partly by an Assistant

(the late Mr. R. F. Woodward) under the Author's superintendence, Every root

/, ., was checked by one of the Rules in Ait. 1 1.

t These Canons are still in MS. They await funds for publication! They
were computed by an Assistant (Mis* A. Woodward) under the Author's superin-

tendence. The -""J and 10"'" Canons have been computed also by Mr. U. J.

Woodall, A.R.O.Sc. The two copies have, been collated.



N & IT = [x
n

+f) - [x + y), &c. [when x—y=n~\. 9

3°. A colon (:) in the middle is used to separate two important algebraic

factors, e.g. Chain-Factors, or Auriieuillian Factors (Art- 17, 18).

3V A bar (|) in the middle is used to separate the two factors (X- A ) i

{X + A) of the form (X2 -A*) ;—(as in Art. 22).

4*. 1 he signs (f, ;) on the extreme right show that all factors < 10 3
,
10 4

respectively have been cast out.

5°. A query (?) on the extreme right of a large factor (> 1
7

)
shows that

the composition of this factor is unknown (but it contains no factor < 10*).

17. Numerical Chains. Let N,, 2V„ N
3 , &c.,* be a series

of composite numbers, each formed in the same way from a

pair of elements (x, y), so that

—

A,=/(.v„j,), Nt=f(xt,yt), iV,=/(*„j»,), .... Nr=f{xr,yr)=LrAfr...(2S),

wlien the functional operator (/) is the same throughout.

When the factors (L, M) of every three successive numbers

{N
r _v Nr, Nrll)

are so connected that

A/r-i= £r, Mr
= L rn (for all values of >) (29)

then the numbers (N
r)

are said to be in chain] : the series is

styled a Chain-series] , and the factors [L, M) are styled

Chain-Factors^.

The salient properties of such Chains are

—

-aWV--^, J£» (30a),

iV
1
iV!iV,...iVr L,

^.v^v,...^,..,^,, =LM / 304 i

N^t
Jf,...Jf»

N^N, ...Nr=L,(LtU— Lr?.Mr
= Li(M iM1 ...Mr.if.M, (30c),

X
l
X„N3 ...X,= 0. if Z.Ur=a (30a!).

17«. Arithmetical Nexus. An interesting variety of this

last occurs when £,= il/
r ; this gives

Nl
N.lh\...Nr = (L

x
L1L 3

...L,)''=(M
l

M.JI1 ...Mrf (30e).

This variety is styled an arithmetical Nexus. If repeated

to left and right, it forms a continuous periodic chain, thus

the Nexus N„ N
t, N

3
in which L

t

=M
3
gives

... Nu N„ Ift , JV„ Nt, N„ JV„ Nt, N„ ...

and any three consecutive members of it form the same Nexus,

thus
A,, Nt, y3 ; Nt, Xj, N, ; 2VS,

-V,, X. are the same Nexus.

Notation. In numerical work the Chain-Factors [L, M) of a member
(iV) of a Chain are separated by a colon (:), [ihus /V=91 = 7 : 13] ; so that

this colon is really a special sign of multiplication].

* The N„ A2 , N„ <fcc, of this Article are not necessarily of the type of the

N, -V of this Memoir, but are conditioned only as litre suited.

t These terms were introduced by the present Author.



10 Lt.-Col. Cunningham, Factorisation of

Examples of Chains. These may be formed by the simple

Paile explained in Art. 32 of the previous Paper. Simple as

the Method is (in principle), its application—when subject (as

now) to the condition x—y = n—is practically limited to the

cases of Sub-Cubans and Sub-Quintans, as the numbers (N
u )

rise so rapidly as to be beyond the (present) powers ot

factorisation, which is an essential step in Chain-formation.

Examples of Sub-Cuban Chains will be found in Art. 30/;.

Here follow a few Examples of Sub-Quintan Chains and

Nexuses. The following notation is used for sake of brevity :

(x„yr) = (xf



N& N^={xn+yn
)-=r{x+y), &c. [when x-y=n~\. 11

When N or N" = P 2 - Q\ it is styled an Aurifeuillian*,

denoted by A: and, when N or N' = P' 3 + Q'\ it is styled an

Aut-Aurifeuillian*, denoted by A'; and the condition (32)

producing A or A is styled the Aurifeuillian* condition.

And, since x, y are supposed mutually prime (Art. lb) this

condition requires that x, y should be one ot the forms

—

x= t-, nu~, au2 , hvz
, aT 2

, bi"2 (3-lrt),

y = nu'
1

, T-, t-, t 2
, hu2

, an2 (346),

but,—in the case of Sub-H-ans

—

X, y should both be prime

to m, so that the conditions (32) violate the "working condition'"

(Art. lb). This shows that

J. N and -V cannot be explicitly either an A or an A' (35).

It may however happen that—with certain indices (n)—
one or both of -^A*, JV"' may be expressible in some other

way in form N or N' (with different x, y of course) to which

the Aurifeuillian condition (32) is applicable. This happens

markedly in the case of Sub-Cubans (n = 3), as will appear

later (Art. 30a, 31, 32) : it is not at present known to happen

with other indices (n > 3).

19. Aurifeuillians (A^. These are the more interesting

of the two functions (A, A) introduced in Art. 18; as
;
.'A,

or A7
', being then (algebraically) expressible as a difference of

squares, is hereby always (algebraically) factorisable into two

factors, say L, M : thus

—

i.^Vor N-=X=r--Q' =LM, [Q=nrvK, or a-ruAT, &c] (36),

L = P-Q, M=P+Q (36a).

The two factors, say L, il/ are styled the AurifeuiUia it-

Factors of A, and have the property

L and M are both expressible in the same pure 2 1C forms

as their product A (37).

[In numerical work the Aurifeuillian Factors (L,M) of an Aurifeuillian

{N) are separated by a colon (:)—(see Note at end of Ait. 17)].

21. Ant-Aurifeuillians (A). These are of interest

chiefly as giving the algebraic expression of 4A7
", or N\ as a

sum of squares— (which materially helps factorisation)

—

}i.y or y=P"l +Q'-, [Q' = htv.K', oraxu.A'', &c] (39).

* These terms are due to the present Author: see his Memoir On AuviftuiHiam

in Proe. Lunil. Math. Roc, vol. xxix ,
1898.
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The following general relation holds between P, P' and

between Q,
Q

'.

If P = i// (x, y), and Q = >|/(.v, r) ; then

P'=\^(x, -y), and Q'=if/{x, -y), and vice versd. ..(iO).

22. Simplestfaclorisable Nn. Take x=l\ y=v'\ and—
(for sliortness)—
Let (.v, y)„, {.v, y}„ denote the m.a.p.f. of (.v"-v») and (.v"+.y")> in general.

ThenN„= (A-,^)„= («
2

, »
2
)„ = (S. »)„.{£, *}»=L.li (41).

Thus N is resolved (algebraically) into two factors (L, M).

The restriction £*- rj'= x -y= n of this Memoir permits

of extremely few cases (i.e. possible values of |, rj) tor each

value of n, depending in fact on the factorisation of u itself

into two factors (say n = I .n; n = a . b, &c).

i. u= l.n; has only one case, Z, = \(n + \), n = — \(n—\),

giving K — '! = ", 5+ 1 = 1.

L is of form .<V„, and has the factor a when « = a, a2
, aJ

, &c.

;

and is also of form H' (see Art. 1).

M is of form jVH\ and is also of form JI {see Art. 1).

ii. n = V- 1 =(-V + 1) (X- 1) has also one case, £ = \, i|= l.

giving 5-»j = \+ !, > + ii = ,\-1.

Here i is of form H\ and M is of form // (see Art. 1).

iii. »=a/3, [a, /3 may be composite, but without common factor}, has

also one case ;

g = J(« + /3), i,= -|(a-/3), [a>/3], giving ?-.)= a, |+ t) = ^.

The above include all the (at present) completely, factoris-

able cases; as, when n is > 15, the factors L, M become

generally too large for the present means of factorisation.

The Table below gives the complete factorisation of all

the cases at present possible.

Case
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23. Properties of Sub-Cubans {Nm, A',/). The following

Articles are devoted to developing the properties of Sub-

Cubans iXui,Niii). These are so numerous—compared with

those of other indices (»>3)—as to require separate treatment.

They are dealt with as follows:

—

General properties, Art. 24, 25 I Aurifeuillians, Art. 29—33
Factorisation, Art. 26, 27

|
Perfect powers, Art. 28—34.

24. Cuban Identity. Every General Cuban N,,,-, NW can

be expressed in three equivalent Cuban forms, one of N,,,,

two of N ,•,;', viz.

N..-i=
J = =i-±J- =N,«, identically, [z=X+y] (43).

x-y z + x z+y

As Nm is always divisible by 3—(Art. 7a)— it is con-

venient to deal with i .Nm in future in place of Nm-
Introducing now the condition x — y='S of this Memoir,

l.Nai and Nui become

_ r 3 -t 3 _ x^+i 3 _ x 3 + r*
* '"~ r-i ~~ x+i ~~ x+r

where X=.v-1, r=y-t-l, A'-r=l, [.v-)' = 3]...(43«).

,,3_;i3 3- 3_q3 3-3 i ,.3

.T,„' =^— = ^_i»^±», [x-r/ = 3] (434).
y-3 x+ 3 x+y' l J J

Hereby j-V,m has also the form

§-ft'.a=ff«.= HW (43c).

Properties latent in \.Xiu , Ni;i are in many cases obvious

in one or other of these equivalent forms. This leads to

many properties peculiar to Bub-Cubans, which obtain in no

other Sub-x-ans.

24d. Various formula for \Nm, Nat.

iNm=y,+3y+3=x'-2x+3=x*-xy+y,-6 (44a),

= Y>+Y+l=X*-X+l=X t-XY+r* (44a'),

=HiU =H;d ("a"),

.\
i,;=f- + Sy + 9 = x

,'-Zx+9=x--xy+y^ (444),

|iVi«=*y+3; Nm'^xy+9 (44e),

Hence iV...'-JA'm = 6, always ('4c').

24A. 2
ic

forms {A, B) of Niih NHi
'. All Cubans can be

expressed in the 2'° form (A' + SB 1

), the precise form depend-

ing on whether x or y is even.
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In the case of -A
7
,-,;, Nm this takes t lie following forms

—

(noting tliat one of x, y must be even, since x — y — n = o>)

—

i-V.v, = (i)f +3(i)' + lr, X.,' = (i)' + 3)' + 3(i.vr, [>=«] (45«),

= (J.v)'-' + 3(i.v-l) !
, =(i*-3)*+3(4*)», [*=«] (455).

and it is here seen that

§ATmha»B-A=l, 2VW has A-B= 3, [v ==] (46a),

„ „ A-B=l, ,, „ B-A=3, [.v = f] (466).

These suffice to distinguish Sub-Cubans iV,„, N^' _/Vo/n

each other, and also_/yw« a// other Cubans N ,-,,• us follows—
Every N=A*+3B* with A - B = \ is =f2V«i (47a),

Every N = >t I+3i?1 with J. - B = 3 is = JVi« (474),

No other N = A- + 3JJ 3 can be either J-iVja or i\V (476).

24c. Expression of a given number [N) as \Nm or Nui-
The Results ill Art. 246 make it easy to test whether a qiren

number is a Sub-Cuban, or not, and to Hud its elements

A, B, x, y.

\o. If the given .V=i.V„„ tlien A? + 37P = X, and A-B=±l.
Solving lor U gives B = j{ •/(4iV-3):p I 1, [»ne of the + signs givesi? = /]

And A = B±\; [one of the + signs satisfies A*+ 'SBi= N"\.

Lastly, x = 2A when A>B, y = 2A when A<B.

2°. If the given A=.Y„,', then A* + 3B'= N, and A-B= ±3.

Solving fori? gives _# = J( V(4A— 27) + 3); [only one ofthe+signs gives B=I].

And A=B±i; [one of the signs satisfies Ai+3Bt= N].

Lastly, x = 2B when A<B, y= 'ZB when A>B.

Ex. Given iV=400060003 ; li A'=JA',,„ then B = \ { \'[i.\- 3)+ I ) = I 0001
j

^ = 100U0 or 1000J; 10000 satisfies A-+ 3B'l-N.
Lastly, A<B gives y = 20000, .v = 20003.

25. Equality of \N, U . Nm. Results (45a, L) shew that

there are only two eases of \Nui = Nai, given hv X=l, or

y =± 1, viz.:

,13 _ ]3 13 i ^J 9 3 + fa
»°- ^•" = iTT = 7 =7T^=V^1 = ^v '-<48a J-4—1 1 -f- 2 2+i

K3_ O.I 4 3 4. 18
2°- i^«= .i -_2 =13 =^-=^' (486).

2 6. Factorisation of Nm & Nm'. Table Y'ia give the

complete factorisation of lNiU and iV;,;' up to the limit ot x
and x <lh— (sufficient to show the sub-uuban properties)

—

with the values of X, y from which they arise, and the

elements (A, B) of their 2
i0
partition (A' + SR').
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n
)
4- (.«

+

y) , dse. [when x-y = v]. 15

The highest numbers IN,;;, Xit!
' within the range of the

large Factor Tables are given by u; = 3 1 6 6 , viz.

:

, 31663— 31633
i^ui-k-- —-=29'7-3433;J '" J 3166-3103 ' '

J+JJ

., .
3i663 + 3i°3 3

iV.,/ = =7-73- '9397 ;

3160 + 3133
/J *"'

The form ^.V,,-,-,—owing to its variant form l.V,,;=(F 3 — 1)-^(I'— 1)—see

(4 3rc)—can be completely lactorised up to the limit .v = 10002 by aid of

certain special Congruence-Tables of (ii
3 - 1) — ('i — I)s0 (mod p),— (quoted

below*)—and in very numerous cases up to much higher limits. Here
follows an Example of each kind :

—

,.. iJy<8= h
93979»-9397» 93977*- 1'. „ gl
93979-9397^ 93977-1

7929203 -792qi; J 792gi83 -i 3 „ .

2- ',^in=\--—J- —-= — 3 = i3 99829484459;3 "' 3 792920-792917 792918-1
J ^ """

The form N;u may often be reduced within the power of the large

Factor- tables for values of .r>31(i(i by aid of the Congruence Tables of

[x'3+y 3)-^-{x' +j')= (mod p) at end of this Memoir (when factors <1000
exist.

9078 s' + 997822 9978;'+

3

3

£ x 2Vm=- = i^L_3 — =37.43.997.6277;"'"
99/85 + 99782 99785 + 3

i/43 -9y '- '"

27. Simplest Factorisable }Niu . The form -lNiU lias one

obviously factorisable Case :

—

In formula (43a) take Y=>i*, giving .v = >r + 2, y=ij'-1 (49).

Then—by (43a)—

ij\- ='i!zl= "Izl . '£±-=L.M, (.uppose) (50).
'/"—I 'j— 1 n ¥i

Here—(by 43)

—

L, M are seen to be

l /" + '>
3 -<"- 2

>

3

,
J/=l<" +

2
»

3 -
("- 1)3

(50a),
(,_!)_(,_2) '

3
(., + 2)-(.,-l)

so that here L, M are consecutive members of the }-Niu series.

Hence 7; must be of form q = <V, fl"d "sing suffixes of iV

to denote the value of the element x in \Nm,

,,. ,
(.)' + 2)

3 -(^-l)3 ,„,„ ,,, (5m

or, in words

—

The product of every pair of consecutive j-V.v;—(with ,v = 3p + 1, 3p + 2)

—

is a member of the same series with x = (3p)'-'4-2 (SOt'),

and the series of r.V,, .,„ contains the whole of the members of the

jW.-.i series in order, and without repetition (oOrf).

* fables of Least Roots (>j, ij') of (i|
3 + 1) v (ij + 1) = (mod p & p") extending

to p & p«^>10< compiled by the present author, contained in vol. i of his Binomial

Factorisations, now at press.
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The Table shows examples of the result (50a
7

): here, for

shortness

—

[x, y) denotes I (x
3 — y

3
)

-5- {x—y).

(X, y)

L:M
(*ityi).(*s,y2 )

0_ 3 6 9 12 15

(2,1) (11,8) (38,3a) (83, SO) (146,143) (227,224)

1:1; 7:13; 31:43; 73:7.13; 7-i9:i57; 211:241;

(1,2)(2,T) (4,1)(5,2) (7,4H8,o) (1U,7)(11,8) (13,i0)(14,ll) (16,13)(17,H)

The highest number of this kind completely factorisable by the larger

Factor-Tables is given by ij=3162, viz.

JA'31G2M-2 = ' A
'31tf3

: 3^3104= '• I9"3-337: 13 7&Q339 i

Special cases of much higher numbers can be formed by aid of the

Congruence-Tables quoted in Art. 26.

(110 I ° + 2)
J -(110'°-1) 3

1 1
0'-— 1 110 IS +1

Ex. rake*-, = 110=; *
(ll01. +a)_ (ll0 .._ 1j

-
jj0^1 ' TT^Tl

= 121 1; 54 I.I 2421.2 1031.150301:7. 571 531.61.4021.2844761401;

28. Perfect powers in ^Nm cD Nm, and in their products.

„ 83 4-5» .

,JViu = —= 7 is the only square.

',.v„

8 + 5

20»-17»
7
3 is the only cube.

But

20-17

.'.A',,-, & A',,,' have no higher powers.

43_p 20 3 -17 3
, b 3 + i 3

, 20 3 -17 3

4-1 '

!

' 20-17 b + 5 20-17

Similarly higher powers of 7 may be formed of products of JA',,,- & A*,,r\

Also by Result (506) it is seen that

[Further Examples will be found among Auriieuillians, Art. 34],

29. AurifeuiUimi, cfcc, forms of \Nm. With lielp of

the forms (43a) it will be found that \Nni yields Anrifeuiliians

and Ant-Aurifeuillians of two kinds.

30. Cask 1°. Take y= 3ij*; then Result (43a) gives

r»-i 3 (3ii')»-i3
lN«i= ——- =

;

—

—

=9i,i + 3,j+ i, [a Trin-Ani-Aurifeuillian}.{5\),
I'-l 3ij--l

={3.|'-l)'+(3'lP=P"+e'!=4'. .(51a).

30a. Case l°a. Take X—St, 2

; then Result (43a) gives

A'» + l
3 (3J2 i

3 -M 3

;,•,•; =—L— = *— _ = 9P-.3r + l, [a Trln-Aurifeuillmn (52),A+l 3J- + 1

= (3^-35 + l)(3r + 3?+l) = L.yl/=A (52a).

* This example is taken from the Author's MS. Factorisation-Tables of (>|'H1)
j

it has 41 figures.



N & IP = (.r
n + f) + {x + y), &e. [when x-y=n\ \'<

...(53).

.(53a),

Now take £r
= 1, 2, 3, ..., r, in succession, giving

&.=&.+ !: Nr=Lr.M„ Nr+l =Lr».Mrt,

Hence AT, = 3Jr
- + 3£r + 1 = 3?r+1'- 3f, +1 + 1 =Zr+1 always....

showing that—
The serie6 N,—(given by £P=1, 2, 3, ..., r)—is t're chain, [Afr=ir+1]...(54).

3 Oft. Factorisation of Case \°a. Table A gives the

factorisation of this Case

—

[with x=X+\, X=3^s

]—showing

£, x, y, 2, and the Aurifeuillian Factors L, M resulting up to

f = 20. It will be seen that the series of \N
i(i

is 2« chain

\_M
r
=Lni throughout].

The highest number (-J.V,,,) factorisable by the large Factor-Tables is

given by £= 1825.

(3. 18252+ \f-(3. 1825'- 2f _ (3.1S25*)' +

1

* "i_ *' (3.1825+ l)-(3.1S25-2) ~ 3. 1825- +

1

= (3.i8252 -3. 1825 + 1) (3. 1S25- + 3. 1825'+ i)

= 1021.9781 : 7.13.61.1801

;

The highest number certainly within the powers of the Author's Con-
gruence Tables of (ij'+ 1)-^(»)+ 1)=0 (mod p),— [see Art. 26]—is given by
£ = 57734; but the labor would be considerable (from the great number
of trial divisors).

Ex. Take 5=2";

lW«i= \-

24577*- 24574" _ 24576' + 1 '

24777-24574 ~~
24576 + 1

,
[has 18 figures].

= (3. 2
,»-3.2 i»+i)(3.2« + 3.2

1:>+i) = 7. 19.547.2767: 31.307. 21 157

Trin-Aurifeuillian Sub-Cubans. Tab.

.v-y = 3, A' = 3£2
,

*' = A' + 1; ±Niit = L.M.

1
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30c. Perfect square products. Using a subscript r to

denote t lie value ot £ in the Auriteuillian Series (Case l°a),

take r = 1, 2, 3, ..., r in succession. Tims

= (L,L.L3L4... Lr)".i[r ,
(since the series is i« cAai'«)...(55<i),

= (L.,Li l i
...L

:

.)-.M,., (since iV, = 1:7, giving t l
= l)...(55i).

Now yJ/r = 3?/+3i,+ l=J a suppose,

where (2»)
2-3(2?,+ l)'= + l (56).

Comparing this with the solutions (t, i>) of the Pelliain

Equation t* — 3v" = + 1, gives

%,=H»-\), i = iT (56a).

Every solution (t, i>) of the Pellian with t even and i> ofW

gives a suitable value of t;
r \ Xr

= 3£
l

.'
)

a-
r
= A'.+ 1, y r

= x
r
—3.

The Table below shows the values of fr,
z
rl

x., 2^ arising,

from t = e, v = a>, giving M
r
= z", and 7r (A7

,.)
= D.

j 1

2, 1 26,15 362,209 5042,2011

1, 13,7 181,104 2621,1005

x„y r 1, -' 148,145 32449,32446 3.1005'-+ 1,3. 100-5=—

2

Ex. Take r = J,.= 7. The symbol (x,y) is here used to denote %N;
.

n(i.V ; ) =
N"?2 '

N,*""' N'= {1, t) (13, 10) (28, 25) (49, 46)(76, 73)
*•>•> — * (1U9, 100)(14S,

= (1.7.13.37.61.7.13.127.13)'.

31. Case 2° (of \NJ. Take X=%% Y=irj\ whence

*=|»+l
I 3- = 3 .j- — I , x-y = 3, Z-y=?2-3'j==l (57).

Formulae 43a give

,
(3^)

3
j-2_*= (S')»+

1»
( *?)» + (3.)')*

3i
'"

3u
a— I £

2 + l ?"+3>(
«

= 9.,
,+3ii*+l = £

4-?,+l=54 -3?2
.|

,r

-r9i|« (58a),

= (3>i'-l )%(3,,)- = . ..=(£'-+ 3v
2)'--(3.,)' ....(5S6),

= A' = A = LM (58c);

showing that this -JiV... is both an Ant-Aurifn. and an Aurijn.

Here L = J*-8£i) + 3>i
a

, J/=«+ 3£>> + 3>r (59).

Now take £r, 7j
y
successive terms of the Pellian equation

f -&»•= +!, givinb

.Nr=L,:Mr
,

Nr+,= Lm .Mrt,



i\
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Here £, Tl = 2f,+ 3u,., >i„
t ,
= £,.+ 2>i,. (60),

;l/r = &*+3?,-.|.+3>i,«, /.,.„ = $>_, -3?.. +i >i I.. 1
+3.ir

«
(60,7),

and hence, by (57 to 59) J/,=L, +1 , o7«(y* (606),

showing that tliis series of N
ai

is in chain.

315. Factorisation of IN..., Case 2°, The Table below
shows the successive elements (£v, »j ) of the Pelliau equation

s
1 — 3ij

: = +1, with the values of x, y, X, Y thereby given,

and finally the Aui'ifeuillian Factors (L
r
, M

r)
of the successive

hN...O lit

r
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32/'. Factorisation of Case 3°, Table B gives tlie

factorisation of this Case— (with x = %')—shewing £, x, y and

the Aurifeuillian Factors L, M of iV...' up to £ = 25, and also

the Sub-Cuban element (line ;r, y) of £, If. It will be seen

that both series of N.
{i
— {with £ as in (63a, J))—are in chain.

(M
r
— L

rtl
throughout;.

The highest number N
{i

- factovisable by the large Factor-Tables is

given by £=3163, * = 3163!
;

Km
(3I63')'+(3163 2 -3)» (3163')»+ 3'

__
3161»-1» 3164»-1»=£ M

3I68"+(3iti3'-3J 3103*43 ~~ 3161-1 ' 3164-1

= 7.19.223.337:2917-3433; (14 figures).

2V«

Trin-AurifeuiUian Sub-Cubans. Tab. B

= (a?4J'
s)^(* + v)=(*>+3»)^-(*+3)

x-y = 3, .v = £-; Nui = L.M.

?



N $ y = {x
n + ij''

l
^r{x + y), fc. [when x—y=n\. 21

Every pair of adjacent members (JWP, ^.Vrt3 ) of the \"Nm series are the

LrMr of the corresponding number of the AV = A series (6"<i|.

The product of every such pair l',.Y,, J.Vr , 8 ) = the corresponding .V,.'.(676).

1 he complete A7
,,/ series is made up wholly out of the |.\\v, series, and

contains the whole of the members thereof twice over (67c).

34. Perfect square products. Result (64) shows that,

taking adjacent members of either Series of -gNm with the

corresponding XtU

itfr.iiWA^Ii^.iA^)'^;' (68).

Also, since each series of N..,' is in chain, and since jV, =1:7

and N,=l:13, it follows that ihe continued product of either

series taken alotig with the last J/
r
= l^7

,.+3
is a perfect square.

/A', V, JV N V
(ivy, A',', AV, .... AVMAV 3 = (^-' .

-f
. -j... T'J ,

[r=Sp+l]..(68a).

|AV, AV, .V,', .... -V,). i.V,.. 3 = (^' . |
5

. y
8
... ^ J,

[. = 3p+2]..(684).

Errata in the previous Paper, Vol. xlix, 1919.

/><7y« Tab. p. Col. For Read

31
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Least Roots (x, x) of (x
z
-\-

y

3
) -r- {x-hy)\

[(*-ji)= (*'-/) = 3].

Tab. C3.

eO (mod p & p").

X



N& Ny= [x*+f) 4- (x+y), &c. [when x-y=n]. 23

s

Tab. C5.

Least Roots (.c, x) of (x
b +yb

)
4- (x+y) = (mod p& p').

[x-y=x'-y=5].

X
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Tab. C7.

Least Roots [x, X') of [x
1 + f) ¥ {x +y) = {mod p & f).

X



N& N K = (x"+y") -T- [x + y), &c. [when x-y=n~\.

Tab. C9.

Least Solutions (as, x) of (x° + y*) 4- (x
3 + y

3
) = (mod p &p").

I



Lt.-Guh Cunningham, Factorisation of

Tab. Cll.

Least Roots te, a?
1

) of - ^zr~ =0 {mod p & p
K
).

[when x —y= 11].

o -tooo — m rh *3- — riNN -i-n loco o
w O CO r- O <^CO OO 0»^ti>O^N "flNvO

*i roroeorO**"',;t"OOOCCCO i-l—

— "- m "" co r^*

M fON 'Tl't ^"O O ^t^O O O

CO* cc" O O CO* CO f7 O* O r"-
O* CO ^ M CO O N

- w N N rO ro «-0 lo iO -^i- O lOO O

O "41 co fOO -O'^O" <"0 O ^£ C*> w" ^ fO - J> O- ^J-O - N OX CO NMfl-MiM MOO
— ci W M M m rO er) Tj- -st- i-n ui -O lo

CO ff CO C*. ro O — C*- LOCO rC N N iri O^ N O
« ro lo O O CO ^ i - 10 <*- ~ co co ;n n -

- w d N w N fO fO -t ^ ^ ^ ^^
«£ O* r ". «-T C*. -4- i-*.

<-"
C?> CT ^ n"O lo <"> O O

w ro-^-O "lO -^"SO CM-NCO »^30 ^J
"CO

CT-co* **^ r'o'co"" f~ l^" -r ^t- <"•"> " O r-. "- *« N
« MO H lo m co r- u-) C* -f M — "" '"I f '

_i ~ n _ — ts cj N f) f1 fO fO *

cc" -r- O -* -4- O* o" O 'n ~*C £ -4- xT -r w O
h- ro r-CQ O — O m i^ K O* - O C* CO CO

_. _ _ rj w m n n ro

rote* — cr* ^l « — ** nuin O m i -O t^C?

cm o » oi ro -o as — -o — - /- ci ocp«;ffl

tM iflO C) OS ro-O O - ^-CO - * O- - -£>N
M O CO O O «->~ C-O O ^* 'i" N ^ O C1

* CO^
». rowinro TO O "-OO CO l-CO On

J" _" ac" ^ •-* CO* * Th ro "
* l^ O C~- — f^lCO N

W O •- N* N O Oo CO t~- ' - O "* t>0 —
M CI ro f) CO ro CO UO -3- ^3 I -- _ CO CO

p*
rA iC 1"

1 *x" 1" o" 10 o *--d"o'-o »oco ^d"
_ l/

.' !„ H 10 — *rf- O LO M CO O _r O C^CO
i-t w cj ri M fo-fOtO loo i-~i^.

rT 1^. -t- LOO* C*\ "- 00* —' aTO O ro«^)r^OO C>
in _*. i-^ -h i_o O " "1" *i-0' '— 'O ^r — <-J — rj-

— M m W N ro rO ^ **" ^O LOO W r^

O -" N rf- i
"

lo,CO*" N r^ —" LOO -t ^ o' O T
— toO 1^ CO loOoo 1— O LOi-rt "-^30 O O_ M ^ m - n mrnm^n-rrTff-n^

iC toco* o" loo* o" *4- t-C r-* r*.00 -J- lo rTcO CO
n no^-+o r^OO — — — — — ir>c^

M — (m ,- M wrorocj -^--^-rr*%

O* rCo" 1*00" i-*.o* ro C*0* lo »o t- 10 O po
>-. C4 CT^^J ro CT> rO *^0 lo lo ro O "^O I- lo

— wWNN — rOMNN

ifl fO "T'l i^i -* H -st
1 C*i C-'OC CO *"' *^" 1 ^ O

i- W CT'CO roO ro — CTO <"> «^*) lo 01 O 1-.

1— *. »— !- W — Mm - m

^ rC cT 10 -*O ^O >^" —* lo -" C? c" c*. O O
MCOO O 1— rj- G"' <M "N N — Gn CN

— M fl — -• M —

H* ,1 ^yf fO^jM if) f^ T -t ^ -t ™ — r^)0



N& N" = (x"+yn)^(x+y}, dr. [when x-y = n\ 27

Tab. 015.

Least Roots {x, .c) of (.c
15+?/

6

) [%+y)+ [^Ty
5

)
{x

3+y
3

) =
(mod p dkp).

[x-y = lo~\.

'H



J8 Lt.-Col. Cunningham, Factorisation of

Tab. F3a. Tab. F3i.

Factorisation of

\N= Up* - .v

3

) 4- (*-y). JV> = (.r'
3 + ?/

3

)
- (* + y).

[x-y= 3]. [v-v = 3].

* y



N& Ny= (x
v
+y") + (x+y), die. [when x-y=n\. 29

Tab. Fba.

lN = \{x i -y>) + {x-y), [x-y = 5].

x y
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Tab. F5b.

N'=(xb + if)+{x + ij), [x -y= 5].

x y



N ds N" = {x
n
+y*) -f [x+y), die. \when x— y = n\. 31

Tab. F7.

Factorisation of } jS=]{x
i -/) -=-(# ->/), N' = (x

1 +y 7

) -r {x+y),

[.v-y = 7].

X
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Tab. F9.

Factorisation oflN=l{x*-y')+(x
3-y3

), N' = (x? V y*)+[a?+y
l

),

[*-.y = 9].

X



N&N y = {x" +y") 4- [x +y\ ctv. \yihi n x-y = »]. 33

Tab. Fii.

Factorisation of ijN= ]

ij(x
n —yu

)-i-(x-y),

and Nx={xll + y
u)+{x+y).

[x-y = U].

[All factors > 1000 cast out].

X
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Tab. Fl5.

Factorisation of N & N=[xK+y1>
)(x+y)-i-(x

i
+y

i
) (#*+/).

[when -v—_y= 15].

X
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.(2).

dx' dy' dz' dt'

dx ay oz at

The dependence of /' and therefore of [x'y'z) on (xyzt) is

defined by t' = t— r j V, wliere

r" = (x- Xy + (y-y'y + (z-zy (3).

It is not proposed to give in detail a proof of (1), but it may
be well to state that it turns on two properties of t'

,

W,

fdt'\' fdt'\' idf\' 1 fdfy , v

5
3' d

s
a

8
1 a

3
i . 2

where Vs = Vr —1{x -x)x , x being -7-7-. Also the corre-

sponding properties of s are

\dx)
+
\dJ

+
[dz) v 3

ds\'_ V - Ex" + 22 (x - x) x \

ft

and

a*

}

{

a*

dx
1 T ay ^ a«

a

f' a<*

2{r 8-Sa:"+2S(>-a:');r
|

Pa
(5),

dxdx~
+
dydy

+
dz dz V 1

dt dl
=

' V [
'

is a connecting link.

In virtue of these equations the harmonic operator twice

applied to any function of t' yields a zero result, except at

the source.

§ 2. In dealing with radiation at the surface of a very

large sphere the harmonic operator may be simplified. For

if (xyz) are replaced by polar coordinates {r0<pi) the differential

n a
1 £)

2

coefficients involving d and contain r'\ — — -^-, ^-, yields
o a or
2 9

V de
no term; thus only the section — s- remains and is equivalent

2 3
?

' S ''

to — 7F- sr . Hence at a sufficiently great distance we may
Vr dt

J &

write

(F, <?, £&*) = -£ I (*\y\ *\-F0 (7).
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The position is now that if expressions for (x'y'z't') in terms

of [xyzt) are obtained, the potentials are got by differentiation

with regard to t only. The same applies to radiation at the

surface of the sphere, for when r is great the energy-content

E is given bv

}-m+^m-(m <*

an expression essentially positive in virtue of

dj,_xdF i^dG z^dH
dt
~ r dt

+
r dt

+
r dt

'

., , , , dF dG dH 1 81
,the torm assumed by \- 1- -

r + •=> -^- = when r is

ox dy dz V dt

great. At the same time (3) is replaced by

t' = t-rj V+(xx' + yy' +zz')IVr (9)..

Another form for energy-content at a great distance is

In dealing with several moving charges e (x', y', z, t") must be

replaced in (7) or (10) by the sums of the several contributions,

all expressed in terms of (xyzt)

§ 3. In illustration of the method we may deal with linear

oscillatory motion, and with the circular motion of one or

more charges. For the first case z' = acosa>t', and then (9)

becomes t' — t— rV' 1 + a F" 1

cos 6* cos wt, or, multiplying by &>,

t=t + pcost', if r = wt! , T= di [t — rV~l

), p=a&>F~' cos#

(11).

The problem of expressing t and cost' in terms of t and p
may be solved by Lagrange's expansion, and the result is

t' = t + 2{/
1
(jo)cost- J/3 (3/j)cos3t+...]
- 2 {U

2 (2p) sin 2t - \J
t (4p) sin 4x +...

}

COST = 2/(0 {/.(p) cost-\Ja {$p) cos 3t+—}

-2/ p \±J,(2P)s\ix2t - iJ^ip) »\u4t +...}

sin t' =£p + 2 [J
t

'

(p) sin t - JJT' (3p) sin 3t -...}

+ 2 [±J
t

'

(2p) cos 2t - i .7/ (4p) cos 4t +. . .
j

(12),
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the last required in tlie next example. Thus

-77^7)[l/.(p) sillT - J
3 (

3P) sin3T+-l

+ {./J
(2p)cos2T-J

4
(4p)cos4T...}] !

eostf

4>=- - -[{J"
l
(p)sinT-J

r

1
(3p)Bin3T+...} I

+ {«7s
(2/>)cos2t-J

4 (4p) cos4t ...}]'

(13),

expressions which show a complete series of harmonics* with

coefficients small when oaa/Vis small. For the fundamental

period the mean value of E \s 2e'io'V~'r~' tan*r?J*(p), or when

p is small ie
2a>VF~V~3

sin' t), giving a radiation . 73 , viz.

— VEr's\\\dddJ<h. The harmonic sin 2t gives

—

zjr when
47rJJ

f to 15 F1

aa/V is small.

§ 4. For the motion of a charge e in a circle we have

x =a cos (ait' + <j>), y = a sin (toi' + ^'),

while

t'= t—r/V-\ {V.v' + yy')jVr= t—rjV+aV~ l
sin 0cos(w«' + ^'—

0),

where (''#0) are polar coordinates of ixyz). If then we write

T ' — oit' + <p' — <p, t=(d [t—r/F)+ ^'-
</>, p = a>aF~'sin(?...(14),

the relation hetween t'tp is that of (11).

It is proposed to deal with n equally spaced charges in

a circle, so that <j>' has values
O , o

+27t/h, ^ +27r(»i — l)/»i;

and we may use t = a> (t — rjV) + <j> n
— <j> so that t has values

t
(j
, T + 27r/(i, ... for the several charges.

It is convenient to calculate B = Fcos<j> + G sin and

S= G eos</> - Fa'n\ <j> instead of F\ G ; that is

r. e a , , i . .A = -rr ^- [X cos + y sin 0)

m 3 , , , , « 3 ,

--pr §;«>•(•«+*-;*) or pr^CMT.

We are therefore concerned with

R= -tv .-2 cost, /S=i7r - SsuiT, i£ =— - Sr ....(15),
Fr ^ Fr dt '

Y wr dt

* In Hertz's solution tlie harmonics do not appear because the variable state

at one fixed point is treated as bource.

VOL. LII. D "-'



38 Mr. Hargreaves, Electromagnetic potentials & radiation.

the summation referring to the separate charges. In Scost'
the sums containg multiples of r other than n, 2n, ... vanish,

while the sum containing n as multiple will have all its terms
equal, viz. cos)!T

9, and the sum is ncosiiT^. If we ignore

multiples 2n, ... it is sufficient to note that in (12)

2
for n even Scost' contains - (- 1)*" J

H
(np) sinnr^,

P
2

for ?i odJ - (—1)"" l)J
n [

np) cos)it
8 ;

P

for n even SsinT
1

contains — 2 (— l)
in J' (np) cos»T

n ,

for n odd 2 (- l)
1 '"-'' J

x
' (np) sin ht .

The corresponding terms in the potentials are then

R = .(-!)*y.M cos»iT for H even,

=7— - 1
"'" , " w;

sin iit„ for n odd

2riu,>a ..„ T , .

o = —p— (— 1)* «/ (»/3)sm?!T for )i even,

...(16).

+ -y— (- 1)"" } Jn (»)/>) cos htb
for m odd

??£ 2//£

^/ = — (- l) 1"^ (wp) cos»iT for n even,

2*>»
- — (- 1)

! >" l) Jn (»p) sin»iT for n odd

Thus the fundamental term has the period 2Trjna) in which

the electromagnetic conditions are manifestly reproduced.

bmCe
b7J + U"J =UJ +l^j,»n«P"»'onforthe

mean value of the radiation for this period can be given.

If we were not concerned with the potentials the formula

for radiation could be derived directly from (10) and (12).
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PARTIAL FRACTIONS ASSOCIATED WITH
QUADRATIC FACTORS.

By Prof. E. H. Neville.

The calculation of tlie fractions associated witli a quadratic
factor Xin a rational function <j> (x) / X"ip (x) is usually thought
to be prohibitively laborious in numerical examples. The
object of this note is to describe a straightforward process that
has been applied successfully to examples with n as large as 3

and with \p(x) a quartic.

Let us take X to be px*+ qx + r, and let us suppose the
degrees of 0, ip to be I, vi. The various coefficients are
assumed to be integers, and the work is arranged to prevent
the entrance of numerical fractions at any stage. Some of
the operations, though of course valid in any case, have no
other point, and we describe the work throughout on the most
unfavourable hypotheses. In particular, we suppose I and m
to be not less than 2n — 1, and q to be prime to 2p. Trivial

steps are given in detail, in order that an exact idea of the
whole amount of labour involved may be conveyed. Greek
capital letters denote always polynomials whose actual coeffi-

cients there is no need to calculate.

Multiplication of <j>, \p by p'~ l

,

p'"~ l

is sufficient, though not
always necessary, to provide polynomials that we can divide

by X, to the point of finding remainders linear in X, without
introducing numerical fractions. That is, we can determine
rapidly two polynomials f^ \p and two remainders a -c + b

,

cjc + d^ such that

p'y = ye + K + X^„ p'-'ip = c
a
x + d, f Jfy,.

Applying the same process to (j>
t

, i£p which are of degrees
1—2, m — 2, we have

P
l
~V i

= a
i
X + b

, +X$* f'^x = c
,

x + d
x +X<Ps

and n operations of this kind, which can be arranged in the

manner familiar in the use of Horner's method, give

p^ = (o
iar-i-»,V

m+ (°.*+*i) P"'
r~"X+("*x * k)p

x-3" d
X'+...

+ («„_,*+£,_,) A"-' + X'T',

W^fa+eQf* l +(c
t
a*d

l

)pr- ,t
X.+ (cjii I d,)p»^

m
"X*+...

+ (<V,*+< /„,)^'""' +^"X
where \ = n (I — v), /i = n (m — »),

and r', A' are polynomials.
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We now express X, or a numerical multiple of X, in the

form ?/— k, where k may of course be negative. If q is prime
to 2p, we must take

y = 2px + q, h= q'— 4pr, y
7= k + ipX.

We write then

2p™t=(a<t
p*-l"+a

l
.p™«X+...+ an_ l

X~>)(!,-q)

+ *4> &PX~!+1
+ &

I

/",z<*X+...+&n_,Z
B-1

) + XT,

2/^'* = (e.^ 1 + c, p'^ 4X+...+ c„.,A'"-)(y - 2)

+ 2p «p'
J -"' +1 + rf,p'

x ~""' 4X+. . .+<_,A" ') + A'"A,

and we have

2;/'> = Jy + B+X'T, 2/
41

^ = Cy + D + Xn
A,

where

5=(2p&, - ja.1P^ + (2/*, - 5a,)/-^Y+...

Z>= (2pJ - qc
a)
p"-"" 4 (L>7, - ?CJp—A+...

+ (2M,-,-^,- 1
)A-"-

1

.

Thus, identically,

y> = Jy + g+AT = {Ay + B)(Cy-D) + X"e'

f^ ~ Oy+L> + A"A Cy-J)' + X"<t>'

(
BC-AD)y+{AC(k+4pX)-BD}+Xn

G'

G-(k + 4pX)-B'+X', 4>' '

where 9', *' denote (Cy — D) r, (Cy - D) A, and are them-
selves ultimately polynomials in x. The various sums and

products must be evaluated as far as terms in A"" 1

, and if

we write

BC-AD = u + u,A+...+ «„_,A"-' + A"A,

A C [k + ivX) -BD = v„+i\X + ...+ » HA"
H + A"Y,

C {k + ipX) - D'=w
t
+w

l
X+...+ wB_,X

B-' + Z'O,

p*d> Lx +M+X ne
we have ~L

I
=—^77—

—

^nr.— ,

jf\ft iV + A"4>
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where

L = 2pu + 2pu,X+...+ 21m ii
_ l
X"-\

M= [qu, + i>„) + (qu, + v
t
) X + ...+ (qu^ + Vl) A'""

1

,

JV' = w + w
t
X+...+ iv^X" 1

,

and 0, 4> are polynomials into wliich 9', <t>', A, Y, 12 are all

absorbed.

The final step is effectively a division of L and M by JV,
and to avoid fractions we may have to make the substitution

X=w
t
Y \i\ these three polynomials. We have then

L = 2pu
l>
+ 2pu

1
w

l>
Y+...+ 2pun_1wf-

1Yn-\

M={qu
ti
+ v ) + {qu, + »,) Wt

T+...+
(2»„_,+O w^ 1 Y-\

N' = wJT,'r '

where JV= 1 + w
t

Y+ w,w
t
Y'+ ...+ wB_iwo"~"

r"~ 1
-

The effect of the division of L and M by JVas far as the

term in I'""
1

is literally to determine polynomials F, G of

degree n — 1 in Y, such that

l = ##+ r-n, j/= gjv+ r»s,

where n, 2 are polynomials in Y, and therefore also in x.

But from these relations we have

k>„ (Z# + 71/+ X"Q) = (Fa; + G) N' + m> Y" {Ux + 2 + w "e)

= (Fee + 0) (JV' + Z"4>) + Z"£,

where £ = w ""+1 (n# + 2) + ^,,0 - (Fx + G) 4>.

Thus, finally,

w, (Lx + M+ X n
Q) Fx+G 3

Xn (JV + X"<t>) X" JV' + A"1* '

that is, if explicitly

F=fB +AY+f,T'+...+f^Y»-\

then identically

p
x»W _/,**, , ./>±i, . ,

/-,*+.?.-
,

si(Cy-D)

p»X"xP(x) w
t
X H ^ io;X n-l_r" <Z 2wyn^(x)'

The form of the result shews that when Cy-D and £ are

both expressed in terms of x the one is a factor of the other,
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but although the steps of t lie algebra would le;\d by direct

operations to S, it is primarily for the calculation of the

fractions involving A' that the process is designed; for this

purpose the only intermediate functions that have to be found

explicitly are those denoted by A, B, C, D, L, M, N, all of

which are polynomials in X of degree not higher than n — 1,

however high the degrees of <j> (x) and ip[x).

The explanation has heen arranged to establish incidentally

the existence of the fractions. In practice of course the poly-

nomials whose coefficients are not necessary are simply ignored,

equivalence for the purpose in view being substituted for

absolute identity.

The details of the arithmetic in an actual example will be

found in an early number of the Mathematical Gazette.

POLYGONS INSCRIBED IN ONE CIRCLE AND
CIRCUMSCRIBED TO ANOTHER.
By E. C. Titchmarsh, Balllol College, Oxford.

The relation between two circles, that an infinity of

polygons of a given number of sides can be inscribed in

one and circumscribed to the other, can be expressed as a

relation between the radii of the two circles and the distance

between their centres. Some quite simple cases of such

relations appear to have been overlooked.

Poucelet's general theorem for two conies can be expressed

as follows. Let the conies be

(S) Ax'+ By 1 - Cz' = 0,

{S') A'x' + By'-C'ss'^O.

The condition that the tangents to S at the points

^)cob«: /ysin«:lj,

w (i)cM(JiJ(£)«ul3:l\
lii

cosP:VUl s"" :

i

should meet on S' is

a cos a cos (3 + l> sin a si n |3 — c = 0,

A' B C . A' B' 6"
wliere a=_____, £ = __ + ___,

A' B C
A B +

G
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Hence, if a polygon of n sides can be circumscribed to S and

inscribed in S', the n equations

a cosc^coso:^, + b sina
;
sina

i+1
— c = (t= 1,

o

where a„, ,=<*,? must be simultaneously satisfied by values

of a,, a
3
, -.-, an

which do not differ by even multiples of v.

This 13 only true if a certain relation exists between a, b,

and c.

For n = 6 the relation is

( * - LVl _ JL ' J:\ fl I-I^l-o
V a b cj \a b c) \a b c)

and for n = 8 it is

/ 1 1 1 \ /l 1 1 \ / 1 1 1\ a

If we take the limiting- points of two circles to be (±/, 0),

their equations can be written

{S) (/+ .9) (* +/Y + W- 9) (•« -/)' + $# = 0,

(S) (f+g) {x +/y + (/

-

g) (x-/Y + 2//=0,

so that here

a=f+l_frl_ h J = _.f+/ +^-i,
y+.9 f-9 J+9 J-9

^J+l-ffl + u
J+9 J-9

If j- is the radius of 4?, R that of S', and d the distance

between their centres, then

r' = g'-f\ R' =r-f\ d' = (g-g')'.

Eliminating/, g, g', we have

a + 5 = -2, aJ = i{2,-2
(ff + ^)-(^-^T), c=^^"-

Using these expressions, the hexagon condition

I « 6 c j \a b cj
becomes

3(5s
-rf')

i -4r, (S,+ ^)(jB*-^y-16r4
JB^'=0...(i);

111^
and - + t =0

a b c
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becomes (R' - d*)* - Ar\V = 0,

i.e. R'-d' = 2rd (ii)

or R3 -d !=-2rd (iii).

The octagon condition

1 1 1 > / 1 1 1

becomes

{(E, -dy-2r'(B, + d')Y

= l6(R*-dyrl {r*-2r 2

{R* + d !

) + {R'-d') i

\...{\v);

1 1 1
and -+--- =

a c

becomes {If- dj = l&R'd'r\

i.e. {IF-dy= iRdr* (v) .

or (IP-dy—lBA> (vi).

Tlie formulae (i) and (iv) are well known, but tlie remainder

do not seem to have been stated before, at any rate explicitly.

The various cases in which real polygons exist may be

represented by graphs. We need only consider positive

values of R, r, and d. Take r to be unity ; then the case

(R, r, d) can be represented by the point x= d, y = R. In

the part A of the first quadrant, bounded by the axes and

x+ y= l, S' lies entirely inside S, which never gives a real

polygon. In the part B between x — y=\ and Ox the

circles are separate; in the part G between x — y = — l and

Oy, S lies inside 8'
; in the remaining region D the circles

intersect. Each relation between R, r, and d gives a curve;

eacli branch of such a curve lying in one of the legions B, C,

D represents a set of cases in which real polygons exist.

For both hexagon and octagon, each such branch has as

asymptote one or other of the lines x — ;/ = ±l. For the

hexagon, (i) gives a branch in B and one in C, (ii) gives one

in D, and (iii) one in B. For the octagon, (iv) gives two

branches in B and two in C, and (v) gives two in D.

Cayley* observes that for a polygon of 2/« sides the complete

relation breaks up into two factors—one corresponding to the

case in which a degenerate polygon passes through a circular

point at infinity and an actual intersection, and the other to

that in which it passes through two circular points or two

* Phil. Trans. Roy. Soc, 7 Marcli, 1861.
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actual intersections. This latter factor always breaks up
again into two. It' the circles are

(S) x* + y> = r',

(S') (x-df + tf = R\
the abscissae of their intersections, and of all the other vertices

of a polygon which starts from an intersection, are rational

functions of R, r, and d. If m is even, the hnlb vertex must
lie on S' on the line of centres; that is, if X is its abscissa,

(X—df = R\ If m is odd, the \ (m + 1)"' side must be per-
pendicular to the line of centres and touch S; that is, ifX is

the abscissa of the i (n + l)
Ul

vertex, X 2 = r\ Jn each case
there are two factors.

Some of the above relations can also be easily obtained from
a consideration of the figure when the polygon degenerates
into a double line, starting from one intersection of the circles

and ending at another. Jn the case of the hexagon let P, Q
be these two intersections, A the pole of PQ with respect to

S, and let AP, A Q meet S' again in M, N. Then MN must
must touch S. Jt P, Q are the circular points at infinity,

then A is the origin; Al\ AQ are x + iy — 0; MN is

- 2dx + d* = R\
j'i r>s

and this touches S if - ;— = + r.
2d ~

ON CURVATURE, TORTUOSITY, AND HIGHER
FLEXURES OF A CURVE IN FLAT

SPACE OF n DIMENSIONS.

By R. F. Muirhead.

For simplicity I take a curve as the limit of an equilateral

skew figure ABCDE... when the common length of the sides

AB, BC, CD, etc , tends to zero.

A

nil < • t • s,n ABC „,. . . .

1 lie curvature at A is Lim - . 1 he tortuosity at A is

ab-*o AB
T . a\n(ABCD)

, . , ,—,™ i , i-, i i i

.Lim — , where \ABCu) denotes the dihedral angle
ab->o AB
between the planes ABC and BCD.

When the curve lies in space of higher than three

dimensions it has a flexure of another kind, which is measured

s\n{ABCDE)

AB
by Lim-— -, where {ABCDE) denotes the angle
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between tlie lliree dimensional flat spaces containing ABCD
ami BODE respectively. This may be called its flexure ot

the third order, or, more briefly, its third flexure, curvature

and tortuosity being the flexures ot tlie tirst and of the second

Older respectively. We may denote its measure by
3

.

This nomenclature may be extended indefinitely. Thus
the flexure of the n

lh
order of the curve at tlie point A is

given by

<j> n
= Lim
a»a ,-»o

*m{A
ll

A
l

A
t
...A nAM )

AA
where (A„A,A„...A A ,) denotes the angle between the flat

M-dimensioiial spaces containing the figures A
Q
A

l
A

1
...An and

A
t
A

t
A

t
...A%A ntl

respectively.

_T ,
.

a 2 x Area ABO , .,. „ 1# ,Now we have sinABC= . „ ,,,,— , and it DM be
AB.BO '

the perpendicular let fall from D on the plane ABC, and DN
the perpendicular let fall on the line BO, we have

. DM 3 x Vol. A BCD 2 x Area BCD
S\H (ABCD)=-— = -r-

v ' DN /irca AbO DO
3 ! x Vol. A BCD 2 ! x Area BCD

' 2!x Area ABO '

5G1

and if £.1/ be the perpendicular let fall from E on the space

of ABCD, and if EN be the perpendicular let fall from E on

the plane of BOD,

sin [A BODE) =J^
4! x Content (ABODE) 3! x Vol. {BODE)

2!x (Area £G'iJ)
'

3!x Vol. {ABCD)
And generally

sin (4,/l ,...i",AJ

_ (n+l)lxCo. (^.....Q .
nix Co. (A-A,J

h!xCo. (A
u
Ar ..A u)

' («-l)!xCo.(4,...J„)

(» + 1)! pi.- 1)! x Co. lA
t
A,...A„,) x Co. {A,A,...A

n)

(« I)" x Co. (^,4,...4J x Co. (i/l,..^,,)

Thus

_ (
(^l)!(,i-l)!xCo.(^ ...^„JxCo.(.4,...J„) 1

}

9
-~aXZo\ WC».(A

l
,A r ..A n

)xC<>.{A
l

...A
nJ AA

= Lim
(, + l)!(»-l)!xCo.K

1
...^„ )

xCo.(4-^,y
[»!xOo.(4

1
..J1|)

,.V,
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since Lim \
2

?ir= 1 for il11 values of/;.

Now it is easy to sliow that if x, X
a, ..., x

n+l
are the

co-ordinates of a point on the curve, referred to orthogonal
axes in flat (n + l)-dimensional space (in 8n+l

let us say for

brevity), and x, lb, x...xlP) the 1st, 2nd, 3rd...ptb derivatives
of x with regard to the length of the arc from a fixed point
on the curve to the point in question, then

Lim
.•Mi->o

(n+l)\Co.(A„A,...A
ntl )

lA.A,\(n+>nn-2);2

and we can prove that

^,,^ol {A
e
A,y*n-W

<n+ l) x (
h+ i,_ _^("

+ ')

...(1),

+ similarly formed squared determinants, leaving
out successively the suffixes 3, 4, ..., (n+ 1)}...(2).

In fact the content of a simplex of n dimensions (which has
n + 1 vertices) is the square mot of the sum of the squares of
its projections on the n + 1 mutually orthogonal co-ordinate
S 's in S ,,

.

[Also the content of a simplex of p dimensions (with p + 1

vertices) is the square root of the sum of the squares of the
contents of its projections on the (n + l)!(n+ 1 —p)ljp\ 5"s
which contain respectively all possible p-combinations out of
h+1 mutually orthogonal axes in $

l+1
. I do not know

whether these theorems are known, but I may mention that
I have found a good straightforward proof of them based on
the generalized theorem of Pythagoras.]

It iollows that

'/' •(3),
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where D denotes tlie determinant forming tlie right-liand

member of (1) ; and D
n

tlie similarly formed determinant of

the n
th

order and the 2 prefixed to it denotes summation over

all determinants of the kind.

D , denotes a similarly formed determinant of the (n— l)
tVl

older with any two of the n -t 1 suffixes omitted, and the S
prefixed to it extends over all determinants of this kind.

We can combine tlie preceding results in various ways.

Thus if r! x Co. {A
t
A,. ..A

r)
be denoted by Cr , we have

t- °,
9i
= Llim ~Q*Q '

T- C,

0,0 3
=Lim -qj

S

q ,

t- G
,

c.
4>i<t>i'"

,
t>r
= Lim

g r1l
'

t •
G«»

0.
Again »,

V*.
0V-.0.= Lim

Q^ +̂*)}

When n = 2 this becomes 0,'^^Lira j^, which is well known

in the form '

x V z

.(5).

1

x y z

x il z

- being the curvature and - the tortuosity.

March, 1917.
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NOTES ON SOME POINTS IN THE INTEGRAL
CALCULUS.

By G. H. Hardy.

LVI.

On Fourier's series and Fourier s integral.

1. There are three familiar representations of an arbitrary
function associated with Fourier's name, viz.

(1

)

/ (x)=iL,
f
*"/(*) cos n (t - x) dt

(wliere e
n is ^ if n= and 1 otherwise),

(2) /ce)=Iim- f{i)—~ '-dt,

X-**, IT J_<x> t-X

(3) /(*)=; f<fy f f(t)cosy(t-X)dt.
7T J J -oo

These are (1) Fourier's series, (2) Fourier's single integral,*

and (3) Fourier's double integral. It is with the first two only
that I am concerned in this note.

The conditions under which (1) and (2) are valid are, so

tar as the behaviour of f(t) in the neighbourhood of t = x is

concerned, identical. This is of course well known ; but there

is a simple formal relation between the two formulae which I
have not seen established generally.

2. Suppose first that/(;r) is a trigonometrical polynomial

V if

id„+ 2 (a cosnx + b s\nnx) = ^A n + S A ,

and that \ is positive. A simple calculation shows that

, . 1 f
°°

, „ . sin X (t — x) ,

(
4
) - /(O t \ }&= s vA*

tr J -oo t — X n <\

where vn =2 'f « = or n = \ and i7„=l otherwise. The
integral is defined in the ordinary manner when \ is non-

* I follow Prof. Hobson's nomenclature : fee his Theory ofjunctions of a eal

variable (first ed.), p. 760.
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integral; but when \ is an integer it must be defined as a
principal value

(5) Hm f,
7'-»oc J-T

as it would otherwise be divergent.

.Suppose that \ is non-integral. Then the value of Fourier 's

integral is the sum of the terms of Foiwiers series whose rank
is less than X. It is this result which I wish to generalise.

3. Theorem 1. Theformula (4) is true for every periodic

and iutegrable* function f(x), provided that the integral is

interpreted as a principal value when X is an integer.

We may suppose that ^xS2tt, since each side of (4) is

periodic in x.

Suppose first that N<\<N+\, where N is an integer.

Then, by the ordinary formulae for Fourier coefficients,

(6) s , A = l f

27r «"(-y+*)(*-»)

b<a " " 2tt Jo sin£(« — x)

On the other hand

sin\(f — x) .

(7)
f

/(*)•
J -co

f(t)dt.

sin X (t- x)

t — x t — x

-co J t — X + 2A-7T

if this series is convergent. Let us assume for a moment that

the order of summation and integration may be reversed.

We havef

_ ~ sin X(t-x + 2Z.-7I-) _ sin (N+ j)(t- x)

t — x + 2kv(8) + (\)= 2
2sin£(i— x)

There are certain terms in the series, namely those for

which h is — 1, 0, and 1, whose definition fails for particular

values of t and x. Jt is to be understood that such a term is

then to be replaced by its limiting value X.

The formula (4) follows at once from (6), (7), and (8), and
it remains only to justify the inversion.

It is sufficient tor this purpose to show that the series (8)

is boundedly convergent, that is to say that

(9)

K sinX(<—x + 2kn)

-K' t — xv 2kir
<A,

* In the sense of Leliesgue.

t Bee, for tiainnle, Biomwich, Infinite Series, p. 257 (ex. 19).
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1

where A is a constant, for 0^t^2ir, 0^x^2ir, and all

positive integral values of A' and K '.

As each term of the series is individually bounded, we may
ignore the terms for which k is - 1, 0, or 1. We have then

1

t-X + 2/ciT

1

2&7T

t — x

x sinX(< — x+2kw)
t — x + 2kir

<A +

(t- a;+ 2/c.tt) 2kw

* s\n\[t-x + 2kTr)

2/ci

cos\(t— x)
Ks'\n2\kir

2 k
+

ITT

, .
K cos2X//7T

sinX.(<— a') 2 -.=A+
:

<A;
and the same argument may be applied to the sum from —K'
to — 2. We thus deduce (9), which completes the proof of the

theorem when X. is non-integral.

If A. is an integer JV, we have

2 77 A
'n n 2ttJo I

s»n(N+$){t-x)

^{t-x)
-cosN(t-x)\f(t)dt

=
hr \l

S 'nN ^ ~ X) COt
* (< ~ *M ® dt

>

li

s\nN(t — x + 2kv)

K-»ao -K t — X+2/ciT
= sin N(t- x) lim 2

Z~K t — X + 2/iTT

= I s'm N(t — x) cot^ (t — x)

;

so that our formal analysis still holds, the integral being
interpreted as a principal value, and the series in the special

manner indicated above. Also, if the terms for which k=— 1,

0, 1 are omitted from the summations as before, we have

£ s\nN(t + 2/l-tt)

-K t — X+2/cTT

x 1

s
-JJ- t—X+ 2/.'7T

K
2{t-x) 2

1

(*
<A,

x)'+ 4/fc'V

so that the inversion is still legitimate. It is essential here

that our special definitions of the series and integral should be

adhered to, neither the proof nor the result being valid with-

out them.

4. A similar argument establishes

Theorem 2. If
%a + 2 (an eosnx + b

n
sin nx)
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is the Fourier series of a periodic and inteijrable function f{x),

and \ is positive and non-integral, then

Jo X 1<«<\ 1

n— X I

n + \\

5. It appears tlien that, if f{x) is any function integrable

over (0, 2tt), and F(x) is tlie function defined over (— co
,
oo

)

by periodic continuation, the problem of expressing /(#) by a

Fourier's series is identical with that of expressing F(x) by a

Fourier's single integral. We cannot extend this equivalence

to Fourier's double integral (3), without some generalisation

of the definition of an infinite iutegral, since

F{t) cosy [t — x)dt
J -00

is not convergent.

There are similar expressions for the Rieszian means of

the Fourier's series of/(.e). Thus

7T J -oo {
X —I J l<n<K

is a formula for the Rieszian (or Cesaro) mean of order 1.

This formula has however been established already by Young,

who has given similar formula? for the Rieszian means of any

positive order.*

It should be noted that there is a serious difference between

(4) and (11), or any of the formulae given by Young. These

latter formulas are direct deductions from the general theorems

which I considered in Note 55, since, for example, the function

9

has bounded variation, and a convergent integral, over the

whole interval (— co , co). Neither of these conditions is

satisfied when
. , sinXa;

so that Theorem 1 is not deducible from the theorems of

Note 55.

* See hi* papers ' tjbei" eine Summationsmethode fiir die Fouriersche Reihe
'

(Ltiyzigir Berichte, 43 (1911), pp. 869-387) and 'On infinite integrals involving a

generalisation of the sine and cosine functions' {Quarterly Journal, 43 (1912),

pp. 101-177). Young lestiicu \ to be an integer.



Mr. Macaulay, The dissection of rectilinealfigures. 53

6. There is a theorem concerning the allied series

00 00

S (h
n
co$nt — an s\nnt)= S B

n
H=l 11=1

corresponding to Theorem 1.

Theorem 3. Iff[x) is any periodic and integrable function,

and ^.B
n

is the series allied to the Fourier series off(x), then

1 — cos\(<— x)1 r
7T J _oo

dt= S 77 B
,'it n'

t— X ]<n<\

where rj
H

is i if n = X. and 1 otherwise. The integral is an
ordinary integral if a

n
— and \ is not an integer/ otherwise

it is a principal value.

It is unnecessary to give the details of the proof, which
will present no difficulty to anyone who has followed the

proof of Theorem 1.

THE DISSECTION OF RECTILINEAL FIGURES.
(continued.)

By W. H. Macaulay, M.A.

Major MacJIahon's study of repeating patterns has

suggested a simple proof of the rule which I have given*

for drawing the "broken" lines of what I called a hexagon
dissection of a pair of rectilineal figures of equal area.

A repeating pattern is a figure such that any number of

figures identical with it can be fitted together to form

a tessellation, without any gaps. A triangle is a repeating

pattern which requires reversal to form a tessellation, half the

figures having one orientation, and the other half having the

orientation obtained from this by turning them through two

right angles. A parallelogram is one which does not require

reversal, all the figures having the same orientation. A
hexagon with two opposite sides equal and parallel is one

which in general requires reversal; but if all pairs of opposite

sides are equal and parallel there is no reversal.

Take two hexagons of equal area, each with a pair of

opposite sides equal and parallel, and such that they have

a common core; the core being the parallelogram formed by

joining the middle points of the inclined sides. With each

hexagon form a tessellation, and superpose these tessellations

* Messenger of Mathematkt, vol. xlviii., p. Kil.

E2
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in any way wliicli secures that tlie angular points of the cores

of one tessellation coincide with those of the other. There

are four distinct ways in which this can he done; and in eacli

of these superpositions, the lines of either figure dissect eacli

hexagon of the other figure into parts which can he rearranged

to form the other hexagon. What 1 have called a hexagon
dissection is thus obtained. In general some of the dividing

lines of each hexagon are broken, so as to be made up of

several parallel portions, and the rule for drawing such lines,

which 1 have enunciated, is easily seen to be correct. Every
dissection which is given by the hexagon rule could also be

obtained by contriving a suitable pair of tessellations.

By the same procedure we obtain dissections of an endless

variety of repeating patterns, rectilinear or curvilinear, which

are derived from the hexagons, or other fundamental recti-

lineal figures, as bases, in the way which is indicated by

Major MacMahon in his recent book, New Mathematical.

Pastimes*
It seems to be likely that all the dissections of pairs of

independent rectilineal figures, in which the dividing lines of

each figure, whether broken or unbroken, are equal and

parallel to half-sides of the other, can be obtained by a single

superposition of tessellations. Such dissections form a dis-

tinguishable class. Two or more successive operations of

forming tessellations, and superposing them, give certain other

dissections without this characteristic. By independent figures

1 mean figures such that the dimensions of one have no relation

to those of the other except the equality of area.

If each of two hexagons, of equal area, and with a common
parallelogram as core, has all pairs of opposite sides equal and

parallel, so that their tessellations are formed without reversal,

every superposition in which the cores are parallel to one

another gives a dissection, and not only those superpositions

in which the angular points of cores coincide. Thus we get

a continuous series of dissections, doubly infinite as there are

two degrees of freedom of adjustment of superposition. Only
certain members of this series are what I have called hexagon
dissections. For this pair of hexagons, triangles formed by

joining alternate angular points of each hexagon can be

drawn so as to be the same for both of them, and these have the

same orientation with regard to the parallelogram core. Thus
a dissection, which in simple cases has only three parts,

obtained from consideration of this triangle,")" though not

* See also Proc. «/' Hoy Hoc . Series A, vol. ci , p. SO.

t Messenger of Mathematics, vol. xlviii, p. Wi.
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itself a Iiexiigon dissection, is a member of the continuous
series, which can accordingly be established by either method.

Superposition of tessellations (assuming that this gives all

cases) solves the question of the classification of the numerous
dissections of a pair of independent parallelograms of equal

area, for which each figure is divided by lines equal and
parallel to half-sides of the other. This has not been dealt

with in previous papers, the methods emploved being in-

sufficient for the purpose. Let a, b be the lengths of the

sides of one parallelogram, and c, d those of the other, and
A their common area. The whole set of lines representing

two superposed tessellations of the parallelograms must include

two sets of parallel lines, each equally spaced, between which
the parallelograms are packed. Let sides a and c of the

parallelograms be those which are in contact with these lines.

Let p, q be the lengths of the sides of the least parallelogram

formed by the two intersecting sets of parallel lines, and A its

area. Li order to secure repetition of the dissection of the

parallelogram ab, p must be chosen so that 2a = np where n is

some whole number. Now A=p — = q — , therefore 2c = nq,
ci c

and nA = 2A. Also pq^LA, so the range of values which
n can have is given by ac <1 hiA ; and to obtain any dissections

a and c must be chosen so that ac is not less than ^A. The
choice of a value for n settles the angle between the two sets

of parallel lines, for it gives p, q and A ; that is to say it

gives two alternative angles supplementary to one another.

These yield different dissections, so each must be taken into

account. The packing of successive rows of parallelograms

must be that which is appropriate to this angle, so as to give

repetition of intersections of lines. Each odd value of n gives,

for each of the corresponding angles, a single dissection

;

for in this case the dissections are reversed in alternate figures,

so that freedom of adjustment of superposition is lost, and all

the sides b and d are bisected by other lines of the figure.

-Each even value of n gives, for each of the corresponding

angles, a continuous series of dissections; for no reversal is

necessary, and the superposition cau be adjusted continuously

in any way not involving rotation. Thus all the dissections

are examples of one or other of the two rather distinct types

which are given by odd values of n and by even values of n.

Laving thus enumerated the dissections arising from the choice

of a and c as the sides in contact with the two sets of parallel

lines, we can proceed to get the corresponding results arising

from the three other possible choices, namely b and c, a and (/,

and b and d.
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It should be noticed tliat tlie well known three-part dis-

section of a pair of parallelograms occurs, in this classification,

as a particular member of a continuous series of dissections

for which n = 2. This is clearly its proper place.

The consideration of superposition of tessellations gives

a simple explanation of the fact that, in hexagon dissections,

the actual dividing lines of one figure are equal and parallel

to the actual half-sides of the other, when coincident and

cancelled lines are left out of account.

There is a slight mistake in my paper {Messenger of
Mathematics, vol. xlix., p. 113). In certain cases the arrange-

ment (ii) gives a core of which a half-side of the triangle

is a diagonal. Accordingly the new dissection, p. 114, can be

obtained from certain araugements (ii), (ii) and (ii), (iii), as

well as from (iii), (iii). This does not in any way affect the

final result.

RELATIONS BETWEEN THE NUMBERS OF
BERiNOULLI, EULER, GENOCOH1, AND LUCAS.

By E. T. Bell, University of Washington.

1. Introduction. The entire theory of the relations

between the numbers B, E, G, R of Bernoulli, Euler,

Genocchi and Lucas, can be uniformly developed by means of

Blissard's umbral notation,* through trigonometric identities.

In this, for n7t0,a
n

is written a", the exponent being purely

symbolic, and a letter a, b, ..., c, B, B, G, R, <p, i//, %,
without a suffix is the representative (in Blissard's terminology),

or umbra, of the whole class of like letters with zero or

positive integral suffixes. Thus b is the umbra of the class

b
a

. &,, ..., J , ... ; the umbra of the Bernoulli numbers B
,
B

t
,

B,, ..., BH, ... is B, and so on. The letters h, x, y, ..., z

denote ordinary algebraic quantities, or ordinaries. Through-

out the papur_/'(.r) is the expression

f(x) = k
a + k

l3
>+... + knx*+ ...,

* J. Bltasard, "Theory of Generic Equations", Quarterly Journal ofPure and
Applirtl Mathematics, vol. iv. (1SK

1 ), p. 279; vol. v., pp. 5S, 185. The main results

of these papers so far as tliey relate to the Bernoulli and allied numbers, also the

general method of Blissard, are reproduced iu Lucas, Theorit des Sombres (1891),

chaps, xiii., xiv.
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which is subject only to the restriction that it' it consists of an
infinite number of terms the series on the right is absolutely

convergent for some
|
.c

|

> 0. The successive ^-derivatives

of /(.*•) are/' (.<•),./" (a;), ...,/(">
(*), ... . The umbral multi-

nomial theorem for n >_ an integer, and x, y, ..., z all

different from zero, is

»'
(xa+yb+...+ zc)" = 2 -p—p , r/...2Ta^...c„

a: pl...y :

the summation extending to all integers a, /3, ..., 7^0 such

that a + tS -f ... + 7 = n. The umbral sine and cosine of ax
are defined by the series, assumed absolutely convergent for

some
|
x

|
> 0,

sin a, =
|o

H)V« J£L . i (- l)X+]^ ,

and we have

d/dx sin ax = a cos aa;, <Z/rfa: cosax = — a sin aa;,

in which, as in all umbral formulas, the indicated multipli-

cations by a on the right are to be carried out on the umbral
forms of cos ax, sin ax respectively before exponents are

degraded to suffixes.

The numbers B , E , G , B are defined as the respective

coefficients of x"jnl in

a; 2 2x x
~~X T 1 X ,

~£ 5 ~*
. 7 1 ~X -X )

and hence

B=-\, G=\, B
2n+

=0(n>0),

E.JM = 0(n^0), a„, fl
= 0(n>0), #,„„ = (» ^ 0),

and we have the umbral generators

(1) (x
J 2) cot (x 1 2) = cos Bx, xcotx = cos2Bc;

(2) sect = cos Ex\

(3) x tan(x/2) = cos Gx, 2x tanx = cos2 Gx
;

(4) (x/2) csex = cos.Z?x, xcscx = 2 con Ex.

Tliese are the definitions of Blissard or Lucas, and give one of

the more convenient notations for the numbers. An alternative
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set, preferable in some respects, uses tlie hyperbolic instead of

the circular functions.

2. Types of General Relations. Between entire functions

whose arguments are linear functions of /;, .t, B, E, G, R, and

for which no umbra appears more than once in any argument,

there are possible four types of fundamental relations according

as 1, 2, 3, or 4 of the symbols B, E, 67, R are present. The
less important cases in which an umbra occurs more than once

in an argument are noted in § 9. We shall derive a set of 21

fundamental relations containing at least one of each type.

Six of the first type are included for completeness, although

four were given by Blissard and Lucas. In his treatment

Lucas follows the historical order, using alternative definitions

of _B, E, 67, R as coefficients in certain sums of like powers of

natural numbers. But if the relations alone be the chief

object they can be more systematically derived as an applica-

tion of Blissard's calculus to the rudiments of trigonometry.

Moreover, this method generalizes (§ 9) ; the other does not.

3. Addition Theorems for th& Umhral Sine and Cosine.

These obviously are of the same form as those for the ordinary

siue and cosine, and we have either from them or by inspection,

(5) 2 cosax cos bx = cos(a + b) x+cos {a— !>) .c= cos

^

[a, b) x,

(G) 2 cosaxsin &x = sin (a + b)x— sin {a— b)x= s\n\p{a, b) r,

(7) 2s'maxcosbx = a\n(a + b) x+s'm (a—b)x= sin <j> (t, b) x,

(8) 2 sinter sin ix cos(a— b) x— cos(a + !>) x=— cosi/- (a, b) .r,

where the (j>, ip functions are defined for the integer n $L by

<t>„ («, v) = i* + ty + (« - j
)

n
. +„ ("> b ) = (« +h"- («

-

b
)
"•

The separate cases, n even, n odd, being constantly required

we write them out for reference:
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From tlie last aiul the zero values of B, E, G, B, we see

at once the following identities, useful later,

and many more of the same sort, also the following,

&„(2#, l)= -4n, ^,(20, l)= 4(2n + l),

^„+l (5, JB)= -(2n + l)i?,B, forn^O,

and others of a like kind. Note that these are mere identities

which do not enable us to calculate the successive B, E, G, B,
by recurrence. From the definitions we have the important
identities

(9) [x + Jt{a + h) ]" + \x + h{a- &)]"

= [a»+ ty (a, &)]"= 2 (
"
) a3"-

rA>
r
(a, 6),

(10) [x + 7( (a + b)]
n - [>+ h (a- 6)]"

= [a + /«£ (a, &)]" = 2 ( " ) *
n_rA^

r
(a, 4).

In these put » = 0, 1, 2, ..., multiply the results throughout
by k , /,-,, kj, ... respectively, and add :

(11) f{x + ha + hb) +f [x + ha - hb)

= f[r. + h.p(a,b)} = 2 £*rM)/w (*).

(12) / [x + ha + hb) -/ [x + ha - hb)

=/{x + h^{a,b)} = 2
JJ
*,(«,*)/«(*).

The process by which these are obtained can often be applied

more expeditiously than the formulas themselves. Except for

one application, noted § 8, the above are sufficiently general

with h= 1.

A relation involving precisely r umbrae is called r-fold.

By iteration of (5)—(8) the r-fold cases of all results in this

section can be easily written out, or they may be derived

independently from the exponential forms of the umbral

sine and cosine.
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4. Derived Identities. Take t lie ^-derivatives of (l)— (4)

and reduce the results by (1)— (4)

:

(13) x* csc'
;

(x/2) = 4 cos Bx -f- 4fir sin Bx,

(14) sec X tan X = — E si n Ex,

(15) a; sec
3
(a/2) = -2cc,sGx — 2Gxs\nGx,

(16) .VeseiBcota^ 2 cosifo + 2RxainBx.

Multiply together, member by member, eacli pair ot

(1)— (4), and use (13)— (16) when necessary to reduce the

results :

(17) 2 cosRx cosBx — cos Bx + Bx sin !?.<:,

(18) 2 cos Bx cos Gx = x\

(19) 2 cosifo; cos Gx = - cos Gx — 6?a; sin Gx,

(20) 2 COB ifa: COS i?.r, = 2eos2 JR.<:,

(21) 2 eos.E<;cosi?.t = 2 cos2Z?.t; + 2 cos Rr,

(22) 2 cos 2£c COS (rx= 4cos2.Zfcc — 4 cosii.r.

Similarly, taking products three at a time, we find

(23) 4 cos Rx cos Bx cos Gx — 2x' cos Rr,

(2 4) 4 cos Ex cos Z?.e cos ftn = 2x' cos Efo,

and from (3), (15) and (1), (13) respectively,

(25) 4 cos Ex cosRx cos 2 Gx = — 2cos2Gx — iGxam2Gx,

(26) 4 cos.fi: cosi?.v cos2 Bx = 2 cos2.Re + iBx sin 2Bx.

Finally from (l)-(4),

(27) 8 cos Rx cos Bx cos 6r.rcos.£'.c = 4ar cos22?.i;.

Each right-hand member has been expressed as a linear

function of umbral sines and cosines in order to give the

essentially simplest relations of the several types. We
proceed to find these from (l)— (4) and (13)— (27)'. The
process in all cases is the same : we equate coefficients of

like powers of x and apply (5)- (12), noting by inspection as

in § 3 the values of the <p, \p functions of odd index. Slightly

more general results in all of the following can be obtained

by replacing x by hx in each of the derivations; but as

already mentioned these are of interest chiefly in one connec-

tion. They can be written down from the forms given.
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5. One-fold Relations. Multiplying the second form of
(I) throughout by 2sinx we get

sin i// (25, 1) x = 2xv.os,x,

and therefore equating coefficients of like powers of x,

*»,(**. 1)=2(2» + 1) («^0).

We liiive also identically

^(25, 1) = , $n (2B, l) = -4« (n>0),

and hence, combining results and using (10),

(.« + 25+ 1)"-(0J + 25- 1)" = 2n [x - I)""
1 = 2of/cfe (« - 1)".

Change x into 2a; + 1

:

(a, + 5+1)"- {x + B) n = nx- 1

.

From the first of these, as in deriving (12), we get

(I) /(* + 25+l)-/(x+25-l) = 2/>-l),

and from the second,

(II) f(:c + B+l)-f(x + B)=f'(x),

the last of which is Blissard's and Lucas' form. In the same
way from (2)—(4) on multiplying by cosa\ sin x, respectively

:

(III) /(x + 5+ l)+/(.t-+E-l) = 2/(x),

(IV; f(x + 2G + l)+f(x + 2G-l) = if(x-l),

(V) /(x+G+l) +f(x + G)= 2f (x),

(VI) /(a, + 5 + 1) -/(* +5- 1) =/ (x),

the forms (III), (V), (VI) being those of Blissard and Lucas.
As always the accent denotes a derivative with respect to x.

6. Twofold Relations. Each of (1), (3) gives a twofold
relation. Write (3) in the form

cos2 6?.c = 2.s sin a; sec a; = 2x cosEx sin x= ijsini// (E, 1) x,

and equate coefficients,

C>G)'"*'
1

*T(^ 1
) = -

i

2^+T (" = 0);

also, identically, ip,„(E, 1) = (n^O). Hence from (12),

(a; + .E+iy- (a, + #-!)" = _ !/[(»; | 2G)"+(x-2G)"]dx,
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which generalizes as before into

(VII) 2/ (x+ E-1)- 2/' (a +E+1)

=/(* + 2 <?)+./>- 2 G).

Similarly (1) gives first

4>ln
(B,l) = 2">B,

u , <j>,ntl
(B,l) = (a>0),

(x + B+l)" + (x + B- l)
n = i [(as + 27?)" + (x - 2#)"].

and hence

(VIII) 2f(x + B + l) + 2f(x + B-l)

=f(x + 2B)+f(x-2B).

Tlie remaining twofold relations are found in tlie same

way from those of tlie formulas (13)-(22) that contain only

two umbrae. As some of the derivations involve a new-

detail we give the first in full. Evidently from (1), (4)

an equivalent of (1G) is

cos^ (B, 2B)x = 2 cosBx cos2i?.r = 2 cos7?.c + 2Bx sin Bx,

whence $m (B, 2B) = 2 (1 - 2«) B.
in

(n^.0), and identically

2ii+1
(B, 2B) = (n ^ 0). From these

(x + B + 2B)" + (x + B-2B)"

= 2[x"B +
(

n

2
)x"->B, + (l)x»->Bt

+...

the right member of which can he written

[(x + B) n+ (x - B)] n - Bdjdx [(as + Bf - (x - B)"].

To avoid an umbral derivative in the final result we note

that

J/dB [(as f B)n + (as - 7?)"] = rf/<£R [(as + B)
n - ( .>• -BY],

and hence generalizing as usual find

(IX) f(x + B + 2 B) +/(« \ B-2B) =f(x 4 70

4 y (j . _ K) _ i? if' (a, + 5) _/' (a! _ 2?)].

A similar treatment of (14) gives

^tn
(E

i
2Q) = %nE

ix, fm„(E,2G) = (,.^0);
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whence

(x +E+2 G)" +(x + E-2G) n= 2Edjdx [(a + E)"- (x - E)"\

(X) f(x + E+2G)+f(x + E-2G)
= -2E[f(x + E)-f\.c-E)].

In the same way from (17),

*tn
{B,B) = (\-2n)Bn, t3ntt (B,B) = (»£0),

(a +3+ £)"+ (x + A'- £)"=1(1- 7A//<fo) [(a + 5/ - («- /?)"]

,

(XI) 2f(x + B + B) + 2f(x + R-B)

=f(x + B) +f(x -B)-B[f'(x + B)-f'(x-B)].

The derivation of the like relation from (18) is rather more
complicated. First

4>
2
(B, G)= l, ^(B G) = (*#1),

<}>^{B,G)=-2nG
tn (»^0),

which are found as in the preceding cases, and hence after

some simple reduction

2 (x + B +<?)"+ 2 (e +B-G)" = ^"

- ff5S&P/ fl!-n(*+fl [)-+(e-fl [

)
,
}rffl],

= 2- + i/fl [.[(»+ «)"-(*- (?)*]

whence the relation

(XII) 2 <?[/(»+B+G)+/(x + B-G)]

From (19),

*„(.«, <?) = (2»-l)<?*», 4>M1 (B,G) = (
n ^0),

2 (re + 7i + #)" + 2 (;c + B-G) n

= {GdjdG-l) [(x + G) n + (x - G) n

]

;

(XIII) 2f(x + B+G) + 2f(x+B- G)

= G [/' (x i G) -/'(* - G)] -j\x + (7) -/(* - ff). •
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From (20),

4>,n (22, E) = 2*" ,12T, M+| (22, 2?) = ( ,, > 0),

(x + 22 4 Ef + (x + R - Ef = (x + 222)" + (x - 222)"

;

(XIV) f{x + R + E) +f(x + R-E) =f(x + 2R) +J\x-2R).

7. Threefold Relations. From (21), as in the preceding
section, we find

*M {E,B) = 2(2=" +1)22-, ^,(22, 2?) =0 (n£0),

(x + E+B)" + (x + E- B)" = (x + 222)"

+ (x - 22?;" + (x + R) n + (x - R) n

;

(XV) f(x + E + B)+f(x + E-B)
= f(x + 222) +/(* - 2 R) +f(x 4 R ) +f(x -R);

and from (22) compared with (21) we write down

(XVI) f\x + E+G)+f(x + E-G)
= 2/(x + 222) + 2f(x - 222) - 2f(x + R)- 2f(x - R).

'The remaining threefold relations are found from (23)—
(2G) by means of the extension of (5), (9), (11) to the case of

three umbrae

:

4 cosax cosbx coscx = cos<f> (a, b, c) x,

where <$> n («, b, c) is defined by

<t>Ja, b, c) = S(a±J±c)B
,

the summation extending to the four possible combinations of

plus and minus signs. From (23) we get thus

<j> ln
(R,B, G) = -in(2n-l)R 1"-\

a„+1 (22, B, G) = o 0^0),

S (x +B ± G)
n = - d'jdx

!
[{x + R)" + {x- 22)"]

;

(XVII) y\x + B±B±G) = -f" (x + R) -/" (x - R).

From this and (24) we write down by symmetry,

(XVIII) y(x + E±B±G) = -f"(x + E)-f(x-E).

From (25) we first find

<p,n
(E, R, 20) = 2 (in- l) 2

2
" <?'»,

<t>,ntl
(E,B,2G)=0 (n^O),
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2(x + E±B±2G)" = -[(x ) 26?)"

+ (x - 2 6')"] + 4 GdjcLc [(.e + 2 £)
n-O - 2 <?)"],

whence as usual,

(XIX) 2f(x + E±R±2G)=-f(x + 2G)

-f(x -2G) + iG [/' (a; + 2 G) -/' (« - 2 0)].

By tliis and (26) we write down from symmetry,

(XX) 2J\x + E±R±2B) =/{x + 2 tf)

-/(a;-2J5)-4fi[/'(a;+2B)-/'(a:-2 JB)].

Before applying symmetry in sueli work wc must always
see by actual inspection whether the ^-functions of odd index
in tlie two cases have corresponding values.

8. Fourfold Relation ; Taylor's Theorem Forms. Write

<j>n
(a, b, c, d) = 2 (a± b± c± d)",

the summation extending to the eight combinations of the

signs. Then from (27),

<j> 2n
{R, B, G,E) = -8n(2n-l)(2Rf\

<p inJR,B,G,E) = Q (n^O);

2 (x + R ± B± G ± E)" = -8d'ldx' [(x + 2B)" + (x- 2R)"]

(XXI) 2f(x+R±B±G±E)=-8f"(x + 2R)-sf"(x-2R).

Each of the relations (I)—(XXI) is equivalent to a Taylor
expansion obtained at once from the slightly more general

form involving h in place of 1 in the arguments of f. The
latter are derived in precisely the same way as the formulas

given with the exception that x is everywhere replaced in the

proofs by hx. Thus in place of (II), (III), (V), (VI) we get

(IT) f(x + Bh+h)-f(x + Bh) - ¥'0),

(III') f{x + Eh + h) +/0 + Eh - h) = 2/ (x),

(V) /(* + Gh + h)+f(x+ Gh) = 2hf (*),

(VI') f(x + Rh + h)-J(x + Rh-h) = hj'(x).

The umbral form of Taylor's theorem ha\ng/(x+ k)=ehfix)
,

in which /" (x) in the development of the right by the

VOL. LII. F
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dn

exponential theorem is -j~;-f(x )> we see that (H')-(VI') are

equivalent to the following, given by Lucas, loc. cit., p. 263:

eBhf(x+h) _ eBhf[x) - hf'(x),

e EI,J(x+h) + e E/<f(x-h) _ 2J"(x),

eGhf[x+h) + e Ghf(x) =2hf'(x),

eRhf(x+h)_ eBf(X-h) = hf'(x).

The first, according to Lucas, is the symbolic form of an

expansion first given by Euler, the third of another due to

Stirling and Boole. There is no difficulty in writing out the

remaining 18 corresponding to the other relations, but to save

space we omit them.

9. Equivalents of Trigonometric Identities. Extensions.

If in the multinomial theorem of § 1 precisely s umbrae are

each equal to the umbra a, they are replaced by s distinct

umbrae until after the degradation of exponents, when each of

the s distinct letters is replaced by a. For example (a — of
is obtained from (a — b)'\ that is from d'b" — 2a'6' + a'b' or

aK—2a,b,+ aj>„ and hence its value is 2 (a,a. — a*). This

remark gives us the correct interpretation of (5)— (12) when
b — a, and of the generalizations of these results to any number
of umbrae not necessarily all distinct. For uniformity with

(1)— (4) we introduce two further systems of numbers, S, 1\

through the definitions

^=(-i)n"2», ya
.=i, 5«,-2L, = o («^o),

and we have

xs\nx = cosSx, cosai = cos 2#.

Consider an ordinary trigonometric identity

(28) .F(sina:, cosa?, tanar, cot#, seca;, csca?) = 0,

in which i^is a rational integral function of all its arguments,

and of such a sort that on multiplying this throughout by the

appropriate power of x it is reduced to the form

F
l

(x sin x, cos a;, x tana;, x cota;, sec a*, x csca;) = 0.
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We then have the unibral identity

(29) F
l

(cos Sx, cos Tx, i cos 2 Gx,

coa2Bx, cos Ex, 2 cosBx) = 0.

Eacli umbral term in the last is of the form

cos"a:r cos,
ffbx...cos*cx,

wliere a, 0, ..., 7 are integers > 0, and a, b, ..., c umbrae as

usual. Since by the remark at the beginning of this section

the case where at least one of a, 0, ..., 7 exceeds 1 is reducible

to the case in which none exceeds 1, we need consider only

a = /3 =...= 7 = 1. Defining for n 5: the ^-function of

r umbrae a, b, ..., c by

(30) (pja, b, ..., c) = '2(a±b±...±c)",

we see by repeated application of (5) that

ST'
1 cosaxcosbx...coscx = cos(j>(a,b, ..., c)x.

Any trigonometric identity being reducible to the form (28),

it follows from (29), (30) that such an identity is equivalent to

a rational integral relation between ^-functions whose argu-

ments are chosen from among S, 1\ '2.G, 2B, E, R, some of

which may be repeated. From the mode of derivation it is

clear that this relation between S, T, ..., B implies (28) and

is implied by (28), that is the two are formally equivalent.

As in the preceding sections the -relation can he replaced

by an /-relation, and in the argument of each J there may be

one ordinary, x, or two ordinaries, x, h.

Although vve have not had occasion to use it in this paper

we may add for completeness that all the umbral functions

necessary fur a full discussion are special cases of

Xn (a,b,...,c,p,q,...,r) = ?±(a±b±...±C±p±q±...±r),

in which the S extends to all possible combinations of signs

within the parentheses, and the outer sign is in each case the

product of the signs of p, q, ..., r. When p, q, ..., r are

absent, %„ reduces to 0„ ; when a, b, ..., c are absent, yn

becomes ipn, the generalization of the ^-function in § 3. It

,is interesting to note that if (and only if) we take the special

cases of these <p n
, \pn , in which all of the letters a, b, ..., c, p, q,

.,., r are interpreted as ordinaries, we have precisely the

symmetric functions which Kroneckcr took as his point of
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departure for obtaining properties of tlie Bernoulli numbers.*

We need not trace tlie connection farther here, as it has

been fully discussed in the extensions next indicated.

Tlie Bernoulli and Euler numbers can be generalized in

several ways. Blissard, in the papers cited, gave an arith-

metical generalization. The two following are wholly distinct

from this. First, we may apply the processes of § 3 as ex-

tended above to the polynomials in the modulus k' that appear

as coefficients in the power series developments of xm(x, k),

cn(x, k), dn(rc, /c) and iu the developments of the reciprocals

and quotients of these functions. For 7c=±l the polynomials

degenerate to B, E. G, B. or to numbers simply dependent

on these. The relations between the polynomials are ot

remarkable simplicity; for unit values of k they degenerate

to the relations of the present paper.

In the foregoing generalization polynomials in one variable

replace B, E, G, R. But in devising a self-consistent trig-

onometry of umbral tangents, cotangents, secants, and co-

secants (including incidentally sines and cosines), we are led

naturally to a generalization in which B
n , En , Gn, Bn

are

replaced by polynomials in n' independent variables, where n

depends simply upon n. For unit values (+ 1) of all the

variables these polynomials degenerate to B
n , En , Gn , Bn , and

the relations between them become those of this paper. This

generalization is equivalent to the algebra of formal operations

upon infinite series, and is best considered from the standpoint

of tlie umbral hyperbolic functions. Both it and the preceding

have been fully discussed in papers which I hope to publish;

they are mentioned here because it is interesting that the

circular, hyperbolic and elliptic functions, which in a sense

are the elementary functions of analysis and which are so

closely interwoven in many respects, should again be inter-

connected through the Bernoulli and allied numbers. When
we pass beyond functions of one variable or of two periods

we apparently leave these numbers and must invent others.

* Journal des Mathematitfnet (2), Tol. i. (1856). p. 385 ; Journal fur die r.u.a

Mathcmatik, vol. xciv. (1882), p. L'tiS.
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NOTE ON THE EXISTENCE OF ABEL'S LIMIT.

By B. 31. Wilson.

§ 1. If "S,o t" is a power-series wliose radius of convergence

is unity, the mast that can be deduced concerning the order

of the coefficients au
is that

(1) au =0(e*"),

for every positive e. In this note it is shown that no better

asymptotic equation can be inferred even though it be known
that, in addition, Abel's limit exists for the series asa approaches

(either along the radius, or, more generally, along any

" Stolz-path ")* a point on the circle of convergence, or, in

fact, that the limit exists for approach to every point of the

circle with but one exception. Jn the latter case we shall

suppose the exceptional point to be - 1. We show therefore

that, if 0(h) is any function of n which increases steadily to

infinity with h, a series 2anX* exists whose radius of con-

vergence is unity and for which Abel's limit exists (in any of

the wider or narrower senses mentioned above), and also

(2) |
a
n |
> e»'*(»)

for all sufficiently large values of n. A power-series for which

Abel's limit exists and

(3) Kl^'
for all values of k, has been constructed by Bohr, and was

used by him to show that the summability (G, fe) of 2a
n,t

known to be a sufficient condition for the existence of Abel's

limit as x approaches 1 along any Stolz-path, is not also a

necessary one. It is easy to modify Bohr's example so as to

obtain the stronger inequality (2): for this we need to obtain

a lower limit for the order, as z tends to infinity along the

positive real axis, of an integral function of z of regular growth

[croissance]

.

* i e. along any path which lies entirely between two chords of the unit-circle,

f Bohr's example has been
dung einiger newer JZrgebnUsc

t Bohr's example has been reproduced by Landau. DaritMimg und Begrun-

der FuuHioneiUheorle (Beilin, 1916), pp. 3S-3U.

F2
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§ 2. Let (j> (n) be a real, positive, monotone increasing/unction

of the real, positive variable n such that

(j)[n)>\, <p ('()-> co as ?!->co,

< n J-,-? < c
;

and denote by F(z) the integral /unction

Then, as z increases by real positive values

F(z) > c**'*W,

ichere k is a positive constant.

For if n is regarded as a continuous variable, and z as a

constant, the function -1

—

t~\ lias its maximum value when
1<«K")J

, ( z ) ri>»
,0S WWI

= 1+%M'
so that for the maximum value

z
,

e <——. < Ic.e.

n<p (7ij

Thus, if the equations

(4) y = k
l
em<f,{m), m = w(y)

are equivalent to one another, it is seen that the maximum of

•3

—

—.[ exceeds e'"(
2
). But, from (4),

U1 h^{m) hrtiy)'

since m <y. We therefore have at once the result stated in

the theorem.

§3. Let now <p[n) be any function of n satisfying the

conditions postulated above, and let It be as before. Write

' w -"{&}" '•
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so that g(z) is an integral function of z; write also

./.(.-f)=(i +a-r-*=s (-ir(
w
t
wV, («=o,i,2...),

n=0

It is easily shown* that /'(x) is analytic for |*[<1, and
that, as x tends along any Stolz-path to a point x on the unit-
circle, Abel's limit

(5) lim f{x) = -L- cj f-L.)
, (|*t |

= 1 j *,#- 1)

exists. On the other hand we have, for \x\ < 1,

/{x) = i ay,
7i=0

where (- !)"«.= 2 \-±-\" ("
+
"1

5

and therefore

« f /.• 1
"'

n.=0 l»'^("0i

in virtue of § 2.

SOME PROBLEMS IN POTENTIAL THEORY.

By Dr. If. Bateman.

§1. In a previous notef it was shown '.hat the potential

of a surface of revolution, whose meridian curve is a limacon,

can he expressed in the form

oo P (cosh tr) „ , _ ,

V= (cosher- cos x ) ^ (2«+l)
j>

"

(cos||ff)
<?,,(coaW,,)P,,(co8x),

* See Landau, ?oc. ci'f.

f Messenger of Mathematics, vol. li. (February, 1922), p. 161.
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the potential being unity over the surface <7 = <x , where

/iJ + AV rtsinho-
(
R — X\

i_ a siny

\ 2 /
_

cosher — cosy ' \ 2 / cosh a— cosy
'

To find the capacity of the surface we must determine the

form of V at infinity, i.e. in the neighbourhood of a = 0,

y = 0. Writing

„(„+!). . . («- 1 )«(«+! )(«+2)/c(«lnr-l
\'

P„(cOsh(7) =l+-^r
-y (cOsht7-l)+- ^ ^ -^

J-,

PM
(cosy)=l +^- (cosy-l)+

1>j2 , -^ —
J+...

„ . COsh <7 + C03 y ,
2

cosh a — cos % cosher — cosy

, coshV + cos'y - 2
a
cosli o- 4- cos y — 2

(cosher -cosy)' (cosh o- -cosy)'

we find that

T7
2a' » , (cosherJ 2a

4Z • (coshoj

+

The first term gives an expression for the capacity C, viz.,

oo O (cosh crj

wliile the second term enables us to determine a point where

the charge G should be placed in order that its potential may

agree with Fat infinity up to terms of the second order in ^ .

This point may be called the centre of charge.

To find the polar equation of the limacon we write

2a" „ cosher cosy,,-! . . siiihcr sin y„
)•= ;

—

, COSP= j

"
i 8111(7= j ,

cosh cr„- cos xa
cosher, -cosy, cosh cr -cosy

then X = a' + r cos 0, Y= -J(R
2 - X") = r sin 0,

and »•=-—-^— (cosher + cos 0).
ainh er

c

The area of the surface generated by the revolution of the

1'uiKKjou about its axis of symmetry is ink', where

k = 2a" eosccLV, (eoshV + |)
J
.
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Willi the aid of tables for Qn
(cosli oj and P (cosli <r

f )
we

find that
cosli<r C .•-»«- i/2a2

2 .718695 .722009

1.2 3.25824 3.29872

In tlie case of a sphere (cosh a
()

= a> ) we have, of course, C=k.
Of all surfaces of given area the sphere lias apparently the

greatest capacity. When eosh<r =2 the limacon lias a point

»f undulation on the axis of symmetry, the puints of contact

of the double tangent being consecutive. The value of C ill

this case differs from k by about 1 part in 200. When
cosli <r = 1.2 the double tangent touches the limacon in two

distinct real points, and the curve bends inwards near the

vertex. The capacity is slightly reduced by this hollow, C
differing from k by about 1 part in 80.

$2. Since the author does not remember having seen any

tables of spheroidal harmonics, the values of Pn, Qn
and their

first derivatives are given* for a few values of cosli a.

s = cosho-= 1.1

n P„{t) <?»(»)

1

1 1.1

2 1.315

3 1.6775

4 2.24293 75

5 3.09901 625

6 4.38056 81875

7 6.29257 53687

8 9.14543 95340

9 13.40879 07039

10 19.79347 69907
11 29.37649 19495

12 43.79141 66188

13 65.51892 72018
14 98.33026 58463

15 147.96469 99781

16 223.16514 25975

17 337.26232 21552

18 51U.59955 43788

19 Z74.24631 91802

20 1175.68877 79816

.52226
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- cosli l.l
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s = cosh <r = 2

1 .54930 61443-0.33333 33333
1 2 1 .0986122886 -011736 05223
2 5.5 6 .02118 37938-0.03749 64673
3 17 28.5 .00487 11203-0 01144 15531
4 55.375 125 .00116 10758-0.00339 86249
5 185.75 526.875 .00028 29767-0.00099 18706
6 634.9375 2168.25 .00007 00180-0.00028 58810
7 2199.125 8781.0625 .00001 75157 -0.00008 16355
8 7691.1484375 35155.125 .00000 44181-0.00002 31451
9 27100.671875 139530.5859375 -00000 11212 -0.00000 65271

10 96060.51953125 550067.890625 .00000 02843-0.00000 1841!!

i = cosh i7 = 3

1 .34657 35903 - 0.125

1 3 1 .03972 07708 -0.02842 64097
2 13 9 .00545 66736 - 0.00583 76874
3 63 66 .00080 28543—0.00114 30415
4 321 450 .00012 24799—0.0002177073
5 1683 2955 .0000191079 -0.00004 07227
6 8989 18963 .00000 30267-0.00000 75209
7 48639 119812 .00000 04847-0.00000 13759
8 265729 748548 .00000 00783-0.00000 02499
9 1462563 4637205 .00000 00127-0.00000 00451

10 8097453 28537245 .00000 00021 -0.00000 00081

§ 3. To obtain ;i potential function V which satisfies the

condition

dV_ dX

over the surface c = cr , vvu assume for points outside the body

V=a'U[cos\i(T-coax) 2 [2m + l)A mPm (cosh <r)Pm (cosx)
m=0

= d>UJ
o

[m+l)[A mtt -AJ
' X

i

Pm Mi «0 Pmll MX) - Pm , (^sh o) Pm (cob*)).

Now
„

s
RinliV — sinV

(cosli a — eos;^

^a'(cosIiCT-cos^) S [2m + 1) [hi (hi+ l)+ l]#m (cosli a) P,(cos^)
m=0

= a'-f2a'f (« + in<?„,(cosh<7)F„(cos A)-()mf| (cosl 10 )P(cos A )];
m=0
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lience the boundary condition at a = a will l>c satisfied for all

values of x if

x \P'm (cosl. <x„) Pm „ (cos x)
- P'm+1 (cosh <r ) Pm (cosX) |

= 2 f/2 {m+ly j g ^ (cosh^p + _

(cos%) -(? mfl (cosh <7jP(cos x)}.

This leads to the system of equations

'» (^-^-^-.(cosl.aj - (m + 1) (^ -^JP' (cosWJ

= 2'"'J

<2',„-, (cosh <r
)
- 'J (»« + l)'(/

m+1 (cosh a„).

The left-hand side of the typical equation becomes a perfect

difference when multiplied by Pm ' (cosh tr ), while the right-

hand side may be transformed with the aid of the identity

^ m(coshcr )P'm_ 1

(cosho- )-Q'
m_

|

(cosho- )P'm(coshCT )=wcosechV )

.

Consequently the typical equation may be written in. the form.

= 2m8 Q'
m (cosh o-J P'm_,

(cosh o-„)

- 2 (w + 1)' Q'
m+]

(cosh <r ) P'm (cosh <r ) - 2« 3 cosechV .

Summing from m= 1 to m = n, we get

(» + 1) (A,„-A,) *'. (cosh <r„) P'
fl+1

(cosh <r„)

= 2 (m + 1)" $',„,
,

(cosh o
a)
P„ (cosh <r„) +

"
J(

'"J",

1)3

2 sinner

therefore

4«,-4. =*(«+!)
"

<?'„>, (cosily) _ <?'„, (cosh o-J

"

.

P '

m+.lc08llo"o)
-^'» (cosh aj.

_?l J p mll(cosll£ro)
.« i*M(coswo)

Hence finally we obtain the following expression for I'

V=l2a
l Ul{m + l

x [P„,(coshc) P
+ ,

(cosX]
- P„, (cosW) rm (cos xV|.

l
' 4 "

j P mtl
(coshaj P m (coshcr„)
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We may deduce from this expression the form which <P

tikes at infinity hy writing for small values of a and v. tue

expansions for Pm (cosher) and P„,(cosy_) used before. The
coefficient of cosher — cosy_ is then

., „ °° .(cosher) .
0' (cosher)

all 2 {m + l)
8

I (in + 2)'-^) =—
' -»,' £ *f-^

and this is zero. The most important term in the expansion
is thus

QO

la £/(cosIict — cosyJ (cosh cr + cos y,
— 2) 2 m (m + 1)' (in + 2)

«i=0

No*

f
_ , 2v #'»+ fc°sl"0 _ m, Q'J<x>di*

ty
1 + "

J f
,
(cosher) P' (cosher)

A' 1 coshV + cos
5

^ — 2 (cosh a + cos ^)
3

ii ii (cosh cr — cos ^)
a

(cosh a + cosy)
3

1 (coshcr + cosy_- 2) (cosher + eos^) - 2 (cosher- l)(cos y_- 1)

(cosh a + cos yj
3

= —j (cosh cr — cos ^) (cosli cr + cos \ — 2)

x (cosh o- — cos y)

+ terms of the 3rd and higher orders;

hence the most important part of the expansion is equal to

X «
WU-jt, 2 m (m + 1)'(to + 2)° m=0

'/„.
, oV <?'»* (

cogllg
o^ _ m > fl'J00*"

0-
.)]

.

; P'M («»h«rJ P'.(co»ha,)J

. -. X » „
'

, (cosh er„)

This gives the moment of the doublet whose potential is a

first approximation to the value of Fat infinitv. The apparent

mass of the fluid may be found by means of a theorem due to

Muuk,* and is

pB
2ttu

»+B)C4in»+y^;g;j -i
m=0

* " Notes on aerodynamic forces, Technical Note No. 104, National Advisory
Committee for Aeronautics ", Washington, July, 1922.
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where B is tlie volume of tlie fluid displaced liy tlie solid, a p
tlie density of the fluid. Since

_. 47T . cosh <r„B =— .8a
6

. ,. "

3 siuhV„
1 +

coslrc

we find that tlie apparent mass is 1-pB, where A- = .5 for the

sphere. When

coshcr =1.2 we find £=.5688,

cosh a
t
= 2 „ k = .548,

cosher =3 „ A- = .527.

A GENERAL FORM OF THE REMAINDER IN
TAYLOR'S THEOREM.

By G. S. Mahajani, St. John's College, Cambridge.

1. An examination of the various extant accounts of

Taylor's theorem reveals that, for the most part, thev obtain

the particular form of the remainder with which they happen
to he concerned by utilising what we may call the simple form

of the mean value theorem, which states that if f(x) is

continuous in the interval (a, b), end points included, and

differentiable in the same interval, end points not necessarily

included, then

/(ft)-/(«)=#.-«o/m
where f is some number between a and b and not, coinciding

with either.

Now it is well known that the mean value theorem can be

expressed in a form more general than the above. If <p (x)

satisfies the same conditions as f(x) and, in addition, is such

that <j)\x) does not vanish anywhere in (a, b), then

f(b)-f(a) =f (I)

where £, not necessarily the same as before, lies between a

and b and does not coincide with either of them.

We propose to show that, by utilising this more general

form of the mean value theorem, we can obtain an extremely

general form of the remainder in Taylor's theorem.

2. We suppose that f{x) satisfies the strict conditions of

order n + 1 at a, being such that it and its first n + 1 del ivatives

exist in some neighbourhood of a; and that <j> (x) satisfies
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the conditions of order p + 1 at a. Further, we suppose that

<j>

v
*Xx) does not vanish.

3. Let

/(a + h) =/(«) + hf(a) +...+^/» + li
n ,

so that B
n

is I he usual remainder. Evidently

Bn =/(a + A)-/(a)-h/\a)-...-f/\a)....(l).

4. Write now
(a + A-.iO

n
,

II I

J,(x)=f(a + h)-f(x)-(a + k-x)f\x)-... -^/"(x)

•(2),

•(3).

( a + h -xY
X (x) = <j>(a + h)-f(x) - (a + h-x)<p' (x) -...- - —

}

^"(x)

Then, as is easily seen,

(a + h-xY
iP(x) = ^ / (x),

5. By the mean value theorem in its general form,

+ (a + h)-t(a) ^xf,'(£)

where £ lies between a and « + h and coincides with neither.

In the usual way we have

Z=a + 0h,

where O<0<1.

Furtlier, as is easily seen,

$ (a + h) = x (a + h) = 0.

Thus

*(«) xX a +®h ) n\
K '

<j>

p&l
{a + 0h)'

6. But (1) and (2) give at once \f,(a) = R . Thus
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This is the form of the remainder we set out to obtain.

7. The above form of the remainder contains as special

cases all the hitherto recognised forms, including those of

Lagrange, Cauchy and Schlomilch; and, in addition, other

forms of which we give a specimen.

8. Take any integer a not less than p and put

<t>(x) = (x-a)'!n .

Then <j> (a) = $'(a) =...=
tf,

p
(«) = 0,

$(a + h) = K**\

i>*»(a + 0h) = (q+l)q...(q-p + l)(0h)™

and the remainder takes the form

(A\ r ^P' O-9)-' ir\r\a + Qh)
K

' " n! IP" (q + l)q...(q-p+l)'

9. From this form, by taking special values of p and q, we
can deduce the respective forms of Lagrange, Cauchy and

Schlomilch.

Put q=p = n, and we obtain

W "
(n + 1)! '

which is Lagrange's form.

Put q = p = Q, and we obtain

(C)
(l-0)'A'V,M (a + fl/«)

which is Cauchy sform.
Put q=p}

a"d vve obtain
'

(i-9rp h'
i\r i (a+eh)

(D) M"~~
(p + i)ln\

which is Schlomilch''s form. This last, of course, includes the

first two.

10. Put q=p — i, and we obtain, after a little reduction

_p! fl*(l-fl)-"A-"/""(a + 0/i)
tlW ii:»-„! 1.3.5...(2p+l)

""
"

This is a new form.
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THE TRANSFORMATION OF THE ELLIPTIC
FUNCTION OF THE SEVENTH ORDER.

By Sir G. Greetihill.

The Transformation of the Third and Fifth Order is

completed in Jacobi's Fandamenta nova, and t lie extension of

his method to the Seventh Order is sketched by Cayley,* but
not carried out to a finish there or in his other memoirs.t
Then there is a recent article by A. Berry J on the Septimic
Transformation. And the general theory of Transformation
has been discussed by Prof. J. H. McDonald. § The alge-

braical work is completed in the present note, and connected
up with the corresponding formulas of Kiepert|| and Joubert.lf

1. The object is to determine the constants a, /3, 7 in the

relation

.. 1 -y _ 1 -x n-a.x + fix
, -yx\'

1 + y
~ 1+ x U + ol-c + Bx'+yx3

)

or

= (1 + 2a)a + (2/3 + 27+a"+2a/3) *3
+ (/3"+ 2/3Y+ 2<ry)rc

5 + 7V
V

1 + (2a+ 2/3 + a") x'+ (27+ /3"+ 2a/3 + -lay) x' + (2/3y + y)x»
'

connecting a?= sin^ = sn (u, k) and ?/ = sin<l> = sn (-r>, M,
satisfying the differential relation ^ '

3fJ<t>
_ <fy

K~>
Vil-A-'sin**) V(l-^sii'V)'

or

Mily dx _
V(i-/.i-\y) ~ V(i-*,.i-kV)

_
'

and to express k, \ as well as a, /3, 7 in terms of a para-
meter, 6.

Then, as Cayley shows in his Elliptic Functions, the con-
ditions to be satisfied in order that x, y should change into

—
, — in (1) are, with y'=£l,

k.c \y

(3) k" (/3
3 + 2/37 + 2«7 ) = a (2a + 2/3 + a

v

),

(4) a-
4
(2/3 + 27 + of+ 2a/3) =il (27 + /3

2 + 2a/3 + 2ay),

(5) «
6
(l + 2a) = I2(2/37+ 7

3

),

* £lli/jtic Functions (1876), chap, via., p 192,

t Phil. Trims. (I8M-9S).

X Messenger of Mathematics (.April, 1921).

§ Bulletin A. M.S. (Mav, 1921), p. 366.

||
Math. Ann. (1885-87). U Cvmptes rendus (1858).

VOL. LII. G
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where £2' = —
; and writing k=u\ \ = v\ we have

A.

It" ,
U1

K
2

12 = —- 7 = Vi2 = — , — = uv = v,

v v 7
suppose.

The relations (3), (4), (5) may be rewritten

m a 2tt7 + g/3y + «'7 27 + P' + 2a/3 + 2a7
lU ^+2/37 + 2a7 '

l 4; ~ 2/3 + 27 + a* + 2a0 '

(111) 0' =^-7
.

v
' 1 + 2a

From Cayley's equation on his p. 193, and from (III),

... 1 ,, v (i-nv)(l-,iv+u*v<) _ 1-0 1 + P

1 } 1+tf 1+6 3
l + 2a + ?/3 + 7' a + /3+l'

and the elimination of # between (I) and (II), or more simply

between (I) and (LV), leads to the relation, alter division by a. 1 [3,

(7) (•2/3 + 7y
i -7(l + 2a)'

i-77 (l-7) = 0,

--1-7(1-7)^= 0,

7

the equivalent of Cayley's expression on his p. 201,

,.., V (II - V
)

II 7
(g) 7jr=—)—77 =^— = f--,v y u (y — «

)
u 1—7

1 -
V

Wlth ^=
TT^' & -rT^'

2. I have to thank Major Chepmell for carrying out, with

his invincible coinage, the heavy algebraical work of deter-

mining a, /3, 7 from these equations in terms of 6 as the

parameter. Writing (LV),

(1) (l-^)(2/3 + 7) = (l + «)( 1 -7)-(l-0)( 1 + 2ot),

and substituting in (7), § 1,

(2) (i-0M* 01-7) + (i + **)']

-[(,+0)(i-7)-(l-0j(H2«)]'=O,
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in wliich 1 - 7 is a factor, fortunately, to be divided out, leaving

(s) * = [i+e-(i-e)(i + 2«)7W 7 4(2-30+29")
and then in (8), § 1,

(4) y=["l +
7(1 - 7)

. L (l + 2a)'

in wliich

(5) 1 +
7
1
1^ = [7(l-9) + (l + 9)(l+2«)] >

Ki
(l + 2a)" 4

i
2-30 + 20

,

j(l + 2a)" '

so that, multiplying and taking the square root of
s

,

(6) 03 = [7(l-0) + (l + 0)(l4 2a)][l + 0-(l-0)(H-2*)]
^ ' 4(2-30+20")(l + 2a) '

a quadratic for 1 + 2a in terms of 0, from which the factor
1 — 0"' can be divided out, leaving

(7) (1 + 2a)" + 2(1- 20) (3 - 20 + 20") (1 + 2a) -7 = 0,

(8) 7j/, 1+ 2a = ±(1-20) (3 -20 +20')

+ 2^(1 - + 20". 2 - + 0". 2 - 30 + 20"),

a= -2 + 40-30"+ 20
3+ V(l-0 + 20".2-0 + 0".2-30+20'),

l + 2/3 = (l-20 + 20")(l+2a);

and the rest follows, in terms of ;

(9) ^7= (1-0+0") V(-,-30+20")-(l-0)V(l-0+20". 2-0+0"),

and, with K = \/y*jQ, k\=6\

(10) k, X = V0 [(1 - + 0") V(2 - 30 + 20")

T(l-0jV(l-0 + 20".2-0 + 0")]

= 0"[(^-l)V(2^-3)TV(^-2.2^-3^+2)],
with 0+0- = ^
(11) «', X' = V(l - 0) [(1 - + !

) V(l - + 20')

±0V(2-0+0".2-30 + 20"
; ],

(12) *'\' = (l-0)\ thence V*X+V*'X' = 1,

GutzlafT's modular equation. And

(13) «X, k'\ = V(0-0,

J[V( 1 -0 + ^! .2-30 + 20")

+ (i-0 + 0')V(2-0i0')],

(14) 2 (**'), 2(XX')J = (0-0,

)

i [V(l- + 20'. 2 -30+ 20")

+ (l-20)\/(2-0 + 0')].
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3. In Sclilafli's Modular Equations,* where u, v now denote

(±Y\ (±Y\ so that u>v*= -?-rt = -
, if « denotes 0-8',

\kk) ' \\\7 0-6* a'

8 2

(1) B=u 3o"-\-—3
= - +ict,

mV a

2 - 7a + 4a
2

(3)
^.,_g_^-fi-^^

a

/«' A 3 2-5a+4a!l

^4 + 2 = (- + -,= ^

/ KK \t (W \i _ V
(4) Uxv ' w) =

u-
'

!i" V(2-5n + 4a'-) + \/(l-4a.2-a)

2 V«
™» „,8 /., „'\5 IThen with a;", j/"=kk\ XX', and a;
8
,
y' = {iuc'f, (XX')

S
,
xy-c?,

(5) 2 (/t/c')
1

, 2(\xy = a"[V(2-5a + 4a
5)TV(l-4«.2-fl)],

as in (14), §2,

(6) a-
s

,
y» = ±al [2-la + 4a-+ J(l-ia.2-a.2-5a+ia')],

(7) «8 + ^
8= a*(2 — 7a+4o'),

a form of the Modular Equation, equivalent on rationalisation

to Joubert's form,! where his

Willi Kieperl's notation,!

Z(14)

(9) 4a = 4 (*X*'V) * = - |- = -y— ,

S3 "IS ^

i6 i;

?, 7f - w
, ? = 8?

4
, «,*=4r+13r+32?1

and so on ; hence Kiepert's £ and t? parameters all in terms

of a or 6. Thence the equation

(10) 7£ + ?« + 8a(?-l) = 0,

* Given in Weber's Elliptic Function*, p. 272.

t Math. Ann , xxxii. (1887), p. 87. J Comptes rcndus (1858).
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having a factor %— 1 when rationalised, and then

(11) £
2 _4(2 _7a + 4«

!)£+16a3=0,

(12) £ = 2(2-7a+4a')-2V(l-4a.2-a.2-5a + 4a
s

)

= [V
,(2-5a + 4a')-v'(l-4a.2-a)]

2 =-^-^
,

(13) l-£ = -(l-4a)(3-2a)+ 2V(l-4a.2-a.2-5a+ 7a
!

)

= {l + 2a)*J{l-ia),

(14) ,_ a=s l- + 0.=-—
()

-=.-
r:
J,

1 + 2/3 = (1 - 2a) (1 + 2a).

In Klein's Modular Equation,

(15) T = i(7)
( =

17s
=
|

,

2 , and ^= ^=l+2a,

TV(2 - a, 2 - 5a + 4 a") ± (2+ a) V(l - 4a*) "|

= [- -te~ J
'

and then tt' = 49,

(17) 1728 J = (t+t'+13)(t2+5t+1)'=^^ (t' + 5t+1)\

4. As a numerical test take

(I) ?=0, a = 0, = or 1; and 6=0, 2k*', 2\\'= 0,

l + 2a = -7, a= -4, /3=-4, 7 = 8,

y = - 7x + 5Cc* - 1 12a
5 + 64a;

7

,

connecting x = s,\n<j> = s\nu, and y = — sin 70.

Or with a = 0, 0=1, k'\' = 0, *=1, \=1,

l+2a=3±4=7 or -1,

a = /3 = + 3 or -1, 7=1,

\-y _(\-x\'
2 = [ - - or , y =— x

1+y \l+xj 1-x J

x = ihu, y = ih7u, or - th u.

(II) |= 1, a-i, = A, 2**'=i, ^= V7,

l + 2a=V7, 1 + 2/3=^7, 2/3 + 7 = ^7, V'7 = i(3 -V7).
G2
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(III) f = 8, a = 2, = l(l^tV7), 2**', 2\\'= 8

(in another region),

l + 2a = iV7, 1 + 2)3 = 3^7, 7=M- 5 -*'V7)= [i (1 + i^)J,

a Complex Multiplication.

Generally, if 7 = a/3, a factor 1 + fix' cancels, and

1- ?/ _ 1 -x /l — ax\*

\+y ~ l+as \\+ax) '

the degenerate Cubic Transformation.

5. To connect up with the treatment for the Seven-section

Division- Values of the Elliptic Function of the second stage,*

take
1 1 1

(1) c + 2 = 0=0+ 5 , 2c+l = 20-3= -

t) P 1 — 2m

(2) 5-
(;>+ H(p-l)' («^2) fo-1)' = (1-8.1-0+ ?

8/ 20-3 (2 - 30+.20")0' .

;

, / ,, 4U-2W20 a -3d, + 2)

(3) P-4pF+(p-ir- ^
(2̂ _ 3j3

y

10 = ( j
„-l)(p2

+;> + 2)V-P

(;,+ l)(4«'-3))+l) P
(4) C=c(2c+l)(2c'+5c+4)=^

4/ V'""
and so on: thence the expression in terms of 9 or a=0 — 9\

but in a different region off.

In Transformation the coefficients are symmetrical functions

of the Division-Values.

6. Similar Transformations can be given between the

other Elliptic Functions, connecting

c = cn;e and C=cn-^.; d=Aau and D = dn-^;

gsttitt and r=tn T ; s= tan^0 and Z=tan|*;

_ .. .l-« 2*t I-0 2

D=e*' and F=e*'; 8 =17—, 5 = 7-7—2-
1 + 1 — a 1 + w

Thus we find

14-« +/3+7 + (« + 'y)c- f^ + 7)c'-7C3
"

l+a+/3 + 7~ (a + 7)c-(/3 + 7)c
2 +7C:

'_

1-0 1-e
(1) 1+6' 1 + c

* Proc. L.i/./S. (1893), p. 257 ; Phil. Trans. (1904), p. 266.



ellipticfunction of the seventh order.

\-D _\j-d
^> T+J) ~ T+d

l+OL + P+V + {l+(5)d-(l + a)d'-d3
'

l+«+ ji + v-{l+fi)d-{l+a)d'+d-']
'

(3) ^.= 1 + 28, oc= dnfJT+dnf£:+dnf2r(Cayley, p. 265),

. . 1+Ti /l — ti\

W I=R-(i+s)

,

l+(l+a)fi+ (l+fi)t
!+(l+a+(S+v)t 3

i'

1 - (1 + a) ft + (l + /3)f- (l + a+ 13 r7) f't.

.-171
(
1 + Zi

)

(l+2a)z+(3 + 4«+ 4j3+ 87)g
3 + (3 + 2g + 4/3)g

5
-i-z

:'

* '
_
H-(3 + 2a + 4/3)2"+(3 + 4at4/3 + 87)g

< + (l + 2aj3
8

'

7. In the general transformation of order w = 2m + 1

between s and ( of the Weierstrassian Elliptic Function of

the First Stage,

(1) t=M*
s"-A,s'- ,

+.. Mdt ds
du.

where S and T are cubic in s and t, supposed at first irre-

ducible.

Then 8=8 (u) is either the Weieistrasa function pu or

differs by a constant ; and employing the formula

S V ft ~v

(2) s{u + v)+s(u-v) — 2s (v) -— - +
«y>

the transformation can be written, with v = ,

n

t
m

(3) -—=s+A+ S [s{u + v) + s{u-v)-2s{v)]

= s +A + ~S,-

V „ s V— +2,
{s-sv)'

'

in a resolution of (1) into partial fractions.

The notation employed,* following Abel, with Halphen's

x, y, was taken as

(4) S=is(s-xy + [{\+y)s-xy}\

(5) s(v) = x, s'v = x\ s"v = x(l + ?/),

* Proc. L.M.S. (1893).
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(G) s(2w) = 0, s"2v= x'y'
}
s"2v = 2z*-xy(l+y),

(7) s{Sv)=x-y, s"Sv={x-y+y')', s"Sv=x(\-Sy)-y{l-iy+y*);

and so on ; and the relation between x and y was given by

the curve of Halphen's 7„ = 0.

Thus for the Seventh Order,

(8) 7, = 0, xy-x*-y* = 0, y= z{l-z), x = z(l-z)\

(9) s{v) = z{\-z)% s"v = z*{l-zy, s"v= z{l-zy(l + z-z :

>),

(10) s(2y) = 0, s'2v = z\\-z)\ s"2v = s'(l - zf (1 - 3s + s
!

),

(11) s(3u)=-2 2
(l-z), s'

;3u=36
(l-2)'

2

, s"3y= s
3
(l-s)(l-s-2").

Tlie transformation can then be written down and verified.

8. When a factor s = e, t -f can be assigned of S, T,

then >J(s-e), *J(t—f) is a single-valued Elliptic Function of

the Second Stage, and the transformation of Weierstrass can

be written

(i) w-f)=M^8- e
K™-G^+:.'. '

and the various transformations above in (1), (3), §7 are all

included in this general form, depending on the region sepa-

rated by the roots of the cubic S in their sequence.

Thus in the Seventh Order, to construct a factor of 8, s + V,*

it is determined from

(2) 2b
3 -{l + y)b*+2xb-xy = 0,

(3) 2b
3 - (1 + z - a') b- + 2bs (1 - s)

7 - z
%
(1 - z)

3 = ;

and, putting b = z (1 — z){c+ 1) =y (c + 1],

(4) (c-t-l)
2 (2c+l)3 , -c(c+2)(2c+l)z+c3 = 0,

c(c + 2)(2c+l)+cV6'
(5) *=

(
C*4

l-z=-

2(c+l) a (2c+l)

2c+2)(2c+l)-c\/C n ,„ ,,,„-, r .,

2(C+I>(2c+ 1)
»
0-{«-+l)(W+ 6o+ «) 1

(VQ+c)' y[p(y-n)-yp]'
(C) ?= '(!-*) =

4(c+ir(2c + 1)

-
(p

_.ir

(VQf+Q)' =
» [y(y + l)-^P]'

4(c+ l)
3 (2c+l) 2(2>-l) 3 '

/Voc. L.iJ/.S (1839), p. 257.
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in reducing to the expressions* with

as above in § 5.

1 1

2c+1 -~p~2^l' ••'

9. The Transformation of the Ninth Order may be

sketched out here and left for completion as a research for

the young mathematician, referring to the formulas of Kiepert.f

But there is some confusion here in Kiepert's notation with

the use of f on his p. 85. And Gierster may be consulted.

J

An extension is made of Jacobi's notation to

\-y 1 -x /1-0UK4 fix*-<yx' + Sx*\'

(r^'
1-ri/ 1 + x \l + ax + fix' + yx* -r 8x

and in Kiepert's relations

V

(2) r
=l + 2a=|

1

"
i(18)«

(3)

M - '

' b
« i(9j 2 X(2)4 '

where in his notation §

_ q
3 + 3q' + 0-l-*JQ

22(2 + 1)

Q = <f + 2r/ + bq
1 + 10q

3 + 10q' + 4q + 1

=
{q

> + q*-2q-iy+Sq>(q + iy,

q
3 -3q2 -6q-l + <JQ

= T+2 =

22(2 + 1)

q> + q'-2q-l + >JQ =
-

q
»-

q
>+ 2q+ l + s/

Q

22(2+1) '
**

42(2+1)

g, g' + O-Sy-l

w jw—£
2(2+1)

t + 2)
9
[(t + 2)

3 -8]

E3

4 (l+5,3

)
' (T + 2/+1

l-8g,' _

£(18) / kk'\1-©>«-
Li(9)Z(2).

and so on, to be developed and completed.

* Phil. Tram. (1904), p. 266.

t Math. Ann., vol. xxxii., p. 127 ; Phil. Trans. (1904), p. 2G9.

% Math. Ann., vol. xiv., p. 541.

§ Phil. Trans. (1904), p. 270.
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A PROOF OF BURNSIDE'S FORMULA. FOR
log r (3 + 1) AND CERTAIN ALLIED PROPERTIES

OF RIEMANN'iS ^-FUNCTION.

By J. R. Wilton.

In vol. xlvi * (p. 159) Prof. Burnside lias given a vapidly

converging series tor log i\n. His proof holds only if N is a

positive integer, but the formula naturally holds for a much

wider range of values. A simple proof may he obtained from

the elementary properties of Riemann's ^-function as follows.

We define f (x; s) when a, the real part of s, is greater

than 1, by the series

£(«; s)=I(n + £c)-.

B=l

Then it is known that

£(#; o) = -i-x,

r (x ; 0) = (#/ ds),__ = log T (x + 1) -ilog 2tt,

Lt £(x; s)-
s-1

r'pc + i)

r(o;+i)

It follows from the definition that, when a > 1 and

|e|<|l+a?|,

£(x +z ; s)= S (n + x + «)"' = S (« + a;)"' [(1 +«)/(« +'»)}"'

= f(as ; s) - «?(a> ; s + 1) + ^-^ «'C(a! ; » + 2) -...(1),

on expanding by the binomial theorem and rearranging the

resulting absolutely convergent double series. And this result,

proved when a>l, is, by the principle of analytical con-

tinuation, valid for all values of s. h\ the series (1) put

z = i, z = — i, and subtract

(as +*r= *(*-*> s)- ?(» + £; s)

y, ,..8(8 + l)(*+2) g(a;«f3)
=s£(a:;s+l) + - —gj —gi +...(2).

Rewrite this equation in the form

(g+ir-'?(«;'+o = i±i z(v; s +3)
,

8(8+1) 3! r

* " A rapidly converging series for log N ! ". Messenger ofMathematics, vol. xlvi.

(1917), pp. 157-15U.
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and tlien make s-> — 1. The resulting equation is Burnside's
formula,

log r (x + 1) = (x + 1 ) log (x + 1) - x - h + £ log 2tt

.(3).
n=1 2n(2M + l)2 !"

The method of proof shows that the expansion is correct if

Bx> — i; and it is, in fact, coirect when x —— \, for which
value it gives

i?(2n)/2n(2n+l) = ilog27r-i

[Tlie left-hand side is

1 - Iog2 + 2 [?(2n) - l]/2w (2n + 1)

= 1 - 0.6931471806 + 0.1120857138

= 0.4189385332 = ilog27r-l].

Differentiation of Burnside's formula (3) leads to

•(.+ i)-*i,r(.+ .)..-i
J
-s»^±a;

The last equation, as is immediately evident on putting s— 1

in (2), is merely a variant of the customary formula

,/,'(*+ l)= f(aj; 2).

Differentiating equation (2) with respect to s,

-(« + *) 'log(a;+i) = s?(x;s+l) + ^ "^ + '"

s(«+l)0+2) (I 1 1 \?(s;s+3)

Making s-»0, we obtain (4); s-e>— 1 gives Burnside's

formula. Making s-> — 2,

r'(*5-l)= i(a' + i)'Iog(aJ +i)-^(a!+l)-K-ia'-^
2 ! g(g; 3) 4 ! C(g; 5)

4 5T|^^- + 7-!-F- + (5) -
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Making s-» — 3,

£(x ; - 2) = $(x + ±Y log (x + i)
-
TV logr (x + 1)

+ J4 log 2tt - Ja;
3 -K - &a> - !V+

ll f(«;2) 3l f(g;4)
5! 2

s
7! 2

6 '"^ ; '

and there would be no difficulty in deriving the corresponding

formula? for £(x; 1 — 2m) and £'(x; — 2m).

From Niemann's relation,

r'(1 - 8) = 2 (277-)-' cos^sttTOO ?(s),

it follows that, if « is a positive integer (not zero),

(_)»f'(-2u) = i(27r)-'"2«!f(2«+l),

where 2? is the «
th
Bernoulli number and 7 is Euler's constant.

Making use of these equations when necessary, and putting

x = in (4), (3), (5) and (6),

>.g 2-7-l^H-i^ + ...,
2* 5 2*

1 £Y2) 1 f(4)

^ -36 e u,
fe

7r T
5 j 2

-1-

7 , 2
a

+••• •

A more general formula of this type,* valid when n is a

positive integer, is

g(2»+l)_ £(2n-l) ?(2m-3) , ,, gf3) •
. logTT

tt™ 3lir"- 5!tt
2"" 4

*• ; 2n-V.Tr" { ' 2m+1!

, , (7 , ,
1 \ 1 * 2»n-l! £(2»i))

v ' (\ 2m+1/ 2m+1! m=l 2/m+2/<+1 ! 2
J

* The connection of the series here obtained with those given by Rauiamijan,

"A series for Euler's constant, y ", Messenger of Mathematics, vol. xlvi., pp 73-SO,
especially p. 78, is, apparently, less close than might have been anticipated.



and certain allied properties of Riemail's Z-J'unction. 93

Returning now to equation (1), again put 2 = ^, 3 = —
-5,

and take the sum of the resulting series

Ux + i)
- +ac + h ,W(as . S) +

Si^i) ^±3+....

Differentiating with respect to s and then making s->0, we
obtain the expansion*

logT (x + 1) = logT + i) + ilog (x + i) -I 2-""
f(ai; 2n) / 2n.

1

Putting a; = 0, we liave

logi7r = S2-
,n

f(2/0/«,

and putting x=l, we obtain the same equation in the slightly

different form

logTr- 3 log2 + log3 = S 2"!" [£(2>i) - 1]/??,

in which form it is readily verified numerically.

Again returning to equation (1), we may, if |cc| <|l+as|,
i.e. if lix > — i, put z = — x, and obtain

£(s) = £(a; «) + «£(*; *)+{s(s+l)/2 !} x'ftx; s+2)+...(7).

Making s-» 1,

\f,(x + l) = -y + lxv£(x; n + 1) (8).
1

Differentiating (7) with respect to s, and making s~>0,

logT(*+ l) = a^(ar+l)- la;"?(a;; n)/n....(9).
2

[Differentiation of either of these equations (8) and (9) leads

to f (» + l)= f(*;2)].
By putting x=l in (8) and (9) the well-known resultsf

follow

![?(«) -i]=i,
2

2 [?(«)- l]/n= 1-7.
2

The University, Adelaide.

* Cf. Bromwich, Tnjinite Sei-ies, p. 477, ex. 51.

t Bromwicb, foe. cit., p. 479, ex. 6, and the reference there given.
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A DIRECT PROOF OF THE BINOMIAL THEOREM
FOR A RATIONAL INDEX.

By T. W. Chaundy, Christ Church, Oxford.

For man}' purposes of presentation it seems convenient to

liave a proof ot the Binomial Theorem which does not rely on

propositions in the theory of infinite series, but which obtains

the fundamental inequality \R
n
(x) [<e as a theorem of algebra.

The way thereto is indicated, if we write the classical ex-

ponential inequality as

px ( 1 - xyp-' > ( 1 - x)~p - 1 ^ px,

for this gives the first two terms of the expansion of (1 — x)~*.

We appear then to need an appropriate generalisation ot the.

exponential inequality. I employ the expression

I— u* 1 — ?*
p+1 n(n-l) l-?t

pt'

-— » t
—-

—

: +
p(l-u) (p+l){l-u) 2! (p+2)(l-u)

1 - up+"

_ /-_\»

where u and p are positive and p rational, and I show that,

if u> 1, it has the sign of (—)", but if u < 1, it is positive and

diminishes as p increases.

§1. I consider first the case of a negative binomial index

and write

CO-

T
.

1 q (p + l)(p+2)...(p + n)

If we write x= 1 — u, the coefficient of u
r
in Sn (1 — it) is

^yPip + V.-fP+r-i) ^ +(p + r) + (p + r)(p+ r+ l)

(p + r)(p+r +!)...(p + n-1)
+-+ "

(li-rj!

r
jpQ-H)...Q+ r-l) (p+ r+l)(p + r + 2)...(p+n)
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Henonee

flf (
i-.)-efH±%fc±2li(-)-

u ! ,.=o »'! {n—r)\ p + r

Put «=1, then

i = g.
[y
(o)= y ( P+1) -y

f y +w) 2 (_y

Thus

"'» v ;
k! ,.=0

V ; »•!(«-»•)! j> + r

(2).

1 — up
"Write U„ =— — , and let E be the operator which

" p(l-u)' f

charges p into£>+ 1. Then the expression on the right of (2)
may be written

;,(;> + !) (^ + ») '

v '
n\ v ' •»

The expression on the left is

{ l-xy{(l-xr-SnJx)}=(l-xyB,Jx), say.

Then we may write (2) as

*-\l-*)>KJ*)= ?(P+1lf
P+ t,)

(1 - EY U,.. {,).

This holds for every rational p (not a negative integer)

and for every x (other than zero). 1 shall however suppose,

naturally, that 1 — x, i.e. u is positive.

§ 2. Now restrict p to be a positive integer. Then
(1 -x)p~l Snv {x) is the coefficient of t" in

<"(1 -x + tx)"'
1 + «"-' (l-x+ tx)"+...+ (1 -x + txy*"-'.

We are, of course, at liberty to add any multiple of <"*', and
so we may take it as the coefficient of t" in

*"""* + t>"'-' (1 -x + tx) +.L+ (1 -x + ^•)"+
"" 1

,

. . (l-a + M^-p*".
z.e. in

Cl -x){l-t)
l—t>" n

Put x = 0: then 1 is the coefficient oft" in - — .
' l-«

' Hence 1 - (1 — a) p
/S„

p
(x) is the coefficient of (* in

\-{\-x + txy™
\=t '
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or x~
l

(1 — x)p R
n

(x) is the coefficient of t" in

l-(\-x + tx)
p+n

l-(l-x + a) '

i.e. in 1 + [1—X + tx) + (l -x + tx)'+...+ (1 -aj+ to)*"
1"1

.

Thus a;'
1

(1 _ a')
P
^„,P (*) = *" S

,

!'»

'

^ - "J" W'"

Therefore, from (3), (l—E)"U
p

has the sign of xn
, i.e. of

(1 - u)
n
, token p is a positive integer. In particular, if 1 — u is

positive, so is (1 - E)" U
p, and so also is (l - E)'

,+i U
p

. But

(l - ET

U

p
= (l - ET(l - E) U

p
=(l - E)"Up -{i - E)"Uptl .

Hence, if \ — u is fJositive, (1 —E) nU increases as p diminishes.

§ 3. 1 now extend these results to the case of any rational

positive p' (
= plq, where p, q are positive integers).

1 _ tfl* _q \-vp

{plq)(l-u)~ p l-vq

tv+i is similarly —^—
, and so on.

1 p + q 1 — u'

Hence, if E changes p into p + 1, (1 - E')" Up ' is

TT l — B i q l — v .. „ty is 7 r^ n = -
: . . » " = v •

Tt therefore has the sign of (1 -E,)"V
p

, and increases with it.

Now (i -£y t; = (i -E)"{\ + e+ F-r-...+ E*-yv
p

.

But (1 + E+...+ Eq~')" expands into a series of powers of E
-with positive coefficients. Hence (1 -Eq)"V

p
can be expressed

as a series in (1 - E) n V
t

with positive coefficients. Since

every {,l-E)
n Vptr has the sign of (1 -v)\ so (l-E q)"V

p
has

the sign of (1 — v)", i.e. of (1 - »)".

Moreover, if 1 — it is positive, every (1 —JEfV, is positive,

and a like argument shows that (1—E*)" {l—Er)V
p

is positive,

i.e. that [l-E*)"V
p
>{l-E*)"V

p„.
The results of §2 are

thus extended to every positive, rational p. Hence, by

* It is perhaps interesting to state this result in the symmetrical form

(1 -x)P .V„p (.,) + (1 ~y)« S,.„, {y) = 1,

where p, ? are integers and x + y — 1.
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equation (3), En
(x) has the sign of x"

+
\ and, if a; is positive,

(1 — E)"V increases as p diminishes, i.e. if p < 1,

{\-E)% U,<().-E)nUv
By (3), (4) {l-E)"U=x"l{n+l).

Hence, ifp> 1 and x> 0,

^w<y(p
{w

1
;-

1

-
(

f

+M)^(i-^
If x is negative, R

n
(x) and i? iM (cc) have opposite signs and

consequently R
n

[x) is numerically less than their difference

Hp+l)...(p + w) ,„+1 ,.,

(»+i)» "'
'

;
() '

Thus in either case it is enough to prove that, if p> 1 and

|*| <1,
p(p+l). (p+ «)

as
(w + 1)

!

§4. If
J sc J < 1, suppose \x\ = 1/(1 +c), where c>0. Now

{p + l)(p+2)...(p + n)
f p\ I p^

\n

But by the Exponential Inequality

-K)KM'+9

l + £ < (l + -) , if p>\.

n (p+l)(p + 2)...fj04«) ,. , .„
Hence — -^- p < (1 + wr.

This <|«|-, if l+;i<(l + c)"'
/'.

Now (l + c)"'
;, = {(l+c)"

2/

'l

!

>{l+cn/2p}', if nj2p>l,

i.e. > 1 -f cnjp + ^c'n'jp'.

Thus (1 + c)"* > 1 + n, if n > 4p {p - c)jd'.

Hence, if n is sufficiently great to satisfy these two inequalities,

p{p + \)...{p + n) p\x
|

(« + l)! m n+T
Thus i?

n
(x)->0, as n-»co , if ]a?| < 1, p> 1.

If/) is negative or less than unity, then

|p(p+l)...(j> + n)|<(n + l)!.

VOL. LII. "
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provided only that p + n is positive. In these cases also, then,

p(y+ l)..(p + n)
^

(n + 1)! ' '

with this remark we can extend our proof of the Binomial

Theorem to the cases p<\.
For it will be found that

*„.,-, W = (1 -afl BnJ,)
- P(P^)-(P + "-D ^. .. (6) .

The right-hand side tends to zero as n tends to infinity, it

l>>\: hence R
n ,

(x) -> 0, it'p-l>0.
We have thus extended the proof to the case p> 0.

A second application of (6) brings us to p<- 1, and so

on. Thus inductively we at length cover any negative p.

§5. The extreme case of |x| = l is best discussed in-

dependently. When x= 1, as we have seen,

(p=U)(p+2)...(p + «)

"" n !

Suppose p negative and equal to — q. By the exponential

inequality

l-i<(l+V.
n \ nj

Hence it's is a fixed integer greater than q,

SJ< 1~ 1 —

;

<

Hence S.

~K4i)
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ADAPTATION OF CURVILINEAR
ISOTHERMAL COORDINATES TO INTEGRATE

THE EQUATIONS OF EQUILIBRIUM OF
ELASTIC PLATES.

By Prof. B. G. Galerkin, Polytechnical Institute, Petrograd.

This article is dedicated to the investigation 1)}
T means of

isothermal coordinates of the flexure of elastic plates, especially

of elliptic and semi-elliptic plates.

The elastic (middle) surface of the plate in this case can

be expressed in cartesian rectangular coordinates x and y, or

in curvilinear isothermal coordinates, g and r], connected with

x and y by the equation

x + yi=iP{Z+vi) (0-

§ 1. General equations. The equation of equilibrium of a

flat plate under pressure can be presented in curvilinear iso-

thermal coordinates as follows

i2(i-<r') var dri
-)

, fd w c io

W a?"
a " ( — - + = />... (2),

where to is the normal displacement of the middle plane, It the

thickness of the plate, a Poisson's ratio, //, a differential

parameter, p the pressure per unit area applied to one face of

the plate. Then we have

h.=M)*^r •(3),

and io can be expressed in the form

where /is a particular solution of equation (2), and <p satisfies

the equation

.(4).

It is evident that the function satisfies the last equation

in case either

3£'
+ 37'"'

3*0 ?'^ l

3?
+
a?

=
V^'
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where

Regarding the deformation as infinitely small, it is not

difficult to obtain the formulas for the curvature of the middle

surface. The curvature in a plane, passing through the point

(5* v) parallel to the axis z and containing the normal to s =
const, is

1 1
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From (11) can be derived

l = \hi°^±l (12),

and tlie formula (3) gives

c

o-'f

*.' = ^- .(13).

From equations (5) and (C) we obtain

r-?(S-|) <">•

tj'io
.

9i.

P.

The equation (2) transforms itself into

12(1-^) c' lae
+ aW L c ' \35"

+

7,—tW +W (15) -

dv'

: F ...(16)

It we can find a function _/"(£, »/) satisfying this equation,

we shall obtain for a plate, bounded by two ares of concentric

circles and two radii containing an angle 2a, an equation of

the deformed middle surface, under the condition that the

radial edges are supported, as follows

nir(a.+ rj)-a
. utt (a + v) •» _

to =/(£, i,) + 2 A
n
e sin—\-^+ + 2 Be

i 2a i

sin
2a

-_ 2« . «7r(a + ij) «• _ *« . »ir (j+ii))
+ e'M-^„e sm

—

-+SD« sin

—

^——^[...(17).
i 2a i

"
2a

3V
Ify(S, »?) = and —

a
= 0, when 97 = ± a, the whole ex-

av
pression iv satisfies the condition that the radial edges are

supported. Having written the conditions on the circular edges
of the plate, namely, those which hold when

S=fti-and £ = */<-",
c c

where a = external radius and a
a
= internal radius of the plate,

we can determine the coefficients A
n , Bu, G and Dn. The

results will coincide with the results, obtained by means of
polar coordinates in our article, " Equilibrium of elastic plates,

bounded by two arcs of concentric circles and two radii ",*

Bulletin of Russian Academy of Sciences (1913), No. 8-11.

II 2
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and therefore the transition from the formula in isothermal

polar coordinates to the same in polar coordinates will not

present any difficulty.

§3. Elliptic plate. For an elliptic plate with a clamped
edge the solution is known for pressure proportional to distance

from any fixed plane. It is expressed in cartesian rectangular

coordinates.

Here will he given the solution for the case where the edge

is supported and the pressure is uniform. It can be extended

to the case of pressure proportional to distance from any fixed

plane.. The middle surface of the plate we shall express in

elliptic coordinates. Suppose

x -]-_?/< = € cosh (£ + rji) = c (cosh £ cos?; + i sinh t, sin 77)... (18),

x = c cosh £ cos i] and y — c sinh £ sin r),

x* if

c cosh t, c smli s

and -T^-- T^i— 1
(
2 °)-

C COS J) C Sill 7;

When £ = constant the equation (19) gives an ellipse, when
7; = constant the equation (20) gives a hyperbola.

The differential parameter is given by

'1_
cV(^osh2g-cos2??) ^ '"

The equation (2) transforms itself into

eh 1 / a
3

a
3

\

3(l-cr') c
4
icosh2g-cos2j;) \d% dy')

x {
1 /d'w &'»)]_ , .

(cosh 2g- cos 2*7 V3S" W/J
From the formulas (5) and (G) we obtain

1 7,/3'w c7*,
3

. 8w c'A,* . Dw\

^
= "*' lar~ir sml ' 2"^ + -^ s'" 2,7

aj (23) '

1 . , /d'w c*h* . . y dw c*h' . dio\ . .

ft-"*
,V + "^"Bb85

3E""
r- s,,,2,7

a"J
(L4) -

We take an elliptic plate with semi-axes a and b. The
boundary will be expressed in elliptic coordinates by $ = a,

where a is determined from the formula ccosha = a or

csinlia= b (c the distance of a focus from the centre).
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Supposing t lie plate bent by pressure p, uniformly dis-

tributed over one face, we can take as tbe equation of tbe

deformed middle surface

te= (7(3 eosli 2a eosli 4a — 4 eosli 4a eosli 2g + eosli "2a eosli 4g)

x (3 eosli 2a cosh 4a — 4 eosli 4a cos 2?/ + eosli 2a cos4?j)

+ A
a
(eosli 2g - eosli 2a) (eosli 2a — cos 2*7)

+ ^4, (cosh 4a eosli 2g — cosh 2a eosli 4g) (cosh 2a — cos2»;)

X (1 + 2 cosb 2a cos 2 rj)

/cosh 2/,-a cosh 2 (k— 1) g cosh 2£g n"°
a f

/cosh 2/,-a cosl

"1 *H(2*-1)«»1>ii2(/c-l)a 2/t-l

cosh 2 (it + l)a cosh 2 (k + 1)«\ cosh 2 /-g

cos2(/c-1)t/

"(

2/l +1 2A- - 1 7 cosh 2/ia

cosli2(/fc + l}g cosh 2 (£-!)£

\

2k + 1 2* - 1
cos2£tj

.)sh2/,'g cosh2iacosh2(& + l g\ ,,,. N ) ,.,.,— — ,— ; ; Ti TT cOS 2 (I;+1)t]}...(2d).
2k + 1 {2k + 1) cosh 2 {k + 1) a/

;

'J
v ;

/cos
+

(

Ifp is constant, w satisfies the equation (22) if

pe'd-s)0=
128£V«

3
cosli"2acosh4a

'

At the edge of the plate (where g = a) w becomes zero.

If the plate is supported at the edge it is necessary for the

normal stresses on the edge to be zero, and therefore we must

have, at the elliptic boundary,

1 <r
- +-=0.

P, P?

dw av
Since on the elliptic boundary — =0 and ^-j = 0, it follows,

on en

by using the formulas (23) and (24), that

d'10 ,, > 9w
5m -( l - a

) 5? •

™^ = (20).
•In — cos"'n9g

! ' eg ' cosh 2a — cos 2?7

We shall take the first approximation, limiting ourselves to

the coefficient J„. and (supposing A
t
= A

t
=...= 0. The

equation (20) gives, if g = a,

4^ cosh 2a (cosh 2a — eos2»j) + (1 — a) sinh 2a [1G Csinli
3
2«

x (3cosh'2a-eosh2acos2r?- 2) - 2.1,, sinh 2a] = 0.
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Making the constant member equal to zero, we obtain

Af\2 eosh
2

2a- (l-<r) sinh
2
2a] + 8(7(1 -a) sinh

4
2a(3 eosh'2a-2)=0,

whence

w will be

. 8(1 - a)(3cosb v2a-2)sinb 4

2a n ,_,
Jl,. = rr. ;—:

—

-^ O (27).
2co8h J2a-tl-a)sinli :!

2a v ;

p ( 1 — a') c*w= =£v—r^r-
'

r— f(3 cosh 2a cosh 4a— 4 cosh 4a cosh 2£
128£As,

cosli'2acosli4a
LA

4 cosli2acosh4£)(3 cosh2a cosh4a-4 cosh 4acos 217 + cosh2aeos4»;)

.s(I-<7)(3coRh''2a-2)sinh
4
2a, . _. . _ . , ltl

.-,-—
-r- y— '.

, ,
(cosh 2£- cosh 2a (cosh 2a-cos2>/)|

2oosh'2a-(l-o- sin i'2«
v s n

.(2

The deflexion at the middle (s = and v = a
1T ) 's given by

ie„ = - -
,

,

— T(3 cosh 2a cosh 4a — 4 cosh 4a
128£/<

J eoslr2acosh4a LV

+ cosh 2a) (3 cosh 2a cosh 4a + 4 cosh 4a + cosh 2a)

8(l-a)(3cosh !2a-2)sinh 4
2a . . ...

J V5 A- - (1 - cosh 2a) (cosh 2a 4 1)
2eosh-/a-(l -a) sinh 2a

v M

7>(l-a
!
)<-

4
si.d,

4

2a T , v, .
2(l- CT)(3cosir'

!

2a-2]sinlr2a"I
___£_> £ Ocosh a-4-t- —

-

— — 1

32£'A
3eosh*2aeosh4a

|_
2 eoslr2a-(l -a) sinh'2a J

2(l-a-)(3cosh4a-l)Kinh''2a~|
9COsll4afU

2cosh'2a-(l-<.)siuh'2aJ

(29)-

For a circular plate (c = and a = »)

p(l-<r')c
4
sinh

4
2a

(U7i7/
3
cosh

22acosh4a

«'„
3p (1 - a)

(
5 + a) h*

UEh1

whore b is the semi-diameter of the circle.

For a rectangular strip, supported on its long sides, we must

have c = oo and a=0. Since in this case ca = b, where b is a

half of the width,

5;>(1 -a 7)bA

W"~
2 Eh3

At the centre of the plate the moment of normal stresses

about the X axis is given by

21/=-
Eii

3

12(1 -a 1

)

t W d'w

£=o, o=iT



Prof. Galerkin, Equilibrium of elastic plates. 105

Eh 3

(V

12(l-a 2
)c*

Id tv o'W\

\3E* dl* £=0, i|=iir

= - —^ :— 1["(cosh4a — cos 2a) (3 cosh 2a cosh 4a
96cosli'2acosh4a (

L n
+ 4 cosh 4a + cosli 2a)]

2 ( 1 - a) (3 cosh'^a - 2) sinli
4

2a

2coslf2a- (1 -<j)siiili
v
2a

+ a (3 cosh 2a cosli 4a — 4 cosli 4a + cosli 2a) (cosli 4a + cosli 2a)

2 (1 - a) (3<-oslr2a-2) sinli
4
2a

+

+

2 cosh'2a - (1 — a) sinh'2a

(cosli 2a + 1

h cosli 2a) (co

(cosli 2a — 1

pc smh 2
2a

48 eosh"2a cosli 4a

(1-

(cosh2a4l) [(2co.sh2a+l) (3cosli2a-2)

+ .(30).

2 cosh'2a — 1 1 — a) siu!i"'2a

+ a (cosli 2a- 1) [(2 cosli 2a— 1) 13 cosh2a + 2)

(1 — ff)(3cosli-2a — 2i sinh'2a~

2 cosli'2a — (1 — o) sinli'2a Jj

For si circle (wlien c = and a = <»)

For a rectangular strip, supported along the long sides

(c, = &> and a = 0), Mx= ±pb'.

The shearing lorce is given by

v - ®L_*1
,(

- iaii-aO '35

•(31).
pc \/2 sinli 2^ (cosh 2a — cos2ij)

4 cosh 2a V(eosh 2£ — cos 2»;)

At the centre of the plate V
(f
= 0. At the support

F
fi
= - 1- (y;c V2 tanh 2a) V(cosli 2a - Cos2j;).

For a circle the cross-shearing force at the support is

V =— \pa. For a strip, supported along its long sides, the

shearing force at any point on the ?/-axis (»; = in), is given by

V. = pc\/-2 sinh 2£ (cosh 2a + 1) _
4cocsh2av( 1 + cosh2gj

= —pc sinli i = — npy-

§4. Semi-elliptic plate. There are two cases (1) when an

elliptic plate is cut along the minor axis, (2) when it is cut
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along the major axis. In each case suppose tlie plate to be

supported along the diameter in question.

First case.

For the displacement w we can write the expression

w = 6'(3 + 4 cosh 2^4- cosh4g)(3 + 4 cos it) 4- cos 4?/)

+ 2^. cosh (2/c-l)2; cos (2A- 1)774 ^(coshS^cos^ + coshgcosST?)

+2Bt

cosh (2k- l)gcos(2/,--3)t?

k-l

+
fcosli(2A + l)g cosh (2/j - 3) %£^-C-fl,
cosh (2A- 1)5 ,„,

'

4 ^ ^ cos (2/j - 1) 7) .(35

r

l'he expression w satisfies the equation (22) when p is

constant it

r p«
4 (i-0
128^/j

3
"

If 7? = i7r or 17 = — -stt the expressions w and = , are equal
' 2 '

dn

to zero; therefore the conditions that the plate maybe sup-

ported along the minor axis are satisfied.

Supposing the elliptic edge to be clamped, we must have,

when £ = a,

10 = U and ^-p = 0,

or

8 C cosh 4a (3 4 4 cos 2tj + cos 4 77) + 2 A
t
cosh (2/,- - 1 ) a cos

(
2/ - 1) >>

4 ZJ" (cosh 3acos77 4coshacos37;)r2B
i

.

fcosh (2k + 1) a cosh (2/o - 3) a)—
/g-i

|«w(8*-l)^

cosh(2/,'-l)acos(2&-3)»;

t-1

{=

+
cosh (2ft - 1) a cos (2ft 4- 1) t?"

= .(33),

32 G sinh a cosh
3
a (3 + 4 cos 2 77 + cos 4*7)

+ 2A k
[2k - 1) sinh [2k - l) a cos (2ft - 1) 77
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+ i? (3 sinli 3a cos ?; + siiiliacos3i7)

(2* - l)sinln2/.--l)acos(2&-3)7;
+ S II. k-1

+
2/c + l)sinli(2/i;+l)a (2jfc-3) sinli (2&-3)a

(2£-l)sinh(2£-l)a ,„, ,+ i— —'- j-± ^-C0S(2£+1)17
A.*

A-l

= 0.

icos(2A-l)i?

....(34).

But, when ?; lies hetween iir and — ^7r, we can express

3 + 4 cos 2)7 + cos 477 in the form

768 « (-l)*
fI
cos (2k-l)v

3 + 4 00*2^084,=— 2
[2k_ 5)[2k _ 3n2k_ 1){2k+mk+

-$-

The equations f
33") and (34) will therefore yield the following

system ot equations

:

... 6144(7cosh ,
a . . , n „ „ , „ n

(1 - h^ cosh a + R, cosh 3a— B, cosh 3a =
V ;

vr.3.1. 1.3.5
'

. , 6144Ccosh
4

a , , , n ,

(2) — \-A, eosu a + B, cosh a
v

' ir. 1.1.3.5.

7

2 '

+ 7>
2 (£ cosh 5a - cosh a) — iZ?

3
cosh 5a =

, . 6144Ccosh 4
a . . . , „ . „

(3) M,cosh5a + i# cosh 3a
v ;

7T.1.3.5.7.9
3 " 2

+ B
3 [\

cosh 7a- }j cosh 3a) - JZ^cosh 7a=0

, . 6144(7cosh*a , i „ . i r> i r

(4) V A, cosh 7a + I /?, cosh 5a
1

' tt.3.5.7.9.11 ' "
3

+ B
t (\ cosh 9a - J cosh 5a) - \B

t
cosh 9*= °

) (33
'\

(*)

6144<?(-l)t+1 cosh
4

a

n [2k - 5) {2k - 3 i [2k - 1) (24 + 1 )
[2k + 3)

1

+ A k
cosh [2k - 1) a + r—- Bk_, cosh (2A - 3) a

/j — 1

+ Bk
\- cosh [2k + 1 ) a - t—r cosh (2£ - 3)a|

- - .B cosh(2A-+l)a =
h
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24576Csinhacosh
3

a
0.

(2)

(3)

(*).-

7T.3.1. 1.3.5

+ J, sinli a f 3iS
1
sinli3a-3B

:i

sinli
3
a =

24576 <7 sitili a cr>sli
3
a

7T.1.1.3.5.7

+ 3^
a
sinh 3a + B

t

siulia+ B
} (§ sinli5a — sialic

-§Z?
3
sinli 5a =

24576C8inhacosh 3
a

it. 1.3.5. 7 9

+ 5^4
3
sinli 5a + g^j s ' lm 3*

+ #, (I
sinli 7a - § sinli 3a) - J#4

sinli 7a =

24576Csinliac<>sli 3
a

tt.3.5.7.9.11

+ 7^
4
sinli7a t § Z?

s
sinli 5a

+ B
t (| sinli 9a - ;^

sinli 5a) - |#5
sinli 9a =

(*)

24576 C sinli a cosh "a

;
7T (2/t - 5) (2k - 3) (2k - 1 ) (24 + 1) (2k + 3)

+ (2£-1)4 sinli (2A--1) a +— £*_, sinli (2i-3)

a

At— 1

+ JBi |^±i 8inl.(2jfc+l)a-J^cosli(2*-3)a

_M±_1^i8i„l,(2/c + l)a =

(34')

From these equations we can determine the coefficients A
k

and B
k>
and tlierefore obtain tlie solution for a semi-elliptic

plate supported along the minor axis and champed along the

elliptic boundary.

Second case.

When the plate is cut along its major axis the expression

for to can be written as follows:

ie= C(3-4cosh2£ + cosh4£)(3 — 4cos2?7+ cos4?j)

+ S ^siulj (2/i—1) S sin (2k- 1) rj +B
t

(sinli 3£ siin7 -t sinli £ si n 3;;)

i

+^ sinh(2j[--l)gsin(2/c-3)i?
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+ »"M2*+oj _ *'hfk-m sin {2k _ jj ,
A' k — 1 )

sinli(2A:-l)gsiii(2&+l)q'

~~k~
.(35).

Suppose tlie plate supported along the major axis. For

tliis it is necessary that, on the part of this axis that is given

hy £ = 0, 7r>?7>0, ic and 7—= should vanish, and that on the

remaining parts of this axis, where 17 = or it, 10 and ^—

j

should vanish.

The chosen expressions for w satisfy completely these

conditions. Observing that we can put

768 «> sin {2k — l)y
3-4cos2, + co84„=— 2

{2k_5]{2k_3K2k_im+l)(2/e+3)
>

it will he evident that the coefficients A
k
and B

k
can be deter-

mined, as in the First Case, so that at the clamped elliptic

boundary, where f = <x, the conditions w = and t^ = may
be satisfied.

Petrogvad, August, 1920.

8S

SUR QUELQUES SERIES ET PRODUITS
INFINIS.

Par S. P. Sdrensen.

1. DesignonS par p et r deux nombres positifs entiers

et posons 1 ^r^p — 1. Posons ensuite pour abreger

5=00 \

il suit par application des formules bien connues

•(1)

*W-»J«frw— (7+^(^1 -j^)'

,/,<"> (,t) = (-1)"
+,

„! 2

le developpemcnt

iogr(^,) = .ogr(p + f-c

(2)

+ 2 Jlxl>
+ 1 J08 + ?'

a; < .(3).



110 Mr. Sorensen, Stir quelques series et produits infinis.

RemplsKjiuit en (3) x de — x, r de p —r, on trouve

(*}

L addition des Equations (3) et (4) donne

. sin m- In s=x (pxY" !=» (wf '' n
] o- Ul _ v vr ' p _ v Kr '—

p

(ft)

simr{rjp + x)
s

~ 2s
x

>' ~ 2s+l J,,r
'
w '

car on a rW . T (1 — #) = ,

S1II7TX

en posant ensuite

iP> *%H-(P^P- r
),q»

= P̂ v
Soit encore line fonction f{x) quelconque donne par so

developpement convergent

f[x) = a + a
t
Z + a

s
x' +...+ ax" + ...

et remplac^nt x de e2*7"/", s = 0, 1, 2, 3, ..., n — 1, on trouve

l'equation suivante

- Sf{x.e^^l»)=a + anx
n + a

ln
x'

n + asKx'" f...4 «
r
zr"+-

(6«).

Par application des tommies (0) et (6a) on trouve aisement

1 2y-l simrr/p *=*° (px)
2* _ . ,

_r

2^ f .

l0g
sin 7T (r /ju + x . e*»'/*»)

=
jj 2*2

•»' '
Sr|<

p
(7),

ou ce qui est le meme
s=» f nx)

Uq
irr 1 s=2j-l / ,-

2 i/_ - P = log sin — log n si n it - 4 .r .

e

2"". 2?

(«)•

U

•iq-l I r s

En posant P^ II siiiTr (- +x.e-^>:
n
-'lj

on trouve encore

P=sin[7nc+ —
j
sin ( — — 7ra:J n sin7r(— +x.e"-ST!>A

x sin7r [— +x.e-2"r'i-A
,
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_ sin {trrjp + ttj) sin (v>'jp — irx)

2s
"

?-'
( ,

/ . stt\ f2irr
X n ^cosh (2sm— ] — cos 1-

,=i I V qJ \ P

L'equation (8) peut done s'ecrire

stt\)
27ro;cos— 1 > .

' (P*)*
1 rr 1[M_ p = j Tl-± logP (9).

*, 2sq - ° p 2q
h

Par application de l'equation

I y y' 1
- + 4+%+...= ;

c c c c — j/

>1,

ou tire en posant c= [ps + r)**, y — {pxfq
,

+
(/**)* (px)H

{pa + !•)"
+

(;w + >-)
18

(/« + O" (/» + '•)" " (i"*)"

et encore en supposant c = (/?s -f p — r)
J?

, y = {px)'
Jq

.(10),

1

+
(jw)"

^ + (^)
4»

~r ~r
—

{ps+p-ry (pa + p — rj"1 [ps+p-r)

1

-\6«
+.

(pa+p-r)'<-(pxy

De (10) et (11) on tire aisement

PH +(pz)«PH +{px)«Ptl
+...

(11).

5=00 (

= S \i + _J 1
. - »)'* - {px)">\

.(12).

s=0 {{pa + rys -{pxyq [pa+p

Multiplication de (12) par p"qx q
~

l

et l'integration de a x

donnent

ip*r P , W! p +
tq 'o"1" 4? *' '

1 .
"=*= f. 0!

"^^"F+^H 1 "

s-M^
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Puis, on trouve, par application de la formule (8)

•=" f,
®*

) i, _ x,q
X _ * - (p*M" P .

;=o t («

+

'-ipn X (* - «•//»)'•; " («u *r//0"* '

Ex. »•= l,p = 2, q= l,

.=0.1 (2s + 1)3

<>•//>.

2. Considerons encore la formule

.,W" =°° (j»iC(

s=l
"s? s=l "*? s=\

[P i

inq ^M-(13).

«=» ipxY"1

La valenr de 2 -~— P
tiq

pent s'ecrire aisdment, quand on

dans (9) reinplace q par 2q. On trouve ainsi

S=l ^1
.r, = log- sin •-'. •

jo 4? '

La valeur de /* se trouve, quand on dans l'expression de

P reinplace q par 2q. On trouve

si n (ttv lp + ttx ) . si n
(
irr jp — ttx)

"i
= ~~

o^R2"«

2?-l

H { eosli
(
2 sin — ) - cos

j
- + 2nx cos ^-

)
} .

/2lJT

<S)}
La formule (13) donne

S=ro

S (-1)~^P. =^lo£

1

2sq 2.{
2qs=l

et on a ensuite

l ?/ y
8

?/ 1— + -— -—t- =
c c c c

fsln ~)
,.v'2

- •(14),

c + y
<1.

Posant ici c = (ps + r)

~

q
, y = {px)H ou trouve par le meine

proeede", que nous avous indique precedemment la formule

«=°° ( . x,q
) ( (B*

S
)

sl
1^^^^^1+ (^/^^

P,{l+(yg/r)*
| a; | <rjp.

Pishnrrlp)"1 '

De ces formules generates ou |)eut deduire des resultats

speciales, inais je me reserve de revenir a cette question par

une autre occasion.
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THE CONNEXION BETWEEN
THE SUM OF THE SQUARES OF

THE DIVISORS AND THE NUMBER OF THE
PARTITIONS OF A GIVEN NUMBER.

By Major P. A. MacMahon.

In various papers* I have considered tlie partitions of

a number as determined by a succession of integers in

descending order of magnitude.

I have, from this point of view, dealt with an array of

numbers ordered in such wise that a descending order of

magnitude is in evidence in each column and in each row

of the array and have defined such an array as a two-

dimensional partition.

The enumerating generating function I found to be

1

when the partitions are unrestricted both in regard to number
and magnitude.

Thus the 13 partitions of 4 are

4 31 3 22 2 211 21 2 1111 111 11 11 1

1 2 11 1 11 1 1

1 1 1

1

and the expansion of the above fraction gives a term 132*.

We find that

q^- \oS F(q) = -?- + -*£ +
]

3
^+...= 2<r,(«) 2\1 dq ° * 1 — ? I - <1 1 — 1

where o"
a
(»i) denotes the sum of the squares of the divisors

of II.

Writing

F(q) = 1 + B(l) q + B(2) q' +...+ B(n) q
n
+...,

and operating with q-j- log, we find by comparison

nB O) = a, («) + B(l) <7
2

- 1) + 5(2) <7
V
(n - 2) +...

* Combinatory Analysis (Camb. Univ. Press, 1315-16).

VOL. HI. I
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The denominator of F(q) may be written

(l- 9)(l-2
2)(i-<? 3)(i-2 4)-

(W)(l-2s)(l-24)-
(l- 2

8)(l- 2*)...

(1-2 4)-

and I Iiave sliown (he. cit.) tliat if s rows only are retained

the function enumerates tlie partitions wlien t lie array is

restricted to have at most s rows. Thus, when s is 1, we
have the case of ordinary linear partitions for which er, (>/),

the sum of the divisors of «, is in evidence, and we have seen

above that, when s is eo , <r
2
(n) presents itself. It is inter-

esting to enquire concerning the intermediate stages when s

has some value between unity and infinity. For s rows,

F
' (q)

=
(l-2)(l-?'ni-2,/-(l-2'/Rl-?,i,

Kl-2"')-) ;

and q^ogFJq)

_ 2 + JY + JV +^ i „» ' „3 t ...

1-2 1-2 1-2
sV s (s + 1 ) q

,n
s (s + 2) 7 . .

As regards the coefficient herein of q
n

, if rf be a divisor <s,
let it be squared, but if it be > s, let it be multiplied by s.~

The coefficient of q" is then

S^" + s 2 d

;

<s >s

and we may write this

o-
a
(n) + so-,(w).

<s >s

Hence <? -=- logF, (q) = 2m jo-, («) + * <r, («)} 2"
5

«2 i <* >«

and it will be noted that the arithmetical function becomes
o-, (n), o-,(«) for s= 1 and oo respectively.

Writing

F.(?) = l + JB
1
(l)2 + 5.(2) 2'+...+ 5.(«)2"+... J
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we find, as before,

nB, 00 = \a_, 0) + str, (n)J + B, (1) [a, (n - 1) + sff, (« - l)}

+ #
J (2){fs

(n-2)+*r
I
(n-2)}+....

<s >s

Tlie value of <r
s
(n)+«o",(n) is given iu the annexed Table

so far as *=10, n= 10, and in the second Table the value

of B,(»).

I.

S.«l = l 2 3 4 5 6 7 8 9 10 ...

1
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Similarly in Table II. tlie values of B
M
(n), for a fixed

value of s and successive values of w, are obtained by reading

down the slanting side as far as the 5
th row and then pro-

ceeding along that row.

It may be added that if

/(2) = f(l-2)(l-2,)(l-23)-n
and, after Euler, if <j>m denote the number of primitive »n'

roots of unity,

^-ni/te")}*",

this establishes a connection with Elliptic Functions.

ELECTROMAGNET1SM AND DYNAMICS. .

By Dr. H. Bateman.

Different pictures of physical phenomena may be obtained

by adopting different conventions with regard to the types of

discontinuity that are to be regarded as admissible in the

mathematical specification of physical quantities. A picture

of considerable interest is based on the idea that, when all

types of energy and momentum are taken into consideration,

these physical quantities are distributed throughout space in

such a manner that we can speak of densities of energy and

momentum that are continuous functions of the rectangular

coordinates (x, y, z), used to specify the position of a point,

and of the time t. A different picture is obtained if the

densities of energy and momentum are allowed to change
suddenly in value as the point (x, y, z) crosses the boundary

of an electron or some other entity such as a hypothetical

light quantum of limited size.

It is doubtful whether the first picture is adequate for a

complete description of all the physical phenomena with which

man is acquainted, but in any case it is well worth while to

give it a fair trial. The type of analysis associated with this

picture of phenomena will be called continuous analysis. The
main principles of the analysis are already familiar, as they

play an important part in Maxwell's electromagnetic theory,

the theory of elections and the theory of relativity in both the

restricted and general forms.*

* In all these theories there seem3, however, to be some type of discontinuity

at the boundary of a particle of matter when the density of electricity is not zero

at the boundary.



Br. Bateman, Electromagnelism and dynamics. 117

We are interested here in the application of continuous
analysis to the case in which the changes of t lie energy and
momentum associated with a region of space are produced
entirely hy the fluxes of energy and momentum across the

boundary of the region. In this case there are no body forces.

This means that if we write the equations governing the

changes of energy and momentum in the usual form

dx dy dz dt
= F.

+
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quantity yO, — zG may indeed be regarded as the density of

the angular momentum about the axis of x and yX
t
— zY

y,

yY, - zY
,
yZ

z
— zZ as the components of a vector qx

which

specifies the flux of the angular momentum about the axis of x.

The second equation gives a generalisation of the theorem

that the centre of mass of a complete mechanical system moves

along a straight line* provided we regard mass m and total

energy e as being connected by the relation

e = mcs
(4),

where c is the velocity of light (which is assumed here to be

constant). A set of 1G quantities Xxi X , X^ Yx, Y , Yz,

Zm , Z\, Z,, Gx, G
y

, G
z
, Sx , S

y
. Sz, W satisfying equations (2)

will be regarded as the components of a symmetrical tensor T.

The familiar tensor T
e
of electromagnetic theory gives F=0

and F
t

= in regions not occupied by electricity, but when
there is a continuous volume distribution of electric charges

and convection currents it is difficult to satisfy these equations

and get motions that are of physical interest.")" The situation

is not improved much by adding a mass tensor Tm which is

different from zero only within the charged particles, for the

equations of motion obtained by equating the total body force

to zero and integrating over the electron do not satisfy the

requirements ot quantum theory.

An attempt has been made recently to generalise electro-

magnetic theory by supposing that an electric charge produces

both an electromagnetic field and a scalar held, the latter being

specified by a retarded potential \p which is an invariant

under the transformations of the theory of relativity. A new
tensor 1\ depending on \p, was added to the usual electro-

magnetic tensor 1], and it was found that non-radiating

electronic orbits were possible,! the flow of electromagnetic

energy to infinity being balanced by a flow to infinity of

negative energy of a new type, provided that the flow is

calculated for an interval of time between two instants at

which the velocity of the moving electron is a maximum or

minimum, and that the electron is treated as a point charge

* A. Einstein, Ann. d. Phyt. (4), Bd. 20 (1906), p. 627; G. Herglotz. Ann <l.

Phys. (I), Bd 36(1911), p. 493; E. Bessel Hagen, Math. Ann., Bd. 84 (1921). p. 258.

f The matter lias been discussed by Levi Civita and his co-workera. For

references see Messenger of Mathematics, vol. xlvi. (1917), p. 140.

X Physical Review, vol. xx. (1922), p. 243. A long calculation has also shown
that, there is a continual radiation of negative energy to infinity when two negative

el. n i ic poles with the same charge move uniformly in a circle at opposite ends of

a diameter, the controlling field being electrostatic, ft is thought that this type

of steady motion may be impossible because there is this continual radiation of

negative energy.
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moving under the influence of an electrostatic field which is

not altered by the field of the electron. The introduction of

negative energy is a delect in the analysis, but the same defect

appears when the idea of a continuous distribution of stress is

applied to gravitation, as Maxwell noticed long ago. The
tensor T

e
+ T appeared also to give satisfactory results when

applied to the interior of a charged particle with a spherical

boundary, but a subsequent investigation revealed a difficulty

with regard to the boundary condiiions at the surface of the

particle, and it is now believed that other tensors must be

added.

The object of this note is to point out that many important

requirements may be satisfied by using a tensor T made up

of four parts:

T=T
t
+T+T

c
+Tm (5).

The first part T
t

is the usual tensor connected with the electro-

magnetic field {E, H). Its components are of types

W= i (E> + H% S= c [EE
z
- EH

y)

X=E; + E;-W, X=EE
y
+HH

v

and we have

n

F=p[Ex + -(vE-vEy)]

•(7),

F
t
=R{vEi+ v

v
E

v
+vE

s)

where p is the density and v the velocity of electricity at the

point x, y, z at time t. These quantities are connected with

E and R by the usual equations

curl

\\E=

c \dt

c t/

pv d\vE=p}

div#=0
.(8)

of the theory of electrons.

The tensor T
c

is of a very interesting type,

for instance, the properties

w>o s:+s; + s:^c'w>
^

Xx+Yv
+Zz+W=0

{Xx+W)Sx+Xs
8

tl
+X

zS =

SxSv+<?ZyX=<?{Xx+ Yy
)X

v

It possesses,

•(9),
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and an interesting question arises as to whether the total

tensor 7' should lie required to possess any of these properties.

The tensor T
t
has components of the following types

r
9.x

3 » T
9-c dy)

where ip is connected with p and w by the equation

- -(g)\(l)\(i)'-i(t)\
The potential i// may be calculated from the distribution of

the quantity p \/{l - («*/ c')l ^y means of the usual formula

for a retarded potential.

The tensor T
s
does not generally possess the properties

mentioned above in (9), but this does not necessarily mean

that it has no physical meaning. The force F arising from

T
t
has components of type

*.«-**h p v -?) (ii),

and can be used to balance the electrical force derived from T
t

in the case of a statical distribution of electricity with radial

symmetry. The density p is then determined by an equation

of type \p = bp
7

, where b is a constant and two laws of density

seem to be possible. This result suggests that there may be

two types of discrete particles of electricity in each of which p

lias a value different from zero at the boundary and a numeri-

cally greater value at the centre. The percentage difference

between the maximum and minimum values of p is much
greater in one case than in the other.

On account of the discontinuity in p at the boundary the

tensor 1
,'=T + T will not give a stress system which is

continuous at the boundary. It is true that ip, F, and T are

continuous, but the second derivatives of ip are discontinuous.

The discontinuity in xXr+yXy+ zXz
is thus the same as that

of
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and when ^ is a function only of r= *l/(x' + */* + s
s

), we find,

on writing "^ =/"(»'), that

^ asy

dzdy

The discontinuity in

-5/"(r)-5/W
cry

0* CJ/ 03

is thus the same as that of

/» + -/» or of — cc/j.

Tlie quantity x (X - 2i/,p) + yX
y
+ zX

z

thus lias no discontinuity at the boundary.

It is clear from this result that we can make the stress at

the boundary continuous if we use the tensor T" — T
e
+ T

t
+ T

c,

where 1\ is a tensor with components which are all zero out-

side the charged particle and which have the following values

inside

Y = Z=.X = S=S=S =0
..(12),

where \p , p g
, and v are the boundary values of ip, p, and v,

and are constant throughout the electric particle. This form
of tensor has been chosen so as to satisfy the requirements of

the theory of restricted relativity : it will be called a chaotic

tensor because there is no momentum associated with it.

With the tensor T" = T
e
+

T

t
+ T

c
the density of energy

TFis discontinuous at the boundary of the charged particle.

To remedy this we add a fourth tensor Tm with components
of types

W- 2^p 8 - 2*'pV*

V{i-(»7C*)r " V{i-(»7c'Ji

x=- *-
.(13).

Since p and v satisfy the equation of continuity
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the components of the body force F{m)
derived from this tensor

Tm are of type*

while

c* dt LV{l-(»'/0}.
= FJ"> (15),

-Hj> p{" •(10),
dt i_vii — (u /O

and we clearly have the relation F[ m) =[v.F) {'"\ which is of

the same form as the relation Ff* = (v.F)
(e)

satislied by the

electromagnetic force F(e
K

Assuming that the total body force derived from the tensor

T= T + T + T + T
c s c m

vanishes, and that the energy equation is

have the equations of motion

2p^„ d

ilso satisfied, we

I ^
c

3

dt Lvii-(«
2

/
c2)}_

+ *-ph
d

It Vli-(«7o}
a

= p {vEx + vFy
+ v.Ej - 2+ 1 j PV (l -

and from these we may deduce that

(n),

.(18).

This equation is compatible with the Lorentz-Fitzgerald

contraction and with the principle that an electron does not

alter in size when it passes from one state of motion with

velocity v to another.

The above equations of motion apply to each element of the

electron, and they should determine the form of the election,

as well as its motion as a whole. To determine the latter we
may multiply the equations by dxdydz and integrate over the

region of space occupied by the electron at an instant of time t.

A simple and accurate expression of the result of this inte-

gration is not to be expected, but one can get a general idea

of the most important terms.

_ ., t 6 S S d
We write - + ('*.- + !•„ — +(';—= -j .

it ox oy oz dt
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Assuming that p lias the same sign throughout the electron,

we have as a first approximation

I +'jp*** i [v{i- ;;>')}]
= 2

~?~ a [vii -w)}]
(19),

where e is a constant representing the electric charge of the

electron and where the velocity v on the right-hand side refers

to some point of the electron, and is a kind of mean value of

the original v. With a good approximation it may be taken

to be the velocity of the point at which
| p V{1 — (v

3
/c

2

j} |
has

its greatest value.

If \pp\t\l — (v'/c
1

)} is constant over the surface of the

electron, we may write

\P
dxdydz [Em+ \ v

y
H-\ v.H

y)
+
J2

* dxdydz | \p v(l -
£)}|

= fpdzdgd*
[
Et + l(vH-vv

H) - 2V (l -J g]J
(20).

The portion of this integral, which arises from the external

field, is approximately

x . V y a "z y I *
cV 8*

.(21).

When the electron is stationary, and the external field is

electrostatic, the expression within brackets reduces to 3-E^.*,

and the total force exerted by the external electric charges is

exactly three times the usual electrostatic force.

The force exerted by the electron on itself is more difficult

to calculate. In the case of a solitary stationary electron with

a spherical boundary and a radially symmetric distribution of

charge, we have for external points

Hencewhere r is the distance from the centre.

2^o _ <?
^

c' 2irac
2 '

where a is the radius of the boundary of the electron. Regarding

this quantity as the stationary mass of the electron and denoting

it by the symbol ?» , we have an expression for the mass which
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is just three times tlie usual expression. Thus in the electro-

static case not only is the force produced by external forces

just three times the usual force, but the mass is also three

times the usual mass.

It is important to ascertain whether the quantity ?» is

connected with the total energy. When v = the tensor Tm
gives an amount of energy equal to 2e^/ , which is just m

t
c

;

hence the sum of the energies contributed by the tensors T
e ,

T, and T should be zero. This has been verified in nu

important case by a long numerical computation. Assuming

that an electron has a spherical boundary and a radially

symmetric distribution of charge, we have to satisfy the

equation \p = bp'\ where b is a constant.

Assuming that

P=A + A/ + A/+...,

the corresponding expression for \p is

* = J(3«
2 -O A + Jo (

5 «
d - >•') A

3 + 45 I
7 "* - O A

, + -> -

and we find, by equating coefficients of the different powers

of r in the equation \p = bp", that

T 1 r' 1 r* _J S 31 r
8

9 ~ °
L

1 ~ 12 Aj>
~ 720 JJtS 10U80 ^ 3

- ^nrr a^j? ~
•°00

'

°00
'

° 81, 758, 121
'
C0G5s

,... ,>»

-.000,000,008,592,196 —,-.-,-.000,000,000,930,706-^-3

and that

= 1
—
5s + 4 8

S ~t~ 4 32US "*" 8 0fi40 S

+ .000, 000, 854, 276, 895, 943, 5s
s

4 .000, 000, 067, 571, 103, 457, 7s
6

+ .000, 000, 005, 839, 865, 829/

+ .000, 000, 000, 537, 012, 283/

+ .000, 000, 000, 051, 705, 893/+...,

GMIAM

where A
B
b

The equation for s appears to have two positive roots, the

smaller of which is approximately

s = 2. 209012572



Dr. Bateman, Electromagnetism and dynamics. 125

wliile the other is difficult to determine accurately. The
calculations will be made with the smaller root.

The total energy inside and outside the electron arising

from the tensors T
e
, T

t
, and T

c
is

i f 3 (^VwVfr+ i f 3 -i-^r*dr-2^Pi 4-nr\
Jo \<J>'/ J a r

and this is found to be zero to at least seven places of decimals.

The total momentum inside and outside a uniformly moving
electron may also be found from the tensors associated with

the stationary electron by an application of the transformations

of the theory of relalivity, and it is found that to seven places

of decimals the momentum arising from the tensor T
e
+T

t
+T

c

is zero, while the momentum arising from the tensor Tm is

V{i - (*7<f)}

"

We may thus be justified in regarding the quantity m as the

stationary mass of the electron.

It thus appears that our equations of motion will lead to

dynamical equations which are something like those which are

generally adopted, but exact expressions for the forces in

accelerated motion are still to be found. It is possible that

these will be equal to (or rather three times) the usual expres-

sions only when certain conditions are satisfied. It should be

remarked that the assumption that \pp\/\l — (v'jc')\ is constant

over the electron may not be true in general.

It is possible that our expression for the tensor T is not

yet complete. The continuity of W at the boundary of an
electron has been verified only in the electrostatic case,* and
the fact that there is a radiation of negative energy in accele-

rated motion may be regarded as a defect in the theory. It

is quite possible that a tensor may be found which will eliminate

this negative energy and not materially alter the expressions

for the force, total energy and momentum. It is easy to see

that a tensor with components of types

c dt dxdt

Y S'"u.^o Y d
'a

dx' ' " dxdy

* It ia not clear that in uniform motion the tangential component of momentum
is continuous ;it the boundary of an election, though the normal component appears
to be. The continuity of the normal component may be really all that ia necessary.
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will give no farce and will also give no total energy if t lie

integral of the normal derivative of 12 over a very large sphere

..... . .. d'Q
,

cfil tftt .
.."

,, ,is negligible while —

-

t
+ 7—7 + -^-j- is continuous througli-

out space. dc dU~ dz

The case in which H = ip
2

is of special interest and some
advantage may be gained by subtracting five-eighths of the

corresponding tensor T
a
from our tensor T= T

e
+ T

B
+ T

c
+Tm.

Indeed, when we consider our stationary election with a

spherical boundary, the addition of T
a
does not alter the total

energy, it simply alters the distribution. We can say, more-
over, that when the electron is moving uniformly, the total

energy and momentum can be calculated from the energy and

momentum outside the electron by simply multiplying these

by 8.

Whether this is true or not for a case of variable motion

is difficult to say. The author has calculated the angular

momentum outside the Hertzian dipole specified by the.

potentials

*= <!> = 3

r
J

\ ci

a
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of tlie particle. A combination of the two assumptions implies

that both * and p »J \l
- (J

I
c*)\ aie constant over the boundary.

There is, indeed, some reason for supposing that p^\l—{v
7
jc')\

may be constant over the boundary. This quantity in fact

remains constant during motion, and is constant over the

boundary of a stationary electron. There is, however, a

possibility that p \J {I
— (v*

I
c')\ might be constant over only a

portion of the boundary of the electron in variable motion, the

electricity associated with the least value of
|

p\/\l — (w/c")|
|_

breaking up into two or more parts just as a thin sheet of

•water covering a globe might dry up in some places and

become thicker in others. This phenomenon is unlikely to

occur, but the possibility of it must be borne in mind. It is

fairly reasonable, however, to expect that * and pV{ !—(«7C"M
will be constant over the boundary of an electron. If this

expectation fails it may be necessary to replace T
c
and Tm by

tensors which have values different from zero outside the

electron, and the external values of these tensors may be just

what is needed to eliminate the radiation of negative energy

and give a type of radiation in which energy travels directly

from atom to atom in the way that Einstein imagines. Even

though the tensors T
e
and Tm may require modification for

the case of variable motion, there is a possibility that our

tensor 2' will still give correct results when considered simply

as the basis of a method of calculation and not as a physical

picture of the actual processes. It an atom B begins to emit

negative energy as soon as the radiant field from an atom A
reaches it, and continues to emit negative or positive energy

for a short interval of time, the total amount emitted being

negative, the effect is practically the same as if light energy

in a corpuscular form were to travel with velocity c along a

rectilinear path from A to B. If there is no radiation ot

energy to infinity on the whole, there will be conservation of

energy, and the quantum conditions must be regarded as the

laws governing the flow of energy across the boundaries of the

individual electrons, the energy of an electron being regarded

as entirely within the electron and equal to that given by the

tensor Tm .

Indeed, if we admit the possibility of the existence of

negative energy the phenomena of the photoelectric effect

can very likely be explained without any need of a corpuscular

hypothesis such as that of Einstein. This hypothesis has

many advantages, but among the objections to it we may
enumerate (1) the difficulty of explaining interference, (2) the

difficulty of understanding how a light quantum knows where
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to go in oider that it may be absorbed, (3) the difficulty of

understanding how a light quantum preserves its frequency

v as it travels through space with velocity c.

Really the light quantum e = hv in Einstein's theory is

associated with frequencies lying between v and v + dv.

Einstein's original arguments* which were put forward to

show that the light quanta were thermodynamically and

spacially independent were based partly on Wien's radiation

formula and were applied to black body radiation. Woltkej
lias recently developed similar arguments in connection with

Planck's radiation formula and finds that elements of energy

of amounts e = 11/iv (n = l, 2, 3, ...) should be regarded as

thermodynamically and spacially independent. It may be

remarked also that his analysis may be extended to the

fluctuations of energy in a small volume and that the fluctu-

ations may then be accounted for completely as arising from

the motion of the quanta without any additional term repre-

senting the fluctuations according to the classical wave theory.'

This result seems to indicate that the properties of black

body radiation can be described in terms of simple light

quanta of magnitude e = hv and associated sets of n such

quanta. This may be simply a peculiarity of black body

radiation arising from the presence of a perfectly reflecting

boundary or it may be an indication that the quantum theory

is to be regarded as a method of calculation which is complete

in itself and quite distinct from the wave theory. Quantum
theory may indeed belong naturally to that branch of mathe-

matical physics in which the energy and mass of a particle

are regarded as inside the particle instead of outside. The
present researches support this view and point very definitely

to the conclusion that there is a new type of force, depending

on a scalar potential \p, which under certain circumstances is

just twice the ordinary electromagnetic force, the mass having

three times its usual value. There may, however, be other

forces still to be discovered, and in fact it seems reasonable to

adopt the hypothesis that the greatest discoveries have yet

to be made and that the universe is far more interesting and

complicated than was ever imagined.

* A. Einstein, Ann. d. Phy's. (4), Bri. 17 (1905), p. 132.

t M. Wolfke, Phjs. Zeitschr., Bd. 22 (19l'1), p. U70.



( 129 )

AN EXPANSION IN FACTORIALS SIMILAR
TO VANDERMONDE'S THEOREM,

AND APPLICATIONS.

By D. Edicardes, B.A.

If in Vandermonde's product of factors in A.P. we take

the initial factor to be, say, a + /3 + ^, instead of a + j3, and

seek to determine a series with the same law of progression

of the factors in the several terms, we get the result

^.f...i(2»-l)(a+ /3 + i)(a+ /3 + l)...{a+ /3 + i(2n-l)}

=(a+J)(a+i)...{«+i(2n-l)}.O+i)O3+J)...{0+i(2»-l)}

+ /-„
1

a/3.(a f|)(a+|)...{a+l(2«-3)J.(/3+J)(3+|)...|/3+A(2n-3)}

+ Ansa(a+l)/3(/3+l).(a+i)...{a+J(2«-5)}.034)...{^+J(2n-5)}+...

+ Aw,a(«+ l)...(a+ K-l)./3(/3 + l)...(/3 + ra-l) (i),

(2»-2r + 3)(2»-2>- + 5)-(2n-l)
*
ni
=(2*-4,-+ l). C7

r
.—

ls.s...^.!)
= 2"^- v

"^-, Wi
r = 2, 3, ..., ?i, &

nl
= n(2«-3).

The method of construction is given further on.

In particular, by equating the coefficients of the highest

power of, say, ji on either side, we have

(«+l)(«+ |)...{a+ i(2n-l)}+^«(«4i)...{«+ i(aii-3)|

+i
rt
a(a+l).(a+i)...{a+|(2n-5)}+...+AMBa(a+l)...(a+M-l)

= J.|.|...i(2«-l)...(3).

An independent proof follows from writing the series as

r(2a + ?i + i).#/r(a)r(a + i) (4),

where

S= B (a + n + i, a) + i„,S (a + n - i, a + 1)

+ &
fll
.B (a+ n- |, a + 2) +...+ kmB (a + i, a + m)

= f
r*(i - *p (<" +V (i - +-+ *-(! " ')"! *i

J

VOL. LII. K
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if a> 0.' Now if x, y are any numbers and we expand

multiply the lower expression by yjx and subtract from the

upper, we get

I Wx - s/y) (Vas + */y)
n + Wx + Vy) (Va - V</)

s
"

j / 2 V*
=*-+ K^'

l

y +WY++ hy-W-
Hence, substituting and letting £ = cos*f?, we have

8= ['"^(sin 0cos ey"1

cos 20 {(cos + sin 0)
2"" 1 + (cos0-sin 6)°"*).

The integrand in the first integral is reproduced with its

sign changed on writing ^tt — for therein, so that

&= p (sin 6> cos fl)
3a
- cos 26> (cos - sin 0)

2"- 1

= 4s [** (sin 2ey"1
. (1 - sin 26>)

n *^ sin 20
& jo

1 r{2a)r(n + ±)

~2 2"-1- r(o)r(a + i)
.'

by the duplication formula for the Gamma function,

= ir(« + i) = (n-i)( ?i
-§)...|.l.

7r$

We will now evaluate a certain double integral by (1).

The series on the right-hand side can be written

r(2a+n+i)r(2/34n + l)
. „

r(a)r(/3
J r(aA)TO + i)

[jBia+K2 " +1) ' C(|i?i|3+ -"" +1)
' /3i

+ *
111
B{a+i(2n-l), a+l} JB|/3 + i(2«-l), + 1}+...

+ /,MB(« + ia + »)B((3 + i/3 + tO],

and proceeding as before, using (5), taking cos'0, cos
!

<£ as new
variables of integration, and omitting a double integral that

obviously vanishes, we get

* ^(3m20f , {sm2 (f)^-
i .cos(0-^) [ cos (0 + </>)!"'J&fy

_ w.2H ir(2a)r(2/3)r(« + p+« + i) ...

,

2
!, ' +\»dr(2a +K + A)r(2j3+n+Jr

)r(a+/3+J
r

)'
,,(

'
;

'T

* Since the left-hand side of (3) is of finite degree in a, the equation is true for

all values of a if true for a> 0.

t cos (9 — 0) maybe replaced by either cos 6 cos or sin 9 sin provided we
halve the light-hand member.
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If <x> \, /3> \, the double and repeated integrals are all equal.

To prove (1), we have

|(a+/3+|)=(a+f)(j3+|)-aj3=3Ka+l)(/3+l)-(a+i)0+i)}

= A=B, say, and thus

£(a + j3 + £)i(a+j3 + f)
= (a+£)(|3 +i)4-apB

= (a+i)(a+§)(/3 f i)(i3+l) + 2a(a+l)/3 (/3+i) -3«(«+l) P O + l)-

Similarly,

§(a4/3 + S) = (a + f)(/3 + §)-«0

=5K«+2)(/3+l)-(«+i)0+ 1 ))=-|{(aH)C/3^H*+2)(/3+2)! )

and now multiplying and using the appropriate multiplier for

each term on the right-hand side, we get

i.|.t(a + /3 + l)(a + /3 + |)(« + /3 + |)

= (a + i)(a+ i)(«+ 8)(/3+i)(0 + i)(0 + t)

+ 9«0(« + l)(a + |)(/3+i)(3 + f)

-5a(a+l)/30+l)(a+i)(/3+i)-5a(a+l)(«-r2)/30 + l)Oh2).

Assuming then the form of (l), to find the coefficients let

a = — r, 8=— (2n— 2r + l)/2. All the terms vanish except

that involving ifc
p
, and we get on reduction the value stated

above. Multiplying both sides by £(2n+ 1) {a+/3+i(2n + 1)},

and using the appropriate form of this expression for each

term of the series, the coefficient ot

a(a+l)...(a+ r).(a+ i)...

{a+i(2n-2r-l)}./3(j3+l)...(/3+r).(/3+i)...{/3+i(2n-2 J-l)|

2u+l 2«+l ,

1S ~ 2»-4r+l *-' + 2«-4r-3 "'
^

. (m + 1)! (2n-2r + 3)...(2i»+l)
= (2«-4r-l)

r+1 , n _ r
-j

-
1>3 . 5 ... 2, + 1

.

that is &„,.,„„ and this holds also for »-=l. The theorem is

therefore established.

In further application of (1), first, if

ix
= a 1 0, Jf=iwT(2a + n+i)r(2j3* n + i),
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we have

^r-m I"**' P" (Bin 20)="" (sin 2rf,)
,/f- cos (5 - tf>)

r(2ajT(2j3) Jo Jo
v

'
v v ' v VJ

{cos(^)} aV^ = J.2...i(2«-l)(^ + -J)(M+?>)...{M+i(2»-l)].

Also, expanding the cosine and doubling the first of the two

equivalent integrals, we have

I"

4"
['"(sin 20y

a-1
(sin 2rf,)

v/3_1
cos [6 - f) dddq,

Jo Jo

_ 2»a«/9-i 1Bf. _ n isffl p |
n *T(2ct)r(2/3)

-2 •^(a
>
a+-")-^iP'P+^-

2 r(2a + i)r(2j3 + i)'
so that

2_r(2an)r(2/3H) f^(
sin20r' (sin2^cos(^-^4 = l-

7T ri2«)r(2/3) Jo Jo
v ; v *' v Y> Y

On substituting then for n= l, 2, ... and adding, we have

[*"j*" (sin 26)"-* (sin
2tf,)

,/J- x
cos (6 - 0)

F{2a + i, 2/3 + i, 7; jccos'ffl + ^ld&ty

(a>i/3>|).

In the first equation above, change a into a + h, /3 into

rt+i, and m into « — 1, and multiply throughout by y.2a-2j3 I2y.

Changing a, (5, n, as before and multiplying by

7(7 +l)2a(2a+l)2/3(2/3 + l)/27 (27 + l),

and continuing the process, we get

I
I |...J(2«-1) |M+i(»«-l)}...(M+|)(^+i)

7 2«.2/3

i!m-i!' 27
+ 7T^.^xlf...£(2n-3){ /

a+£(2H-l))..> + §)

7(7+1) 2oc(2« + 1)2/3 (2/3 + 1)

+ 2!n-2! 27 (27 + 1)

xii...J(2n-6){M + J(2n-l)}...0* + 4)+.'..

7(7+1)... (7+w-l) 2q(2a+l)...(2a+«-l).2/3(2/3+l)...(2/3+H-l)

+ "
n\ 27(27 + 1).. .(27+n-l)

= ^—-3T f^r
27r

(siii2^)
,tf-l

(sin2d,)
s
'
3
-

, cos^-^)[cos(^+^J
,J"

«!r(2a)r(2/3)Jo Jo
l ; V Vl K y;i
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j
7 sin 20 sin 2

ft 7(7+1) (sin 20 sin 20

1

1

<

X ' 27 "cos
2
(61 + 0)

+ '27(27+l)
-

cos
4

(0 + ft)

7(7 + l)...(7 + n-l) (sin2<?sin2ftV"
| rfft

.

+
27(27+ 1)...(27 + M-1)* CO3'"(^ + 0) j

?i!r(2a)l ^2)3) Jo Jo

/ sin20sin2rf>\ 7
, .

= ,

2f f , N
f** |"^(sin2^)'-'

a
-'(sin20)

5
'
3
- 1cosyco S {cob(^*)}"

«!r(2a)r(2j3)Jo Jo ^
; v YJ

/ sin2# sin2rf>\ ln , ,„.

(i +2/f'^(a, « + i-7, v+h; y-) = F[a, 7, 27 , ^j-,) ,

therefore

(1 - tan 6 tan
<f)'"

nF{- n, - n + £-7, 7 + i 5
tan

'
5 tan»

/ sin 2# sin 2d»

= 2? -h, 7, 27, -

X

Now (Gauss)

cos
2
(tf + 0)/

'

and the integral in (9) becomes

[^ I** (sin 20)
2- 1

(sin 2^-' (cos 6 cosft)'
B+1

xF{-n, -n + i-7, 7 + i; tan'0 tan» Jftfy.

Let the whole equation be divided by

(7 + J)(7+2)--i7 + i( 2»- 1 ))-

The left-hand member is then seen to be the coefficient of x"

in the series written below, and thus the coefficient of x" in

the series

Fia +p+lly+h^+x^.^Fia+ft + l^y+l,*)

, 7 (7 + 1) 2a (2a+ 1)2/3 (2/3+1)
+x

0> + i)(7+i)' 2! 27(27 + 1)

(uniformly convergent if 7>a+ /3, and -l+ 8<aJ<l + 8, and

therefore expressible as a power series) can be expressed in

K2
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the form

2M fAir fAir

Jo Jo
V»*W '(si.^)'"

5- (cosflcos.f,)"'*
1

«!r(2a)r(2/3)

x F[- n, - n + i - 7, 7 + } ; tan'0 tan'^) d&fy

/(7 + i)(7+l)-l7 + M2»- 1 ));

tlie Gaussian function liere being simply a polynomial. We
shall have to refer presently to this result.

Consider now the product

F(a+h /3 + i, 7+ i, x) . F{a, (3, 7 + £, x), \x\<l

and series absolutely convergent. The coefficient of x" in the

equivalent power series can be expressed at once in the form

1 r(2a+>i+^r(2/3+«-t4)

«!f(a)r(/tf)r(a+i)r(/3+i)

B\<x, «+i(2n+l)}.Bt/3, ft-j f2ii4l)|

.
(7+i)(7+|)."l7+i(2»-l)l .

, r
J{tt+1, a + j(2n-l)} £|/3 + l, <3 + j(2n- l.)|

(7 + i)(7 + |)...{7+ i(2»-3)}.(7 + i)

£(H2, « + j(2>i-3)|g{/3 + 2, /3 + j(2>»-3)}

" (7+ i)-f7 + i(2n-5)}.(7 + iK7+l)

+
](7 + i)(7+ |-)-{7+i(2»-l)};

2
3"+^-2 r ( 2a + « -4- j) r (2/3 + » + j)

~
7T»! r(2a)r(2/3).(7 + i)(7 + |)...{7+i(2n-l)J

x f

'^
f** (sin Br-" (sin d,)

2^' (cos fl)™^ 1

Jo Jo

x (cosd,)
2
'3

* 3"-1

|~l + 'C.
7+ " (2 ",~ 1)

tan'0 tuft
L 7 + 3

+ „ c |7+ i(2»-im7 + i(2»-3)j
ta^ ^ I

(7 + A) (7+ |)
T

\|

x sin20sin2i.d&fy,

where for the series in
[ ] we may write

F{- «, - 7 - ra + i, 7+ i ; tan*0 tan'rf.)

and reduce the expression to

-
, ,

2M
3, I"** f

**
(sin 20)

3°-'
(sin 2d>)

3/3-'

>i! r (2a; r (20) Jo Jo ^ > \
r>

x .F(- w, - 7 - n + J, 7 + i ; tairfl tan'tf.) dddtj>.
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Hence, comparing with the former result, we have

F(«+i/3+i,7+*,«)^
,

(«.ftT+i,a!)=J
,

(«+j3+i,i,7+i<«')

(7 + i)(7 + |) 2i27 (27 +l)

(
1G)>

provided of course 7 is not half an uneven negative integer.

Clausen's power series for the square of a hypergeometric

series follows from this result by letting 7= a+ j3. Each

partial series 011 the right-hand side becomes (1 — a?)
-1

, so that

(l-a?)*F(a + i,j3+ i; a+ + *, «)*(«, /3; a + /3 + i x)

- 7(7 + 1)— (7 + «-0
" +

»=l(7 + i)l7 + f)-{7 + i(2«-l)}

2a(2« + l)...(2a+ ti-l).2/3(2/3+l)...(2ff + w-l)
j;

.

n! 2y(2y+ l)...[2y + n-l) '

which may be written

r(2q4 2/3)r(a+ /3 + i) - r(a + ^+n)r(2o + n)r(2^ + n)a:".

T (2a) T (2/3) T (a + ]3) B=0 n!r(2a+2/3 + n)r(a + + n + i)

Now (Euler)

(1 - a)"** F(a, ft, 7 , *) = F(y - a, 7 - ft 7 *),

so that

{l-xyF{a + h (i+h « + /3 fl £B) =FO )
«, 0+/3+ J, 0)

= F(«, 0, a +j3 + *,*),

and thus \F[a, ft,
a + /3 + h, x)}*= the series above, Clausen's

c being here 7 + 5*
Again, if we multiply (10) throughout by (1 — x)

a^' y+i and

apply Euler's transformation to the first factor on the left and

the partial series on the right, then

f[»-',i-ftiH«W«.ftiH«)=«

* Vide Whittaker and Watson, 2nd ed., ex. II, Misc. Exs., ch. xiv.
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where (7),,, means 7(7 + 1)...(7 + n — 1), and similarly for

(2a) n_„ et^
Assuming that \x\ < 1, and 7> 0, we can replace Fhy

2
^7
+

^]~^~- [""(sina)
5^ 2"- 1

(1 -xsm'd^dd

and write

whence follows a theorem due to Cayley,* on replacing the

integrals

by their values in

(sin ey~ l

(1 + Bx sin
s + Cx%

sin
4
6> +...)

and reducing.

GREEN'S DYADICS IN THE THEORY OF
ELASTICITY.

By C. E. Weatherburn, M.A., D.Sc.

Introduction.

The close analogy which is known to exist between the

problems of Diriehlet and Neumann and the fundamental
problems of elasticity,! and which in a recent paper f I have
further emphasized by the introduction of certain dyadies

constructed from Somigliana's integrals of the equations of

equilibrium for an elastic isotropic body, suggests a further

enquiry as to the existence of other dyadies which, in the

theory of elasticity, will play a part similar to that taken by
the ordinary Green's functions in the potential problems. In

the present paper I show how to construct such dyadies, which

1 shall call the Green's dyadies for the problems of elasticity

corresponding respectively to zero surface displacement and

zero surface traction. The former is an ordinary Green's

dyadic, and the latter a generalised. Having proved their

fundamental properties I show how they may be used for the

* loc cit., Ex Id

t Cf. e.g. Lauricella, Atti Lineei (5), t. 15, (1900), pp. 42G-433 and 610-1519;

t. 15„ pp. 75-83 ; and // Nuovo Cimento (5), t. 13 (1907) Four papers.

I "On two fundamental problems on the theory of elasticity", The Philo-

sophical Magatin vol. ixxii., pp. 10-38 (1916).
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solution of various problems related to the differential equation

of elastic equilibrium under no bodily forces

(1) L (u) = V
7U + k grad div u = 0.

In particular I discuss the problems of small vibrations of an

isotropic body corresponding to the boundary conditions of

zero displacement and zero surface traction ; and finally prove

bilinear series for the Green's dyadics, corresponding exactly

to the ordinary bilinear series for the symmetric kernel of

the scalar integral equation. The paper will afford further

applications of the theory of vector integral equations, which

I have developed in a paper just appearing in the Transactions

of the Cambridge Philosophical Society ; and the important

role of the conjugo-symuietrie kernel there* indicated is here

filled by the Green's dyadics to be considered.

Though the greater part of the present investigation is

independent of my earlier paper on the problems of elasticity,

it will be convenient, for the purpose of identifying the functions

found in the first section below, to mention the following results

previously obtained. If a denote a constant (say unit) vector,

then

S
( Pi) = * -

2 (i + jfe)
Srad d 'V (ar)

is a particular integral of the equation (1) of Somigliana's

type, r being measured from a fixed point p (the pole) to the

current point q. To this displacement corresponds the surface

traction F (tp) at the boundary point t, given by the ordinary

formula. With the notation F, (tp), F
a
(tp), T?

3
(tp) and

S,(p?)> S,(P?)> SjO?) for tlie particular values of F
n
(tp)

and 8
Q (pq) respectively when a is put equal to the unit vectors

i, j, k in succession, the dyadicsf

*(fp) =^[Fl
(^)i+I,,(<p)j+F1 0i?)k],

*(w)=^ [18,(^2) +js 1 Q>?) + ks,(p2)]

form the basis of displacement functions analogous to the

vector potentials of double and simple strata respectively.

Regarded as kernels of vector integral equations of Fredholm's

type with arbitrary parameter X, the dyadic "t (ts) and its

conjugate X(ts) possess resolvent dyadics H(ts) and H'(ts)

* "Vector integral equations and Gibbs' dyadics", §§19-24, Camb. Phil.

Trans., rol. xxii., pp. 133-155 (1916).

t Phil. Mag, toe. «*.,§§ 4-7.
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respectively, connected with tliem by alternative equations of

the form*

H (ts) - * (ts) = \ JH ( AS) • * (&0 tlS=\ J*(fcS) •H (-3s) rfS.t

and a similar pair for H'(te) and X (ts). Relations of the

same form were shown to be true when the resolvents H(ts)
and H (ts) are extended, the second boundary point s being
replaced by a point p not on the boundary ; and lastly two
other dyadics T(pq) and r'(pq) were defined, connected with

the preceding by the equations

t

\r(pq)-Hpq)= ^^(ps)'H'(sg)d.s=\jr'(l)s)-X(sq)ds.

In terms of these dyadics the solutions of the first and second

boundary problems, which require the determination of dis-

placements "W

(

p) and Y(p), corresponding respectively to

the boundary conditions §

i[w(0-W(0] -^[W(O+W(r)]=f(0,
KTV(r)-TV(O]-i^[TV(r) +TV(O] = -f(0,

in which TV(<*) and TV(T) represent the surface tractions

for the inner and outer regions respectively when the dis-

placement is ~V (p), are given by the expressions
||

CC)
f
W (P)=/ f(0'H(^M

1 v(p) = Sr( Pt).f(t)dt,

except for certain singular values of the parameter X.

I.

—

Determination and Properties of the
Green's Dyadics.

§ 1. Green s vectors and Green's dyadics. Considering an

isotropic body occupying the inner region S, suppose that we
require the displacement at any point p when the surface

displacement is S
{

(qt), the pole q being a point of the region S
occupied by the body. The required displacement is ex-

pressible as a double elastic stratum potential W,(p) given by

(B){;

W, fj>) = J s, (2<) -H_, (<?)<**,

* Lnc. at., §5 8-9.

t The differentials rf^, dt, ds denote elements of tlie boundary ; while dp, dq

will be used to indicate elements of volume

I Ibid., §9 (33). § Ibid., §S (2i). || Ibid., §9 (31).
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a result derivable* from (B) and (C) by putting \ = -l.

Heuee tbe vector function

6,(210=sl
(?p)-W,(i>)

= S
1
(qp)-Ss i

(qt).IL_
1

(tp)dt

is a solution of (1), regular throughout the region S except

at the pole q where it becomes infinite like i/r, while over the

boundary 2 it vanishes identically. Of a similar nature are

the functions

G
3 (qp)= B

a(2P)-S83
(2t).-H._

1
(tp)dt.

The three vectors G
t
(qp), G3 (qp), G3 (qp) may then be

called a set of Green s vectors for the equation (1) vanishing

over the boundary. They represent theoretically the dis-

placements produced in the body when the surface is fixed

and a unit force is concentrated at the point q in the directions

of i, j, k respectively. Forming with these the dyadic

=*(?i0 - J* (20'H_, (tP)dt,

we have an expression which is identical with the dyadic

T_
t (qp) given by the equations (A) for the parameter value

X=— 1. As dyadics are subject to the ordinary rules of
differentiation and integration, we have in T(qp) one which,

regarded as a function of p, vanishes over the boundary and
is a regular solution of (1) except at the point q where its

consequents become infinite to the same order as \\2-nr. \t

•will therefore be called the Greetis dyadic of the equation (1)
for the inner region satisfying the boundary condition

(2) r(qt) =

of zero surface displacement.

Similarly we have in r_^'(pq) the Green's dyadic for the

outer region S' corresponding to zero surface traction. For
if q is a point of that region, the displacement with surface

traction F^tq) is given by

v
1
(p)=/r.

l'(pO-F1 (*2)^

in virtue of (C).f Hence the displacement

* Cf. also Phil. May., loc. cit., § 13. f #»&i § 16.
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G, (pq) = s, (pq) -/r_/O0 • F, (tq) dt

has zero surface traction, and is of the nature of a Green's
vector. Forming with this and the other two vectors of the
set the dyadic

r'(M)=^[iG
l(M)+jGi fo) +kGI (W)]

= >P(pq)-Jr_;(pt).X(tq)dt

we have the Green's dyadic for the outer region corresponding

to zero surface traction.

§ 2. The generalised Green's dyadic. When, however,

we try to construct in the ahove manner a Green's dyadic

for the inner region and the condition

(2') Tr(qt) = 2

of zero surface traction, the difficult}' of the singular para-

meter value X = +l confronts us. It is impossible to find

a regular displacement satisfying (1) and with surface traction

equal to F, (tq), for the necessary conditions*

jF
l

(tq)dt = 0, fp(t)xF,(tq)dt=0

are not satisfied, p (t) being the position vector of the point

t relative to the cm. of the body. All that can be done is to

find a displacement whose surface traction differs from F, (tq)

by a function of the form (a + w x p), where, a and w
are constant vectors; and thus construct a Green's dyadic

corresponding to surface traction of the form (a + wxp).
This is hardly what is required. We rather try to construct

a generalised Green's dyadic analogous to the generalised

Green's function defined by Hilbertj" for the self-adjoint

partial differential equation of the second order.

The equation (1) admits regular solutions of the form

a and to x p with zero surface traction. In fact, it is to this

contingency that the non-existence of the ordinary Green's

vectors and dyadic is due. These solutions may be normal-

ised so that the volume integral of the square of each is equal

to unity. In this form they may be written &j\/J and

wx/o/VZ, where a and o> are constant unit vectors, J the

volume of the body, and I the moment of inertia of the

* Ibid-, §15.

t "Grundziige einer allgemeinen Theorie del- Iinearen Integralgleicliungen",

Zweite Mitt., doll Nach. (19U4J, S. 219, 238.
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volume about the axis through the cm. parallel to to. If the

principal axes of inertia at the cm. be taken as the direction

of i, j, k respectively, A, B, C being the principal moments
of inertia, the six independent normalised solutions of (1)
corresponding to zero surface traction are

_i_ J_ k_ ixp jxp k x p

V«/' V«/' s/J' siA ' sjB ' s/ G
'

and these are orthogonal to each other since the products of

inertia vanish. Form with these the dyadic

I^ jx p(q)ixp(p) j X p (q) j X p (p)

~J + A + B + "'"

Now there exists a solution G, (qp) of the differential

equation

(3) i
p [G,(^)] = i.Q(^),

which becomes infinite at the point p = q in the same manner
as an ordinary Green's vector, while it satisfies the boundary
condition (2) of zero surface traction, and is further orthogonal

to all the above six orthogonal solutions of (1). This function

G, (qp) represents theoretically the displacement of the point

p of the body when a unit force, concentrated at q, acts in the

direction of i, while throughout the volume of the body acts

a force — i« £2 (qp) per unit mass. The displacement due to

this system of forces clearly satisfies the differential equation

(3) at all points except q; and that the body is in equilibrium

under the forces is easily verified* by resolving parallel to i,

j, and k, and taking moments about the point q. Further,
the displacement G,(§/>) may be chosen so as to be orthogonal
to all the six exceptional solutions; for these six conditions

are equivalent to the two

(4) /G, (qp)dp = 0, fQl
(qp)Xp(p)dp = 0,

requiring no translation of the body as a whole, and no
rotation about the cm. These conditions can always be
satisfied by the addition of a vector of the form a + <axp,
representing a displacement of the body as a whole.

Two other vectors G.^(qp) and G
3 (qp) exist, bearing the

same relation to the axes of j and k respectively that G
t (qp)

bears to i. These three vectors we shall speak of as a set of

* See note at end of § 2, p. 142.
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generalised Green's vectors for the equation (l) and the con-

dition of zero surface traction ; while the dyadic

r(«p) = ^[iG,(2i»)+jGt
(jp)+kG

I (?i>)]

formed with them is the corresponding generalised Green s

dyadic for the region S. It is clear that r {qp) satisfies the

differential equation

(5) L
p
[r(qP)] = ±n(qp),

and, corresponding to (4), the integral relations

(c) jr(qp)dP = o, $r(qp)xp(P)dP =o.

[Note.—To prove that the body is in equilibrium under

a unit force i at q and a bodily force —i.il(qp) per unit

mass throughout. First the resultant of the bodily forces

is — i. For

j-i.a(qP)dp = -j i-|y + ^ '-+...+.. h>

= -1,

since the centroid of the body is the origin of the position

vectors f>(p), making j" p(p) dp = Q. It only remains then

to prove that the resultant moment of all the forces is zero

about (say) the point q. But the sum of the moments about q

=\\p(p)-pm

+
)xp(p)p (g)-k _ kxp (p)p(q)-3

dp
|y

' b a

= i x P (?) + gP (?)

'

k j P (P) x [J
x P GO] dP

- -jjP(l).i
J
p(p)x[kxp(p)]^

= ixp{q) + ^p(q).^^(A+B+C)j-KA-B+C)i]-...

= i X p (q) + p (q) • k j - p (q) . j k = 0.

The argument has depended upon the fact that the products

of inertia vanish, since the directions of the principal axes

through the centroid are those of i, j and k.]
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§ 3. Conjugo-symmetry. Let u. and v be two functions

of position, regular within the region considered and, when
regarded as displacements, having surface tractions Tu and

TV respectively. Then Betti's theorem expresses that*

(7) J'[Z(u).v-U-i(v)]^ = J[Tu.V-U-Tv]A.

If in this we put for u and v the Green's vectors G, (qp)
and G,(q'p) with poles at q and q respectively, and possessing

either both zero surface displacement or both zero surface

traction, we must exclude the poles by (say) small spherical

surfaces if and Z' in the usual manner. The volume integral

then vanishes identically ; for the ordinary Green's vectors

satisfy (1), and though the generalised vectors satisfy (3) yet

in virtue of the relations (4) the volume integral in (7) still

vanishes. Moreover the surface integral over S disappears

because of the boundary conditions satisfied by these vectors.

The equation then reduces tof

J zi
[G, (q's) . F, (sq) - G, (qs) • F, (sq')] ds =

Similarly if in (7) we substitute in turn the pairs of vectors

G
r (qp), G2

(2'p) and G, (qp), G3
(q'p) satisfying the same

boundary condition as before, we obtain the equations

z,
[G, (q's) • F, (sq) - G, (qs) . F, (sq)] ds = 0,

r
[G

3
(q's) • F, (sq) - G, (qs) • F

3
(sq)] ds = 0.

Multiplying these equations by i, j, k respectively and adding

we find after division by 2ir

I , z,
[r (q's) . F, (sq) - G, (qs) • * (sq')] ds = 0,

where r (qp) is the Green's dyadic for the boundary condition

considered. Two equations similar to this may be written

down by altering the suffix. Then taking the indeterminate

products of the three equations by i, j, k respectively as con-

sequents, and adding, we have a result which may be written

* Cf. Betti, 11 Nuovn Cimento (1872); Annali di Mat., t. 6 (1875); also Levy,

C.R., t. 107 (1888), pp. 413 and 453.

t By thus writing the surface traction of Gi (qp) at Z as F, (iq) we are

neglecting the traction due to the regular function W, ip) of § 1. But when the
surface Z becomes vanishingly small the part of the integral due to this also

vanishes.
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jzz,[rC2's)-*(*2)-*cW)'rc
(2s)]^=o.

Now let the radii of the spheres .Zand Z' decrease indefinitely;

then in the limit we find, exactly as in § 4 of my earlier paper,

(8) r(q'q) = r
c
(qq').

Thus the Green's dyadics are conjiigo-symmetric* with
properties analogous to those of the symmetric kernel in the

ordinary integral equation.

§4. A fundamental formula. If, however, in Betti's

theorem (7) we put for U any regular solution of the non-
homogeneous equation

(10) L[u(p)] = -2f(P ),

where f (/>) is continuous, and for V a Green's vector G, (qp)
witli pole at q, we must isolate this point by a small surface Z
in the usual manner. In the case of the ordinary Green's
vectors satisfying (1) we thus obtain

-2j0t
l
(qp)'f(p)dp

-
J"z+V

[G, fe») • Tu f» -u(»). TG, {qs)] ds,

while two similar equations may be written down in G, (qs)

and G^iqs). Multiplying these in order by i, j, k and adding,

and then making the surface Z decrease indefinitely, we find

in the limit by the same argument as above that

(11) VL(q)= Sr(qP).f(p)dp

-iJ[u(0-Tr(2«)-r(2o-Tu(0]*.t
'

Now the Green's dyadic is that of zero surface displacement;

and therefore if U is that solution of (10) which vanishes over

the boundary, the surface integral in the last formula dis-

appears, leaving us with the result

(12) \L(2)=Jr(qp).f(p)dp,

which gives a source-representation for the function u (q).

Hence

Theorem 1. Any displacement function VL(q) which is

continuous along with its derivatives of the first two orders,

* Cf. " Vector integral equations, etc ", §§ 19—24.

t By TT ib obviously meant the result obtained by performing on r the same
operation as we perform on u to find Tu.
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and vanishes over the boundary of the region S, is capable

of a source-representation as in the last formula.

The solution of (10), which vanishes over the boundary, is

thus given uniquely by (12) ; and we have proved the formula

(13) L$r(qp)-f(p)dp = -2f(q).

When the boundary condition of zero surface traction is

under consideration, we use the generalised Green's vectors

satisfying equations of the form (3); and in place of (12) we
now find for that solution of (10) which gives zero surface

traction

(14) Vi(q) = lr(qP)-f(p)dp +
r̂

^a(qp).U(p)cIp.

If then u(p) also satisfies the same relations (4) as the

generalised Green's vectors, this formula becomes as before

(14') K(q)=jr{qp)-f(p)<lp.

As pointed out in § 2, u(p) can always be chosen so as to

satisfy these conditions by the addition of a suitable displace-

ment of the form (a + oixp). Hence

Theorem 2. Any displacement U(p), which is continuous

along with its derivatives of the first two orders, and produces

zero surface traction while it further satisfies the relation (4),

is capable of source-representation in terms of the generalised

Green's dyadic as in (14').

It follows from the preceding argument that the Green's

dyadics are closed kernels. For if there exists a continuous

function f(p) such that

jr(qp)'i(p)dp=0,

we deduce from (13) that

L$r(qp)-f(p)dp= -2f(q) = 0.

Hence f (q) vanishes identically, and the Green's dyadic is a

closed conjugo-symmetric kernel. It follows therefore that its

characteristic numbers are real and infinitely many." Further,

denoting the normal characteristic functions of T{qp) by

$ { {p), we have the following theorems:

Theorem 3. IfF {p) is a continuous function, and the series

* Ibid
, § 23, Theorem 3.

VOL. LII. L
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converges uniformly, it represents the function F (p)*

Theorem 4. Any displacement function u(p), which is

continuous along with its derivatives of the first two orders,

which further satisfies the same boundary condition as the

Green's dyadic F(pq), and in the case of the generalised

dyadic the further relations (4), can be expanded by the

Fourier rule in an absolutely and uniformly convergent series!

in terms of the characteristic functions
<t>i(p)-

§ 5. An equation related to L (u) = 0. Suppose that we
require a regular solution of the equation

(16), Z(U) + 2\U =

satisfying the same boundary condition as the Green's dyadic

T(qp), and in the case of the generalised dyadic the relations

(4) also; then from the preceding results it is given by the

integral equation

(it) uQ>)=Mr(p2).u (?)<??,

which admits a non-zero solution only when X is equal to one

of the characteristic numbers \ of the kernel V(pq). The
corresponding solutions are the characteristic functions <p { (p)
of this kernel. Hence the differential equation (16) admits

the required solution only for these particular values of A,

such solutions being the characteristic functions of the integral

equation (17). We may thus speak of these solutions and

parameter values as the characteristic functions and parameter

values of the differential equation (16). Their number has

been proved infinite.

It can be shown, as in the case of the scalar self-adjoint

partial differential equation,! that the resolvent of F(pq) is

the Green's dyadic for the differential equation (16) satisfying

the same boundary condition. This dyadic therefore exists

for all values of X except the characteristic values of r(pq);
but at each of these the Green's dyadic of (16) becomes in-

finite, having a simple pole, as is the case with the resolvent

of any conjugo-symmctric dyadic kernel.

§

It is important for our purpose to show that the charac-

teristic numbers \ are all positive. Take the form
||

(is) /jn[u(^)] + u-i(u)j^ = Ju.TuA

* Cf Hilbert, "Grundziige", Erste Milt., Kapp. IY., Satz 6

t
'' Vector integral equations, etc.", §23, Theorem 2.

J Hilbert, he. cit., S. 224, 239.

f " Vector integral equations", §20, Theorem 4.

||
Cf. Betti, he. cit.
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of Betti's theorem, in which n (u) denotes the potential due

to the displacement U. If in this we put for U a solution of

(16), satisfying either of the boundary conditions, the second

member vanishes, while the first becomes

J II [*(/>)] 4»-XjuVfc.

Since the first integral is a positive function representing twice

the potential energy of the deformed body, it follows that \
must be positive in order that the whole expression may
vanish. Hence the characteristic numbers of the Green's

dyadics are all positive.

II.

—

Equilibrium of an Elastic Isotropic Body.

§ 6. No bodily forces. The solution of the first boundary

problem considered in my earlier paper, requiring the deter-

mination of a regular integral U(p) of (1) when its boundary

value 11 (0 is known, is given as a particular case of the

formula (11). Fur, taking T(qp) as the Green's dyadic, for

zero surface displacement, and putting f (p) equal to zero, we
obtain the required solution in the form

(19) uOO = -iJu(0-Tr(«»A = Ju(0-H_,(^)^,*

which is identical with the result previously found.

f

In the second boundary problem we are given the value of

the surface traction. Taking then in (11) T(qp) as the

generalised Green's dyadic for zero surface traction, and

putting f(p) = 0, we obtain the formula

(19') VL(p)=i$T(pf)>TVi(t)dt,

where the displacement U (p) lias been chosen to satisfy the

conditions (4), as already explained. This is identical in form

with the solution found previously,! but the dyadic T{pt) is

not the same as there employed.

A third boundary problem for the equation (1) requiring

a displacement satisfying the relation

Tu(0 = *-u(0-"lT(0,

where U(<) is a given function of the position of t, may be

treated along lines exactly parallel to those followed by Plemelj§

in the corresponding problem for Laplace's equation. The
surface traction for a given displacement takes the place of

* Cf. Phil. Mag., loc. cit., formula (50).

t Ibid., §13. \ Ibid., §15.

§ Monatsheftt fur Mall,, und Physik, Bd. 18 (1007), S. 180-211.
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normal derivative, Betti's theorem is used instead of Green's,
while in place of the additive constant C there introduced we
have a vector of the form (a + co x p), the constant vectors a
and co being determined so that the solution satisfies the
relations (4).

§ 7. General problem. We may also write down the
solution of the general problem requiring the displacement
U (/>) at any point of an isotropic body under the bodily force

P
( p) per unit mass, the boundary condition being either one

of those already treated, viz.

(2) J
(<l) UW = 0,

\(b) Tu(0 = o,

or one of the non-homogeneous conditions

(
o 0) |(«) u(0 = U(0,

\(b) Tu(0=V<7).

The differential equation to be satisfied is

(21) L[u(p)] = -P(p).

From the argument of § 4 it follows that if the displacement

satisfies one of the homogeneous boundary relations (2) it is

given by

VL(p) = hJr(M).P(q)dq,

with the usual precaution in the case of zero surface traction.

When, however, the boundary displacement has the non-

zero value given by (20a), the formula (11) becomes, in terms

of the Green's dyadic for zero surface displacement,

VL(p) = iSr(M).T>(q)dq-^V(t).TV(tp)dt.

The first integral is the solution of (21) vanishing over the

boundary; the second is the integral of (1) with surface

value U(0-
Similarly for the condition (20b) when the surface traction

is V(/), we use the generalised Green's dyadic and (11)

becomes

U(p) = ^r(pq).P(q)dq + i_$r(pt).V(t)dt.

For the equilibrium of the body the bodily force and the

surface traction must satisfy the relations

jP(p)dp + jV(t)dt = 0,

[jp(p)xP(p)dp + $p(OxV(t)dt =
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III.—Small Vibrations of an Elastic Isotropic Body.

§ 8. General problem of free vibrations. We shall now
consider the small tree vibrations of an elastic body occupying

the region S, the boundary condition being either that of zero

surface displacement or that of zero surface traction. The
differential equation satisfied by the displacement U (p) is,

with suitable choice of units,*

(23) £(U)=!„U.

For harmonic vibrations we make the ordinary substitution

fcos let

in which v (p) is independent of the time, and thus obtain the

differential equation

L[v(p)] = -Vv(p),

while the boundary condition for V(p) is the same as for

VL(p). If r(qp) be the Green's dyadic for this condition,

these are equivalent to the homogeneous integral equation

(24) V(p) =MT (>(?). V(«z)rf2 (* = *•/ 2),

the function V (p) in the case of zero surface traction satisfying

the conditions (4). This integral equation admits a non-zero

solution only when A is equal to one of the characteristic

numbers A. of t lie Green's dyadic; and as these have been
proved all positive, the values of k found from them are all

real. If V;(/>) are the characteristic functions of the equation

(24), the solution of the problem thus takes the form

(25) VL(p, t)= S Y
t
(p)[A

t
CM*/(2\)t + B

t
UB</(2\Ji].

t=l

It is clear that the constants A
i
and B. are substantially

the coefficients in the expansions of the functions a.(p) and

fi(p) representing the initial values of the displacement u and
the velocity ii, in terms of the functions v. (p). By theorem
4 (§ 4) these initial functions may be expanded in terms of

the normal functions V
; (^») by the Fourier rule

, (26)
|

•=»

i

* Cf., e.g., Love, Mathematical Theory of. Elasticity, vol. i., §29, 1st ed.

L2
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and thus tlie coefficients A\ and B
t
are determined. la tlie

case of zero surface traction, unless tlie functions aQ>) and

jl(p) satisfy tlie conditions (4), we must determine vectors

a., a
s

, a>, and o>, in such a way that the functions

a (p)= a (p) + a, + w, xp(p),

do satisfy the conditions (4). Then these functions may be

expanded as in (26), giving the required series for a(p)
and P(p).

§ 9. Forced vibrations. In tlie problem of forced vibrations

the natural period of the body is set aside or overpowered by
that of the forces controlling the motion. Suppose these

forces to be of the harmonic type, their value at any point

p being F(p)coslt per unit mass. Then the differential

equation of motions is

(27) Z(u) = |,u-F(p)cosfy

the boundary condition being as before. Since the vibration

of each particle is compelled to keep in step with the force,

the required displacement U will be of the form

U(p, t) = v(p)coskt,

V(p) being independent of t. Making this substitution we
find for v(^>) the differential equation

L[v(p)]=-kW(p)-Y(p)
with the original boundary condition, If T {pq) is the

appropriate Green's dyadic these are equivalent to the non-

homogeneous integral equation

V(p) = \$r(pg).v(q)dq + f(p),

in which f(p) = iiSr(pq).F(q)dq

and X = gA
, •

The kernel of this equation is conjugo-symmetric, and the

solution may be expressed by the extension of Schmidt's

formula*

v(?)=f(?)nsO,v,(?)/(x,-x),
11=1

» " Vector integral equations, etc.", § 23, Tlieoiem 4.
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where \
n, V„ (p) are tlie characteristic numbers and normal

function of the kernel r(pa), and

Cn = //(?). V. (2 ) dq.

But from the form of f (p) it may be expanded* in terms of

the normal functions in the series

t(P) = lCnvn (p).

The value ot'v(p) then becomes

v(?)= SC.\v,(p)/(\-^
n

giving for the forced vibrations of the system

(28) U O, 0=cosfa 2 CK\VH (p)K\-\).
re

The most general vibration of the body under the conditions

of the problem consists of two parts, and may be expressed

where U. represents the forced vibrations just found, and u
a

the free vibrations superimposed upon the former. The latter

satisfies the homogeneous equation (23). Hence for the most

general solution of (27) we have

C X "1

A
H
cos (A„0 +Bn

sin (knt) +^ cos faj

,

(29) U(p,0=iV„(p)
n=l X -\

V = 2\..where, as before,

Let a.(p) and (p) be the initial values of u and U respect-

ively, with expansions represented by (26). Comparing these

with the values of the same quantities obtained from (29) we

tind

{AH
=-Cn\J(\-\) + j*(p).vH

(p)dp,

BH
= ljli(p).vn (P )dp,

(30) U(p,t)=XYm (p)
)!=l

C\
\.-\

" (cos kt — cos k
n
t)

+ cos k
n
t

J
a (jo) . v„ Q» ) dp +j sin kj

J"

(/>) . v„ (p) dp .

Ibid
, § 23, Theorem 2.
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§ 10. Damped vibrations. Tf the vibrating body is under

the influence of dissipative forces such as are represented by

the addition of a term* of the form wdix/dt to the second

member of (23), the vibrations being otherwise free, we have

to find a solution of the differential equation.

(31) Z(u) = |.U +w|u

satisfying the same boundary condition (2) as in the previous

cases. Assuming ?o constant for the isotropic body, make
the substitution

u(p, 0=v(/>) e(
"'_w/2) '-

The equation (31) then becomes

(32) L[v(P)] = -2\y(p),

where we have put \ = (4n* + jo")/8
;

while the boundary condition is unaltered. If T(pq) is the

appropriate Green's dyadic, the function v (p) is given by

V(p) = \jr(pq).V(q)dq.

This integral equation admits solutions V
{ (p) only for the

characteristic parameter values \
i
which are all positive, and

in terms of which the corresponding values of n are

At the most then a finite number of the h's are imaginary.

If the dissipative forces are sufficiently small all the h's are

real. The solution of the problem is given by

(33) TL(p, f)=e-» (2 2 V
;
(ju) [A^osnt-i- ^ sin Hi],

the constants A
t
and B

i
being determined from the expansions

of the functions a(p) and p (p) representing the initial con-

dition of the body.

§ 11. Bilinear dyadic series. We have already given a

physical interpretation to the Green's vectors. The relation

of the Green's dyadics to the bilinear series may be seen from

* A resistance proportional to the velocity. It is doubtful if this has any

physical significance for a solid body. However, I propose the problem for what

it is worth.
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llie following mechanical considerations,* which at the same
time show the physical significance of the characteristic

functions.

Let qn
(n = l, 2, ..., co ) be a set of parameters, in the

sense of the Lagrangean mechanics, expressing the possible

positions of the rigid body, each chosen so as to vanish in the

position of equilibrium. On the assumption that the vibrations

are simple harmonic we may put

(30 U0M) = 2?„V„0;),
n

the parameters qn
being functions of the time satisfying

differential equations of the form

This necessitates the kinetic energy T being free from product
terms g nqm (m # n), so that

» n

V being the potential energy. We might have started with

these forms; for "when we have two homogeneous quadratic

functions of any number of variables, one of which is essentially

positive for all values of the variables, it is known that by a

real linear transformation of the variables we may clear both

expressions of the terms containing the products of the variables,

and also make the coefficients of the squares in the positive

function each equal to unity or some given positive constants".!

From (34), however, we find for the kinetic energy

n

dp being the element of mass at p, or the element of volume
since the body is of uniform density. Identifying these values

of the kinetic energy we find

(35) Koodoo*;;; i|
;;;;;;:

These are the orthogonal relations satisfied by the normalised

characteristic functions.

Suppose now that the body is vibrating under a force-

system E, the force on the element dp being P (/>) dp. Then

* Ct, 6,0., Kneser, Integralgleichungen, §§9, 16. Also Lord Hayleigh, Theory

of Stwud, vul. i., chap. v.

t Uouth, Elementary Rigid Dynamics, §159.
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the virtual work of these forces, due to a small displacement

£ll, is

JSu.P(^)^=28?„/v„(/;).P(;>)^ = S<3A,
« n

where we have put

(36) eB =JXQ>).PQ>)dp.

The equation of vibration under tlie force-system R is then

q„ + \q«=Q«-

If, however, we imagine the body in equilibrium under these

forces the term qu
is zero, and qn =Q„l\- The equilibrium

displacement is then given by

(37) u(p) = 2Qnv„(p)lK-
n

If the boundary condition is that of zero surface displace-

ment, the force-system iZmay, consistently with the equilibrium

of the body, be concentrated into a unit force a at the point q.

plus the surface traction necessary to keep the boundary fixed.

The latter, however, does not appear in the equation of virtual

work. The function Qn
now takes the form a-V,,^), and the

displacement G(qp) under these forces is

(38) G(^) = s a .v„(g)v„(/0/\ = a-rs
V" ( '?)v" ( -̂)

n \_n %
= a.-0{qp),

where the dyadic (qp) represents the bilinear series.

Suppose we give the unit vector a the values i, j, k in

succession ; the corresponding displacements are the Green's

vectors G, (qp), G^iqp), G
3 (qp) respectively. Forming

with these the Green's dyadic r(qp), we have

(so) r (qp) = -^ [i i + j j + kk] • e (qP ) =^ e (qP ),

that is, the Green's dyadic is represented to a constant factor

by the bilinear series.* That this series is convergent follows

by Mercer's theorem f from the fact that the characteristic

numbers are all positive. Hence the bilinearformula (39) is

true. On multiplying scalarly both sides of this formula by

* V {']/') and (qi>) have the same normal functions Xn (p), but the charac-

teristic numbers of V(qp) are 2tt times tlio^e of H(qp).

t Phil. Trans Roy. Sue, vol. ccix. (Aj (15)09), pp. -115-440.
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A V (?), and integrating with respect to q over the region S,

we rind, in virtue of the relations (35), the integral equation

(40) Vn (p) = ^je(pq)-Vn
(q)dq

satisfied hy the characteristic functions V„ (p).

§12. In the case of the zero surface traction, however,

X =0 is a characteristic value to which correspond the six

normalised characteristic functions VM (jo), («=1, 2, ..., 6),

equal respectively to

i j_ k: ix P j x p k x p

VJ"' \/J' V</' V4 ' V# ' VC '

The kinetic energy may he written

6

-* — 2 -i ?oi + 2 - In '

i=l n

while from the expression lor the potential energy the first six

6

terms i 2 \qj disappear. The displacement Vi(p) becomes

U (p, t)= 2 ? oi
V

0l
. (/,) + 2 qnVn (p).

i-l »

Corresponding to the parameter 90j
Lagrange's equation of

motion under the force system R is

and therefore when there is equilibrium under these forces

O=Q
0i
= $P(p).v„

i
(p)dp,

a condition which will not in general be satisfied when the

system R is concentrated as a unit force at the point q.

Suppose however that we introduce at each element of mass

dp the additional force

6

- a -fi (qP) dp = - a . [ s v
oi (?) voi (p)] dp,

in which a is a unit vector. Then the above condition becomes

0=-$a..a(qp)'SrM {p)dp+S'P(p).vei
(p)dp

= - a • V
0i

. (q) +/P O) • V
o; (p) dp,

which is satisfied when the force system R is concentrated as

a unit force a at the point q. Then as in the preceding case
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Qn
takes the form a,'V

n (q), and the displacement G(qp)
under the combined forces is

G(?jB)=s Sil.vw O0 + a.
t=l

v„(q)v„(p)

We can choose this displacement as explained in § 2, so tli.it

all the quantities qoi
(t— 1, 2, ..., 6) disappear. For the

particular unit vectors a = i, j, k respectively the above dis-

placement then becomes identical with the generalised Green's

vectors. Forming with them the generalised dyadic V(qp)
we have again the bilinear formula

v„(?)v„0)
(39') r(qp)--

2irX

The dyadic series is convergent as before because the values

X are all positive, and the bilinear formula is true. Further

from the orthogonal relations (25) it is clear that the general-

ised Green's vectors as just found satisfy the relations

while on account of the extra bodily force — dL-CL(qp) pel-

unit mass, the differential equations satisfied by them are

of the form (3). From (39') it follows as above that the

characteristic functions satisfy the integral equation

V„(p) = 2Tr\Jr(pq).Vn
(q)dq.

A PROPERTY OF THE
BITANGENTS OF A PLANE QUARTIC CURVE.

By Prof. Harold Hilton.

LliT S = ax* + by' -+ cz' + 'Ifyz + 2gzx + 2hxy,

S' = a'x'+..., S" = a"x'+... .

Consider any conic with tangential equation

2 = A\3+ Bp' + Cv'+ 2Ffiv + 2 GvX + 2ll\fi = 0,

such that triangles can be found self-conjugate with respect to

2 = and inscribed in

S+2/,vS" + /,
3

.S'"=0. .(0,
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and that triangles can be found self-conjugate with respect to

(i) and circumscribed to 2 = 0. Suppose that the same holds

for 2 = and

S+2k
i
S'+k

1
'S"=0, 8+2k

3
8'+k

3
*S"=0 (ii).

Then 2 = belongs to a fixed tangential net. For, if

a
i
= a + 2kfl'+ k'a", etc.,

aA + 13+ ^0+ 2/.F+ 2g.G + 2LH= (iii),

for i=l
}

i=2, i=Z,

so that there are three linear relations between A, B, C, F,

G, H. Then 2 is of the form 2, +«2 3
+ /323 , where 2, = 0,

2
a
= 0, 23

= are fixed conies and a, /3 are arbitrary constants;

which is what is meant by sayiug that 2 = belongs to

a " tangential net ".

We show now that triangles can be found self-conjugate

with respect to any conic of the tangential net and inscribed

in any conic of the family

S+2kS'+k'S"=0 (».

It is readily shown that any three given conies can have

their equations thrown into the form (i), (ii) and determine

a family such as (iv).

We require to prove that, if A, B, C, F, G, H are chosen

to satisfy (iii) when i= 1, 2, 3, they will also satisfy (iii) when

i=4. Now the result of eliminating F, G, H from the

equations obtained by putting i=\, 2, 3, 4 in (iii) is

a
, /. 9, h

:

a
, f, 9l K

a
, A 0* K

A + K f, 9, K

h f, 9, h
3

K A 9, K

B +

c, /, 9, h
,

c
a /, 9, K

c
3 L 9* K

c< L 9. K

<?=0...(v),

and we must prove that this relation is true identically.

This follows from the fact that the coefficients of A, B, C
in (v) are each of the second degree in k

l
and are zero for

i

=
v V V

The equation of the tangential net can he put into its

simplest form by supposing it to be formed by the polar

conies of the class-cubics

Xs
+ yu.

3
+ v

3 + GmX/xv = ;
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when it will be found that 8=0, S'=0, &"=0 are any three

polar conies of

m {x
3 + y

s + s
3

) -3xyz = 0.

The Cayleyan of the second cubic is the Hessian of the first.

If (i) is a line-pair, putting i= 1 in (iii) we get the condition

that the line-pair is conjugate with respect to 2=0, and it

2 = is a point-pair, we get the condition that the point-pair

is conjugate with respect to (i). Now there are six line-pairs

belonging to the family (iv), forming a Stealer's complex of

bitangents to the quartic S'
S =SS".* We have then: each

pair of a Steiners complex; of bitangents of a plane quartic

curve is self-conjugate with respect to every conic of a certain

tangential net of conies.

If a line is divided in involution by three conies of the

family (iv), the double points of the involution are conjugate

for each of the three conies, and are therefore a point-pair ot

the tangential net. Hence the line meets every conic of the

family (iv) in an involution, if it meets three. In particular,

either line of one of the six line-pairs of the family meets each

conic of the family in an involution.

ON RATIONAL APPROXIMATIONS
TO CYCLICAL CUBIC IRRATIONALITIES.

By Prof. W. Bumside.

The equation

ax* + bx + ex + d=0

is said to determine a cyclical cubic irrationality if a, b, c, a!

are rational numbers, and the discriminant of the equation is

the square of a real rational number.

If as , X
t, x

3
are the roots of the equation, and if

then
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and

—z) > \ z 1—zJ •> \x
a
-x

3
a-

3
—a;, x

x

-xj~3
(z

= *,

where, ou the assumptions made, k is a rational numher. This
g J J

equation is unaltered by writing - or for z. to that
z 1 — z

z — \ 1

if z is one root, then and are the other two. More-
z 1 — z

over, a;,, a?
3 , a-

3
can clearly be expressed rationally in terras

of z, the coefficients being rational numbers.

If z-k-y

then if - 2 (1 - £ + /.-") y + (1 - 2i) (1 - £ + A') = 0.

The method of expansion by Lagrange's theorem gives

1-2/fc - 3>i! f (1-2*)*—; S
tfo n\ 2n + l ! |3"(1 -*+*•;

for one root of this equation, the series being convergent for

all real, and therefore afortiori for all rational, values of k.

Jt follows that every cyclical cubic irrationality is a rational

quadratic function, with rational numerical coefficients, of

3n! f (1-2*)" {"

o n ! 2n + 1 ! [3
3
(1 - k + *")J

for some rational value ot *.

This series affords a simple illustration of a point in the

theory of infinite series. Assuming z real and replacing k

and y by their values in terms of z,

(i - 2ky {z + iy{2z-iy(z-2y

(
i-k+k')~ {z'-z + iy

% I 1

whiles is either z—k, - k or k, so that 3^/(1 — 2k)
z 1 — z

is either

z'-z+l z
2 -z + l z' + z+l

or 3.
°-{z + l){2-z)> \l-2z){2-z) > + l)(2s-l)

• - 3»1 f(« + 1)' (2» -!)'(— 2)

V

Hence
? »!2« + i! 1

3»i»"-.+ iJ }

has one of the last three values.
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When z = l nearly, the series is nearly unity and hence,

in the neighbourhood of — 1, the series is equal to

3 (Z
S - 2+1)

(1 - 2z) (2 - z)

When z = \ nearly, the series is nearly unity and hence, in

the neighbourhood of i, the series is

3 (z'' -2+1)
(2 + 1) (2 -z)-

Similarly in the neighbourhood of 2, the series is

3 (*•-«+ 1)

(2+1) (22-1)"

The first and second of these expressions are equal only

when z = 0, and the second and third are equal only when
z=l. Finally then

,(2+l) 2 (22-l) 5
(2-2)3«! f(

! 2n + l ! Io n I 2n + 1 ! { 3
3
(a* -2 + 1)

3(z'-s4 1

from 2 = — c© to 2 = is

from 2 = to z = 1 is

from 2 = 1 to z = + so is

(1-22) (2 -2)'

3(z'-z + l)

(« + l)(2-»)'

3(z'-z+l)

(2 + 1) (22-1)
"

It is to be noticed that while for all values of z other than

0, 1, and oo the convergence of the series is ultimately the

same as that of a geometrical progression, the convergence of

the series for the three particular values at which the form of

its sum changes is ultimately that of a series whose n
th term

is n~i.
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ON PELLIAN CHAINS.

By Lt.-Cul. Allan Cunningham, R.E., Fellow of King's College, London.

[The Author's acknowledgments are due to Mr. H. J. Woodall, A R.C.Sc

,

for reading the Proof-sheets and for suggestions].

1. Introduction. The object of tliis Paper is to develop
certain Chain-relations among the elements (V, v), (t, u) of

the Pellian Equations

Tr"-Dur'*=-/c, ..., (1), Tr'--Du/2 =+i:, .... (2),

T
r"--Dur

'-=--\,
..., (3), t,?-Du* = + 1, ..., (4),

eacli of which is known to have an infinite number of (integer)

solutions (when one such exists), the elements (t', v), (t, v)

therein being distinguished by the subscripts r=0, 1, 2, 3, &c.
The only values of k here considered are those which occur

as the middle term of the partial quotients in the expansion o.

VD as a continued fraction. Only one such value (of±/i)

occurs for each value of 2); so that one (and only one) of the

equations (1), (2), (3) exists for each D, and that equation

always gives directly the values of t,, v
t

in the fundamental
"unit-form" r*— Dv*= + l by the simple formulae

a property not generally possessed by other values of k.

2. Numerical Chains. When a series of composite numbers

#,=£,. Af,. X2 = L2 .U,, X3 = L3 .M3 , &c, ...,

all formed in the same way, have their factors (L, M) so

related that

MT. l
= L„ Mr=Lrn , for all integer values of ).

the Series is styled a Chain- Series, and its members (N^N^&c.)
are said to be in chain ; the members (N

r)
are styled Links of

the Chain, and the factors [L
r , J/

r)
are styled Chain-Factors.

[Symbol (:). In numerical Results it is convenient to place a colon (:)

between the chain-factors (£,, M,) of each Link (Nr) : this symbol is both &

multiplication-symbol and a separation-symbol].

VOL. LI I. Jf
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Chain-Properties. The salient properties of such Chains ave

NtfTtHs
...N1, M2r

Nl
N3iVt...N.lr _ l -T~l

'

N
tN2N3 .. .Nr

= L,( L.L3Lt . . .LTfMr

=Li(iltMtMi...Mr.1)*MT.

3. Auxiliary Formula.

For Eq. (1), take t,'= ^h.\[yi-y-l), „,'= J k.i(yi +y~*)/-/D.

These will be found to give

—

Tr'=V*.i(y~*-y-r*»), u/=V k.i(y'i+y-'^)/V If.

For Eq. (2), take t,' = -Jk.liyi+yi), «,'= V *.$(j*-jri)/VD.

These will be found to give-

—

Tr'= Jh.${yr-i+y-r*i) t
„/= <Jlt.\[yr-i-y-**l)/i/n.

For Eq. (3), take t,'= jfjA-jrJ), u,'=4(.yi +.y~J)/V.D.

These will be found to give—

Tr'=njr*-y-rH), »/=i(r'+}''"')/Vi'.

For Eq. (4), take T^Jfj+jr'), «,=i(y-jr,
)/V2>-

These will be found to give

—

These formulae will be found to be consistent, and to lead

to all the well-known relations between t', v, t, v: and will

be found very helpful in proving new relations.

4. Chain- Series of (t * ± Da'). From the fundamental

forms

the following Dimorphs N' , Nr , are seen to exist

—

i- N'
ri
,=T»+2)u,''=T*+l)u

r
."=N',

ir,
[for -i,of*].

ii. AT

r
=T r

" + Dv,"- = t?-\-Dv,- =N
t r,

always.

ma.N"r ,=kTrt+I>«,"=-r,'t+kDvr
, =lf",

ir,
[for +*].

Ui5. N"r ,=kTr'=£u,'*=kI>uT*-T,'t=N",ir,
[for -*].

And three of them (and only three) co-exist for all values of

D, viz. Nos i, ii, iiia for +k, and i, ii, iii/> for — k. Also, as

each of the quantities (N
1

, N) is thus expressed in two different
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ways in the same 2'° forms, it follows that each of them is

composite. Their resolution, each into two factors (say N=
L, M), will now be found by aid of the substitutions of Art. 3.

5a. Case".. N'
r_,
= tJ* + £»,"

therefore -t
. JV'r,, = i(T "+y~ rt!

')-i(y
+
'
-,+j-Mfl.)

— Tr-s . Tr+s-,.

Similarly £ .
N\^

s
=Tr'-t V+f-1'

Here r+s-l jy_ s , if )- + s-l = j''-s, or rT—r=2»— 1.

Similarly I
.
AT>)S

=V-s
- V'+s-l'

and T... , =t „ , if j-' + j — 1 =?''— s, or )•"— r'= 2s- 1.

Hereby I.JV' , l.JV' , , I.A"„ , &c. will be m cAarn,'a ?', s k r , s k r ,s' '

if ;•'— r — r"— »'= ?•"'->•" = ... = 2s — 1

.

Ex. The most interesting Case is when s=l, whereby

r' — r = r"— r'= r'" — r" = = 1

,

and l'*\v h-B'w> l- N 'z,v
,aret»cA«m.

The Table below shows the details of the Chains of iV',.,,

where s= 1 for B = 2, 3, 7, 33, which have «,' = !.

D
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Similarly N
r
,

Here

r-s' r+f

if r+s = r'— s, or r'—r=2s.r+s r -s'

Similarly A',.",
s
= V'-j • V'+J-

and r
r/+tt=Tffi_t, if r' + s = r"— s, or r"— r' = 2s.

Hereby Nr s , Nr
,

s
, A/

;
." ,, , will be in chain,

if )'—)• = )"— r' = r'" — r" = =2s.

Ex. The most interesting Case is when s= 1, whereby

?•' — r = r''— ?'' = ?'"' — r"= . . . = 2,

and A',
,

, iV^,, A
T

5]1 , .V 7|1 ,
are in chain.

if.,, NiA , Nsl , N,it , , are in chain. .

The Table below shows the details of these two Chains of

Nrl , when Z> = 2, 3.

D
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Ex. The most interesting Case is when 8=1, whereby

)''—»= r"— r — r'" — r" = 1 ,

and A7",,, A7"-,, A7"^, , are in chain.

The Table below shows the details of the Chains of N"
r ,

Case iii« when 2>= 7, 33, and Case iiii when D='i, -3; when
8=1.
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2°. Also AT
,. = xr

« + 4t>,«=tr .iI/r ,

Ly = -r,
i +2v r--lT,«r,

' Mr
'= T,? + 2<Jy*+2TrV r

= TIr —v2,
= Tir+ "ir

Similarly N,+1
=-rrJ + i»r+1*=Lr+1

.Mr*i,

and Lr+l= u'1MV A/,+1=u'!rn-

Hence, comparing the two series of AV, A',,

Mr'=L„ Mr= L'r+i , JU'r+,= £„l, Mr+1 = L'r+2 , &c.

This shows that, if the two Series (#",', JV,.) be combined

into one Series, taking a member from each series alternately,

the combined Series form a Chain, wherein the N
r

' are the

Links, in the odd places, and the Nr
are the Links in the

even places.

Ex. The Table below shows this clearly

—

Tr, ",'
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2°. Again, ^r=Tr«_3TrV+9B/=£r .^,,

-3-K = T,+ 3.ii-
fr

=4'

Similarly

Thus

And

,
= £,.,-.v-JV+1 _ *T+I '"l-tl'

Mr=Lnl , Mrtl = Lrtl , and so on.

• N„ A'2 , N& , area Chain-Scries.

Ex. The Table below shows this clearly.

1

Tr', »,'
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ON SYMMETRICAL PLANE ALGEBRAIC
CURVES.

By Prof. Harold Hilton.

§ 1. It is well known that a plane cnbic curve, not

cuspidal or crunodai, can be projected so as to have the

symmetry of the equilateral triangle ; and the same is true

of a quartic with three real cusps. This suggests the general

problem of symmetrical algebraic curves to which this paper

is devoted.*

If we write

+^^ + bklr'+...+ b
k
^r^ S\nkd

....(i),

according as n — k is even or odd, where n>k, it is readily

shown that the polar equation of any algebraic curve of

degree n (an "n-ic") can be put in the form

,,„ + ,,.».. + i'„-! +-+ "„., = ° (")

in one and only one way, the axes of reference being given.

[Suppose that, when we replace 6 by 6 — a in (ii), this

equation is unaltered, i.e. the curve is brought to self-

coincidence by a rotation through a about the pole. Then
for all values of k and t

aH cos ka. — b
kt
sin ka. = \aw , au sin ka. + b

kl
coska. = \J

ft
...(iii),

where X is some real constant.

Now (iii) gives either a
kt
= b

kl
= or else

\ J -2\cos/ra+l = 0.

Since X is real, the latter alternative is only possible if \= 1

and cos/ra= 1 or X = — 1 and cosAa = — 1.

* On the subject of symmetric curves see Carmichael, Annals of Math., II,
vol. ix. (1908), p. 53, and II., vol. x. (1909), p. 81 ; Ciani, Annali Slat. Para e<i

Applicata, III., vol. T. (1901), p. 33.
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It follows that, if an «-ic is brought to self-coincidence by

a rotation about the pole through an angle 2-njle, where k is

a positive integer, its equation is either of the form

«„„+ »»»+».*+•= ° (
iv

)

or is of the form unp + unlp+unSp +.;.= (v),

where p = \k, and k is even.

$2. First consider the curve unp = 0, which we take in

the form

(a + br' + cr
i +...+ kr'

1

) cospd

+ {A + Br' + Cr' +...+ Kra) sin p9= Q...Q).

This is the simplest type of curve with symmetry about the

pole 0. It has " 2p-A symmetry " about 0, i.e. it is brought

to self-coincidence by a rotation about through an angle

2irj2p.

If n, m, 8, k, t, i, D are the decree, class, number of

nodes, of cusps, of bitangents, of inflexions, and the deficiency

of (i), we have in general

n= 2l+p, m= 2l{2p+l), S = 2l{l-l) + %p(p-l),

k= 0, i = 3p(ll-l), T= 4p(2pl'+ 2l'-5l+l) + 2l{l-l),

D= 2pl-p-l+l.

The only multiple points are the circular points at infinity

and a p-ple point (multiple point of order p) at 0. The

» tangents at are parallel to the sides of a regular ^-sided

polygon and each tangent is inflexional. Through either

circular point o> pass I linear branches, all touching Oa> at <u.

There are p real asymptotes passing through and parallel

to the sides of a regular y-sided polygon.

A general idea of the shape of the curve can be obtained

by drawing S+ eS' = 0, where e is a small constant and

S ={a + br' + cr* +...) twpfl,

S' = {A + Br2 + Or* +...) sin pd.

The curve lies close to 5=0, crossing it at its intersections

with »S" = 0; and both S=0 and S' = consist of circles and

straight lines through the pole. The changes of shape as e

increases up to infinity will' be obvious. The curve consists of

p circuits, each passing through and having as a centre

of symmetry.
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The inverse of tlie curve (i) with respect to is a curve

of t lie same sort; and so is the locus of a point whose polar

conic with respect to (i) is a rectangular hyperbola, namely,

{1 (p4 l)b + 2(p + 2)cr'+3(p + 3)drl + .>.}cosp8

+ {1 {p + 1) B+ 2 (p + 2) Or' + S{p + B) Dr' +...
j
sin p6 = 0.

A curve wil.li /,-al symmetry cannot have a degree less

than /.-, unless it is of the type (i).

§ 3. Consider now an «-ie with ji-al symmetry about 0.

Jf n is even, the curve may be of the type discussed in § 2.

If it is not of this type, § 1, (iv) and (v), show that its equation

is u +u =0. On tin nine: the curve through a suitable
no ' mi

_

~ °
angle about the equation becomes

r" coind = a + br
1

+...+J,"-
3 + h-"'

1

(i)
.

if n is odd, and

?-" cos nO = a + br
2 + . . . + //"~2 + kr" (ii)

if n is even. We may suppose k>0.
(Since ff — is an axis of symmetry, the curve has the

symmetry of the regular «-sided polygon.

If n is odd, the asymptotes are real, and form a regular

n-sided polygon, each having in general three-point contact

at infinity.

If n is even and &<1, the asymptotes are real, pass

through the pole, and are parallel to the sides of a' regular

«-sided polygon.

Jf n is even and k> 1, the curve is closed.

If n is even and k=l, the curve has £n biflecnodes at

infinity. The asymptotes are real and form a regular ?i-sided

polygon ify is negative.

The locus of a point whose polar conic with respect to (i)

or (ii) is a rectangular hyperbola is the concentric circles

5+2V+3Vr4 +...= 0.

If n = 3, the curve is

»-
3 cos3# = a + br' (iii).

The asymptotes form an equilateral triangle of altitude b\

and the product of the distances of any point on the curve

from these asymptotes is (27a + ib
3

)j 108. Hence the curve

is identical with
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referred to an equilateral triangle of reference of altitude b, if

A= -18&7(27a + 4j*J (iv).

Diagrams of the curve for various values of k are given
in Hilton's Plane Algebraic Curves, pp. 230—232 (Clarendon
Press, 1920).

If n = 4, tlie curve is

r* cos40 = a + t»-' + cr
4

(v),

where we may suppose e>0.
This may be put in the form

(aar+/3/-l)(/3.r + «/-l)=e (vi),

where a + /3 = - 4 (c+ 1) /&, a-/3 = 4 (2c+ 2)*/5,

6 = 1 _4a(c+l)/J".

The shape of the curve may be readily found by con-
sidering a, /3 given and e originally small. The curve then
originally approximates to the two conies given by e= 0, and
varies its shape continually as e' increases. For instance,
suppose a and /3 are positive. If

0>6 >-o/3(a-/3)7(** + /3y,

the curve consists of four ovals, each with a bitangent having
real points of contact. If

- a/3 (a - 0)" /
(a" + j3")» >«>-(«- 0)'/ 4a/3,

the curve consists of four convex ovals. The curve is not
real if

-(«-/3)74«0>*.

If 1 > e> 0, the curve consists of two ovals, one inside the

other. If e>l, there is only one oval. The outer oval
(or the only oval) has eight real inflexions if and only if

4 (a - 0)7 (a* - 6«/3 + j3
2
)' > e > 0.

The twenty-four inflexions lie by eights on three circles

with centre at the pole. If !• , r
t
, >•, are their radii,

One at most of the circles is real.

§4. Consider now an ?i-ic with [n— l)-al symmetry about
the pole 0. If n is odd, the curve is either of the type dis-

cussed in § 2 or is a cubic with as centre.
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If n is even, it follows from § 1 that its equation can be put

in the form

r""
1
cos («- 1) 6 = a + br

7 +...+jr"- + ki* (I),

where It is positive.

The curve (i) has the symmetry of the regular (n - l)-sided

polygon.

It has Jn-point contact with the line at infinity at each

circular point, and there are (n — 1)" real finite foci in general.

The locus of a point whose polar conic with respect to (i)

is a rectangular hyperbola is the same family of concentric

circles as in § 3.

lt'n — 4, the curve (i) is

r
3 cos36 = a + br + cr* (ii).

The shape of this curve may be found by first supposing c

small. The curve then approximates to the cubic of §2 (iii)

ill the finite part of the plane.

If c and (27a + 4b
3

) have the same sign, the quartic consists

of three large convex ovals, with an additional oval surrounding

the pole if k<— §, i.e. if a and (27a+ 4b
3

) have opposite signs.

If c and (27a t 4b
3

) have opposite signs, the quartic consists

of an oval with six inflexions surrounding the pole, with

another oval inside it if a and (27a + 4&
3

] have opposite signs.

The changes of shape which occur as c
3
increases will now

be readily recognized.

§ 5. An n-\c cannot in general be projected so as to have

symmetry, if n > 3. But if the Ji-ic satisfies certain geo-

metrical conditions, the projection may be possible. We shall

now give a few illustrations of such' conditions sufficient to

ensure that a curve may be projected so as to have the sym-

metry of the equilateral triangle.

If an H-ic is unicursal and has three real tangents of n-point

contact, its equation can be put in the form

x \\n + yljn + z \jn _
0)

and the n-ic can therefore be projected into symmetrical shape.*

Again, if an ?i-ic has n + 1 tangents of «-point contact, n

of which are concurrent, while n is odd, the equation of the

>i-ic can be put in the form

af +y + z" = 0.t

* Messenger of Mathematics, vol, xlix. (1920), p. 132.

t Messenger of Mathematics, vol. 1. (1920), p. 39.
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Suppose that ABC is a triangle, that P, Q, R are points
on BC, CA, AB such that AP, BQ, CR are concurrent at 0,
while {BC, PP'), [CA, QQ), {AB, BR') are harmonic ranges.
Then

(1) The equation of an n-'ic {n> 4), having ii-point contact
with BC, CA, AB At P', Q', E and having a multiple point
of order n-2 at [an "(n — 2)-ple point"], can he put in

the form

{Vs iy - «) (- 2a + y + z)
n + zx {z - x) {x - 2y + z)

n

+ xy{x-y){x+y-2s)"} + {y-z){z-x){x-y) = 0...{\).

(2) The equation of an n-'io. {n even), having ?i-point

contact with BC, CA, AB at P, Q, R and having an (n-2)-ple
point at 0, can he put in the form

{yz [y - z)
n+1 + zx{z- x)

ni
' + ocy {x - y)

nn
}

-r(y-*0 («-»)(«-#)=<).. .(ii),

so that hoth curves can he projected into symmetrical shape.

The equation (ii) may be obtained as follows: A curve
having an {n — 2)-ple point at the origin and having the line

at infinity for an ?i-point tangent at x=y has an equation of

the type

{x-y)" + a,x"-
1 + a

l

x<"
s
y+...

+ v.jT
1 +V + W*y *•••+ »«»-"- o.

If, moreover, we make the curve have ?i-point contact

with x=— 1 at (— 1, 0) and with y = - 1 at (0, —1), we
obtain 2n equations in a

a , a,, ..., b
u , & , ... . These prove to

be equivalent to 2n— 1 independent linear equations, which
are readily solved and give for the equation of the curve

{x-y) n+1
(* + l) {y + l) + x»

n
(a» + l) -f" {y+ l) = 0.

Transferring the origin to (—1, —1), and making the equa-

tion homogeneous, we obtain (ii). Similarly we obtain (i).

As another illustration we have: If the sides of a triangle

have each w-point contact with a unicursal 2«-ic at two real

points {n odd), and the cross ratios which these points form
with the vertices of the triangle are the same for each side,

the equation of the curve can be put in the form

x-ln + y
2l" + z?l* + k {y

l
l
nzV» + a 1

/"a;
1/B + x ] "y l ") = 0.*

* This follows readily from Proc. Land. Math. Soc, II, vol, xxi. (1921), p. 4.
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§ 6. The problem of finding symmetrical algebraic plane

curves suggests that of finding symmetrical algebraic surfaces.

We conclude by briefly indicating how to find the algebraic

surfaces with the symmetry of any one of the 32 crystallo-

grapliic classes.

First take the "regular system" in which the symmetry-

axes are those of the regular tetrahedron or cube. Choose

rectangular Cartesian axes of reference so that the trigonal

symmetry-axes are the lines x = + y = + z. Suppose that

pxay^zy
,
qxll

y
a
z y

, ax
i

y
ezt

, bx
K
y
x
zx are terms in the equation of the

surface. Then this equation must evidently involve the terms

p {x-y^ + xyy"zfi + xPyiz") + q (afyV + x?y'ha + xa
ifzP),

a (x
>

y
eze + xfy*z € + xl

y
e
z*), bxx

y
xzx .

Here p, q, a, b are numbers and a, ft, 7, 8, e are zero or

positive integers such that 8^=e aud no two of a, ft, 7 are

equal.

If the surface has the axes of reference as diagonal axes,

so that the symmetry of the surface is that given by the

symmetry-axes of the regular tetrahedron, we must have

p and q zero unless a, ft, 7 are all odd or all even ; a zero

unless 8, e are both odd or both even.

If, in addition, the surface has a centre of symmetry, we
must have

p and q zero unless a, ft, 7 are all even ; a zero unless

8 and e are both even, b zero unless X is eveu.

If there is no centre of symmetry, but x = y, etc., are

symmetry-planes, so that the surface has the symmetry of

the regular tetrahedron, we must have p = q, and both zero

unless a, ft, 7 are all odd or all even; a zero unless 8 and e

are both odd or both even.

If the surface has the axes of reference as tetragonal

axes, so that the symmetry of the surface is that given by

the symmetry-axes of the cube, we must have

a = 0, unless 8 and t are both even; b = 0, unless X. is

even ; and also (i) p and q zero, unless p = q and a, ft,

7 are all even, (ii) p and q zero, unless p = — q and

a, ft, 7 are all odd.

If the surface has also a centre of symmetry, so that it

has the symmetry of the cube, only the first alternative is

admissible.
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To obtain algebraic surfaces with the symmetry of classes

in the hexagonal, tetragonal, .... crystallographic systems,

we note that any algebraic surface of degree n has an equation

in cylindrical coordinates of the form

/.+/_.« +/«-/ +•.+/.*"= o 0).

where, with the notation of § 1,

ft = «,, + «.,-i + "««-,+•• -+",o-

Tf the surface is brought to self-coincidence by rotation

through 2tt / k about the axis of z, where k is a positive

integer,^ must take the form

for each value of t. The surface then has the axis of z as

a £-al symmetry-axis.

If the surface has in addition a centre of symmetry, the

terms of odd degree in r and z must vanish.

If the surface lias a symmetry-plane perpendicular to the

axis of z,f
t

= 0, when t is odd, etc.

If we apply these considerations to the cubic surface, other

than the cubic surface of revolution, we find that a cubic

surface can have the symmetry of any one of the classes

which in the notation of Hilton's Finite Groups, pp. 113-115

(Clarendon Press, 1908) are denoted by

C„ c„ G„ c„ r„ D, 8„ c
t,
d
4l
C

4 ,
D

t , S„ A„ dm 0,

or in Hilton's Mathematical Crystallography (Clarendon Press,

1903) are denoted by

C„ <7,, C„ C„ 0„ Q, C„ C,', D.
id , Ct, Dv C

3V, D3d , D^ Td .

For instance, the cubic surface with the symmetry of the

regular tetrahedron is

uyz + a (x' + y'+ z') = 4 (a
3 + c

3

).

The lines on the surface are the lines at infinity in xyz = 0,

and also the lines

z = ±2a, {x±y)' = ic
3

la;

z = ±2{a* + cyiai
, a

32
{x' + y')±2(a3 + cyxy = 0, etc.

' They are all real if c',a is positive; otherwise only the lines

at infinity are real.



( 176 )

A SUGGESTION FOR A NEW SYMBOLIC
TREATMENT OF PROBABILITY.

(Being a Note on Mr. Keynes' Treatist on Probability.)

By Ian Macdonald Horobin.

Mr. Keynes bases his theory of probability* on the

relation ajh where ajh is not necessarily a Humbert. He
works out an algebra for this relation, of which the funda-

mental result is an addition theorem:

a + b
J
h = a

J
h + b / h — ab / h.

Since he has only defined addition for the single case

ablh + ab\h = ajh,

and since, even in the form

a
J
k + ab/ h,

the right-hand side is not in this form, it cannot be said that

his algebra for non-numerical relations rests on very secure

foundations. It seems clear that something more must be

known about the probability relation before we can construct

a satisfactory calculus. A more elaborate investigation of

the serial relations of non-numerical probabilities is required.

Before we can construct an algebra based on an addition

theorem, we must know more of the relation of probable

inference to certain inference, for clearly any ordering of

probabilities must eventually depend on their relation to the

certainty of ordinary inference, which has so hastily been

equated to the ratio l/l in the ordinary theory. It would
seem to the present writer that if the direct judgment of any
probability is a judgment of a ratio then all probabilities are

ratios. The point at issue seems to be whether, when we
assert some probability to be (say) 1/2, we are not really

asserting elliptical ly that a certain inference can be made
between an implication of probability and a particular way

* J. M. Keynes, A Treatise on Probability (London, 1921).

f If a and b are two propositions and if <> relation of probability holds betwten

them, Mr. Keynes denotes this relation by a/6. He uses h to denote the " general

evidence", so that the </ priori probability of a is a\h and the full statement of

the relation between a and b is ajbh. From this material he constructs his logical

calculus; explicitly rejecting any assumption about the probability relation, and
leading up to numeucal probabilities aa a special case. The method and aim are

clearly desirable ; whether be is successful or not is more doubtful.
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of stating the evidence.* If this is so it would appear tliat in

order to clear up the question, the first step will have to be to

discover if there is any normal or general way of stating the

evidence. After this it may be possible to find out whether
or not there is always theoretically possible the certain infer-

ence which takes places when we can find a numerical
probability. If I understand Mr. Wittgenstein aright, he

would appear to imply that this statement of the evidence

can be made in the form of an infinite number of inferences

from independent propositions. If the probability relation

were ultimately dependent on the numerical relations of two
infinite collections, the solution of the problem "are two
probability relations always greater, equal, or less than one
another?" would appear to be connected with the truth or

falsehood of Zermelo's axiom, about which I think nothing is

yet known.!
However this may be, it is possible to obtain all Mr.

Keynes' results rigidly by a definition which, in the first

place, makes the probability relation a ratio. In itself, of

course, this does nothing to help on the solution of the major

problem, but apart from its intrinsic interest, it is, I think,

relevant, because, as a result of what has been said above,

I am inclined to believe that the probability relation is not an

indefinable relation directly holding between propositions, but

* To take a very simple instance : I believe there is a fundamental difference

between the propositions, " This probability is 1,2 " and '* This is as likely as not ".

This would appear to have been overlooked by Mr. Wittgenstein in his Tractatus

Logico-Philosophicus. If the first were not elliptical all probabilities would be
numerical.

t I think the sort of way in which this will happen may be seen from the
following illustration.

Suppose there to be a symmetrical die with an infinite number of faces. This
is of course impossible in a three-dimensioned space, but the illustration can be
easily adapted. Suppose the number of faces ununowa. Let some of these faces

be

... a, b, e, ...

... a, ft, y, ...

(both infinite selections). The faces must not, of course, be numbered, otherwise

their number will be alepb .

Suppose we wish to know whether the probability thai the face turned up will

bear a Greek or Roman letter is the gieater. This clearly depends on whether the

cardinal number of the class of Greek letters is gieater or less than that, of the

class of Koman letters. But unless Zermelo's axiom is true, we do not know
whether these two cardinal numbers are necessarily greater or less than each

other, and therefore the probabilities are not necessaiily comparable. ISut 1 do
not know whether this is correct.

A similar problem is suggested by a passage in Mr. Bertram! Russell's little

book on Mathematical Philosophy (1919) at page 126. Would his millionaire, if he

went to the wardrobe in which lie kept his purchases, be more likely to pick up a

boot or a sock ?

VOL. LII. N
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a definable one between the sets of values of prepositional

functions. JVIr. Keynes' convenient " /* " covers a multitude

of logical omissions.

If "a" is any class, let (a) denote the number of its

members. We proceed to develop the theory of this
( )

function.

Within it the Boole-Schroder logic of classes applies.

The
( ) itself obeys the ordinary laws of arithmetic, being

an integer.

The probability relation is defined thus:

<»-$>*
By the definition of number (a) + (h) = (a + l>), if a and h

have no members in common, i.e. if ab = 0, since there is

a one-one relation between their terms

(0) = 0; hence (a)^0 if a£0, (1) = 1,

for convenience of notation. It would correspond to Sir.

Keynes' notation to make (l) = h and to define a/bh = . ,

but this introduces needless complications, since our only

immediate object is to obtain a formally equivalent algebra,

every step of which (unlike Mr. Keynes'J has a definite

meaning and is not merely a string of letters leading to an

interpretable conclusion

(1) (a) + (i) - {ab) = {ab + ab) + {ba + ba) - {ab)

= {'ib) + [al) + {bTs) = {ab + ab + ab)

= {a + b), the addition theorem.

(2) Every ratio {a)/{b) can be expressed in terms of

probability relations:

[If a implies b, it is already a probability relation, since

(«) (ab)
ab = 0; .-.a = ab; .-. ^ =^ = <*/»].

1

TTnr
(«) _ (ab) Tb)

{b)~ (b)
+

{a+b)
X "

and, since b implies a + b, therefore . ,. is a probability

relation. (« + *)
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It is interesting to note tliat this is a type of probability

relation never used by Mr. Keynes.

(3) The general probability relation is \L
,—^— "

\\ ,

where / implies <j> ; or, otherwise, _ -T .

l<Pi

(4) The general premiss of a process of probable infer-

ence is

^ = X or (/.#) = X(#).

(5) By a well-known theorem (taking three primitive

classes for simplicity)

:

/(a, b, c) =/, (6, c).a+f2
{b, c).a,

wherey,,^ are new functions.

Similarly we can reduce _/",,_/", till we arrive finally at

M^ + M.c,

and the original general function can always be written

= a.abc+ 2/3.a£c + "2e.abc + 6. abc,

where, as is easily seen (cf. Boole),

a=/(l, 1, l), /3=/(0, 1, 1), etc., and <x = or 1.

abc, a=(l, 1, 1); abc, (1, 0, 1) = y;

abc, /3= (0, 1, 1); ale, (1, 1,0) = S;

abc, (0, 0, l) = e; abc, (1, 0, 0) = r)
;

aic, (0, 1, 0) = | ; «/>c, (0, 0, 0) = 6.

Since the classes are now exclusive,

(Sabc) = S (aJc).

(6) Hence every premiss can be written in linear form as

Sot. abc = A where a can be written down at sight (see 4) and

where A is a number.

Since wheu a... are all 1, we have

2ctJc=l,

and since the number of terms in the linear expression of

a function of n classes is 2", there are necessary 2" — 1 premisses

for the complete solution of a problem in n classes.
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Example (see p. 187, Keynes) :

(«,) = «„ (e«,)=^(a)„ («a,a
J)
=

J

(«,.) = c
s ,

(ea,) = p, («,), (ea.a,) = y,

(e«,a
a)
+ (ea,a

1)=p 1

(a,),

Therefore

(«) = (ea,a,) + (ea.a,) + (e^a,) + (ea.aj

=i>, (",)+?>, ('0 - K<0 + (
e«,«

2) =2>ic , +P&-V- [Q-E.D.].

It will be observed that there are here only six premisses,

and the complete solution cannot be possible, as Boole appar-

ently thought, according to Mr. Keynes.
This may be verified thus:

K«J = y, («•,«,) =P,o,- y, {eap,) = a, (?a,«J = y,

(«««,) =P,°,-y> (««,«,) = 0, (ea,a
2)
= /3, (ea,aJ = S.

Adding eacli of the last four equations to the corresponding one
in ' e ', we have

(«,«,) = a+ y, («,«,) = S,

and hence we have four equations and five unknowns unless

we know one of a, j3, 7, &
The problem of generalizing the above can be approached

in various ways. The first step would certainly be to rewrite

it in terms of prepositional functions instead of classes. The
next step might at first seem to be to make the formula?

applicable to cases where, as with the millionaire and his

socks, (a) and (b) in {a)/(b) are infinite. This is not very

promising, though a form of the addition theorem

(a) + [ba) = (a + b)

is still unambiguous; it is useless, however, since the various

, ..... ,, (a) (ba) (a + b)
"probabilities .— ,

-— ,
—-r-r-' are themselves ambiguous.

(c) (c) (c)

This line of advance is therefore only a special case of the

reconsideration of the meaning of ( )/( ), hinted at as

necessary above for complete generality.
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Upon tills question (namely, " What is it that two groups

of propositions have in common when we are able to reason

probably between their members?", and further "between

what kinds of groups of propositions can this relation hold?'')

I can throw no light. But both the—as it seems to me

—

incomplete attempt of Mr. Keynes and the line of thought

contained in this note make me feel certain that no solution of

the problem can be succesful which endeavours to extract

a probability relation from two general propositions taken in

isolation.

ON A SPHERICAL CONFIGURATION OF
EIGHT POINTS.

By Prof. W. Burnside.

SUPPOSE the edges of a cube to be rigid bars freely jointed

at the corners. It is proposed to consider those configurations

in which the eight corners lie on a sphere.

OA, OB, OC are taken to be three conterminous edges,

and 0', A', B', C the corners opposite to 0, A, B, 0. When
the eight points lie on a sphere, each edge subtends the same
angle o" at the centre. If the edges are projected on to the

surface of the sphere from the centre, the surface is divided

into six spherical quadrilaterals, all of whose sides are equal.

In a spherical quadrilateral, whose sides are all equal, the

opposite angles are equal. This justifies the following notation

BOC=BA'C=a; COA = CB'A=(i; AOB=AC'B=y;

where a + fi + y = 2n (i)

;

OBA'=OCA' = z; OCB'=OAB =j3'
;
OAC = OBC = »/.

k 2
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These give

E'0'C' = B'AC' = 27r-OAir-OAC' = 27r-ft'-v',

G'0'A' = G'BA' =27r- 7'-a',

A'0'B=A'GF =2tt -«'-£',

so that since B'0'C' + C'O'A'+A'O'B = 2ir,

a'+/3' + 7' = 27r (ii).

Each quadrilateral therefore lias the same angles as the

opposite one.

The spherical quadrilaterals OBA'C or OB'AC give

cos 8 = cot ^a cot^a' (hi).

The other two pairs similarly give

cosS = eoti/3cot^/3' ...(iv),

cos 8 = cot ^7 cot 37' (v).

These equations obviously involve

8<i7T.

These five equations thus obtained are the only independent

ones connecting 8, a, /3, 7, a', |3', 7'. From them may he

deduced

cot'S = cos-|acos^/3 cos ^7 ....(vi),

cot*o = cosia' cos^/3' COS-I7' (vii).

The triangle OBA' gives

/-1 a, ,„ . „ , . ^ ., sin 8 sin a'
cos OA = cos 8 +- sm"8 cosa , sin (JA =—:

—
-. .

sin Aa

The triangle AOA' gives

zohAA' = cos OA cos OA' + sin OA sin OA' cos A OA'

s/ s* . • »b '\ ,

sin-Ssina' ,«'-. 1 %= coso (cos + sin cosa) 4 :— — cos(p + ^a)
^ sin^a

* , o~ . ,0 -> s ' n '° sin a' , r> ,= coso (cos"8 + sin"8 cosa) H ;— - (cosp + cos 7).
v sin a

Now (i) and (vi) give

1+cosa-l cos/3 + cos7 + 4 cot
J
<5 = u (viii).
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Hence
. ,, t , „,> . ,,. ,. 2sin'Ssin«' .„ ,-.

cosAA = cos5 (cos'o+snrScosa) : (cos ia + 2cot 0).
sma

Entering in tliis the values of cosoc' unci sin a' from (iii},

, ., ,_, sin'ScosS
cosAA = cos 6 + —^ =-;—

1 + sec 6 col'-^a

X [l — sec'Scot'^a— 2 sec'S (cot
!5«+ 2 cosec'^a cot'S)]

= cos*8 + sin'8 cos 8 [l — 4 cosec'S]

= — 3 cos 8.

It follows that ^>cosS>0, while the angular distance

between any pair ofopposite corners of the figure is cos"' (-3 cosS).

Since the remaining angles are determinate in terms of 8

and a, it follows that when 8 is given, subject to the above
inequality, the spherical figure, apart from displacements as a

rigid frame, has just one degree of freedom. When 8 and <x

are given, equation (viii) may be written

cos i% cos {(i + £a) + cos
5
\a + 2 cot'8 = 0,

or 4 cos'ia sin" (ji + ^a)

=
{
V(l - 8 cot'S) - 4 eot'S-cosa)

[
V(l -8 cot'S) + 4 cot'8+ cosaj.

The greatest value of the right-hand side is 1 — 8 cot'S, when
cosot = — 4 cot'S, and this gives

S, "
( '
3 +^)

=
2-=¥co?S-

It follows that cosa can take all values between

- V(l - 8 cot'S) - 4 cot'S and V(l - 8 cot'S) - 4 cot'S,

and this determines the amount of play of which the frame

work is capable for a given value of 8.

The angle <j> of an equilateral spherical triangle of side Sis

given by

cosS
cosrf> = - j .T

1 + cosS

Hence, as S increases from cos"
1

(J),
no spherical quadrilateral

can have a diagonal equal to 8, until

V(l - 8 cof'Sj - 4 cot'S > ———=

,

* v '
1 +cosS
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or 6cos3
S + ll cos'S-1 <0.

When 8 satisfies tliis relation there is a configuration of the

figure in which a = (p. For this configuration a! = 2$ and

eosi$ cos (j3 + i<p) + cos"i<£ f 2 cot*8 = 0,

cos(£ cos(/3' + </») + cos
s

^» + 2cot'8 = 0.

If 0,
9' are acute angles satisfying

„ cosH* + 2 cot'8 ., cos'A + 2 cot'S
cos0= 2y

, -, cos0 = r ,

eosi^> C0S</>

it is easy to verify that as 8 increases from eos
_1

(^) to W,
<l>,

6, anil & all increase with 8.

(Suppose that /3 <7, so that /3' > 7'. Then from the above

equations

+ 1$ = 7T - 0, 7+ I^ = 7T+0, /3' + tf>=7r+0', 7
' + ^= 7r-9',

so that /3 and 7' diminish as 8 increases. Now /3 and 0'

cannot both diminish as 8 increases, nor can 7 and 7'; so that

7 and /3' increase as 8 increases. Hence that configuration

being taken in which BO is 8, as 8 increases AC and OC
diminish, while OB' and AB increases. When S reaches a

value for which either AC or OC is 8, any further increase

of 8 makes either A C or OC less than 8. Hence the greatest

value of 8 which is consistent with no two of the eight points

being at a smaller angular distance than 8, is that given by

the condition that BO and either AC or OC are each 8.

The condition a = /3 = </>, where <p is necessarily less than

\ir, is not possible.

If a = 7' = </>, then a' = 7 = 2tf>, /3 = /3' = 2tt - 30.

These give cos8 = cot*|(30),

or 7 cos
3
8 + 9 eos*8 + cos 8 — 1 = ;

and since \ > cos 8 > 0, cos 8 = \ (2 V2 - 1 ).

Hence, if 8 is less than cos ' * (2 *J2- 1), it is possible to

mark eight points on a sphere, so that the least arcual distance

between any two of them exceeds 8; while if 8 is equal to or

greater than cos '

f (2 \J2
-

1), this is not possible.



( 185 )

ON THE ZEROS OF AN INTEGRAL FUNCTION
REPRESENTED BY FOURIER'S INTEGRAL.

By G. Polya.

We do not possess a general method for discussing the
reality of zeros of an integral function represented by Fourier's
integral (such a method would be available for Riemann's £-
function

) I present here a special case where the discussion
is not quite trivial, but may be carried out with the help of
known results.

Consider the function

(1) Fa (z)=\°
Jo

e~
ta
cos ztdt.

If 0<a<l, then Fa (z) is defined by this formula only for
real values of z. We have

,y
- ' 1+3*

For a> 1 we get

, „ \ a / ,,

(2) Fa (z)=- S (-1)"

This development shows that Fa {z) is an integral function of

order . In particular,a— 1
r

(3) F
t
{z)=±</vtri*.

Following the method employed by G. H. Hardy* to

prove that Riemann's £ [t] has an infinite number of real zeros,
F. Bernstein f proved the same thing for F

4
(z), F

e
(z), F

s
(z),

Now it is easy to go further in the case of Fa {z) [though
naturally not in the case of £(')]> and to p'ove the following
results:

(I) If a = 2, then there are no zeros at all.

(II) 1) a = 4, 6, 8, ..., then there are an infinite number of
real zeros but no complex zeros.

* Comptes Rendus, 6 Jpri], 1914.

t Mut/tematische Annakn, vol. Ixxix. (1919), pp. 265-268.
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(III) If <x> 1, and is not an even integer, then there are an
infinite number of complex zeros and a finite number, not less

than 2 [-ia], of real zeros.

The statement (1) needs no demonstration: compare (3).

The proof of (II) is based on the following special case of a
theorem of Laguerre :

*

If <I> (z) is an integral function of order less than 2 which
assumes real values along the real axis and possesses only real

negative zeros, then the zeros of the integralJunction

*(») + «£> « +^w^«-+...

are also all real and negative.

(4) * w= r(J+.)
. .'.

where & is a positive integer. The poles of the numerator

z = -h, -J(2*+l), -i(« + l), ..., z=-l -|, -I,...,

are absorbed by those of the denominator

z = — I - ^ _ 3 _ 4 _ 5* — 2' 2' 2' 2> 2' "" -

Thus 4> (s) is an integral function satisfying the conditions

required by the theorem of Laguerre, and consequently the

zeros of

7i=0 h ! r (2« + i)
=a v ;

are all real and negative ; we infer that the zeros of F
ik

[z)

are all real.

2A
The order of the integral function F„

k
(z) is ; if

2k *'" ~ 1

/.=2, 3, 4, ..., then l<rr—: < 2. Thus -F^ (.?) is not of

integral order and consequently possesses an infinity of zeros;

they are all real, and thus (11) is completely proved.

Suppose X is positive. Then we have, by partial integration,

Xa+1Fa (x) = xa s'wi xt. a!"-'1 e~
ta

dt.

Jo

* Otuvres, vol. i. (Paris, 1*98), pp. 200-208.
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Introduce tlie new variable u = x"t
a

; then we liave

(5) xa+1 Fa (x) = $ exp (iV/° — ax~a
) du,

where $A denotes tlie imaginary part of A. Clioose as path

of integration, not the positive real axis, but a straight line

running from to co in the upper half-plane and making a

sufficiently small angle with the positive real axis. With this

path we have

bin x«+ x Fa {x) = i e»«
{

du.
*=+•*> Jo

Rotating the path of integration in the positive direction until

it reaches tlie position where argz = ^7ra, we get filially

(6J lim x«+ lFa (x)=l(
+X

e-r'
:a

ei™Pdr
x=+ rx> J

= r(a+l)sin(7ra/2).

If the limit (G) is different from 0, that is, if a is different

from 2, 4, 6, ..., then Fu {z) possesses

(a) a finite number of real zeros and

(b) an infinite number of zeros.

Of these assertions, (a) is evident from (6). To prove (b)

we make use of the theorem that an integral function of finite

order having a finite number of zeros is of the form

(7) P (.)«««,

where P(z), Q (z) are polynomials. Now Fu (z) is certainly

not of the form (7), since it converges to when z -> + co in the

same manner as a negative power of z, as may be seen from

(6). The statements (a), {b) just proved contain the first two

parts of (III).

From (l) follows, by Fourier's theorem,

2 r°°

- Fa {
IT Jo

x) cosxtdx = e~
ta = 1 — —

-,

+...

Differentiating 2m times with respect to t, wliere

(8) 2m<a<2»i + 2,

and then putting < = 0, we get

(9) p Fu (aj) x'dx =
J
Fa (sb) x*dx =. ..=

f
Fa (as) *' mdx =
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The convergence of the integrals (9) is assured by (6) and (8).

It follows from (9) that

(10)
J"

Fa (x)x>F(x')dx = 0,

where P(z) denotes any polynomial in z of degree not ex-
ceeding tn — 1. Assume now, if possible, that Fa (x) changes
sign at most m — 1 times for x> 0, e.g. at the points x , x

a
, ...,

3"
m-,, where <x

x
<x

t
<...<;

r

m_, ; and put

P(®>(<-^ (<-*")...(<„_,-*•)

Then the integrand in (10) is never negative and our assumption
leads to a contradiction. Thus Fa (.e) changes sign at least

«? = [-ia] times for x> 0. We have now proved the whole of

Theorem (III).

The results we have obtained may be completed in many
respects. If a 5:0 and k is an integer not less than 2, then
the zeros of the integral function of z

/;
e^"-^ cos zldt

are all real; the asymptotic distribution of the zeros can be

calculated by more laborious and more usual methods; and
so on. The function Fu (z) has been considered in connection

with questions arising in the theory of errors, especially by
Cauchy*, and P. Levyf proved that Fa (.v)^0 for 0<a^2
and for real values of x. More recently W. H. Burwell j has

discussed the asymptotic expansion of l' a (z) for a=3, 4, 5, ...,

and has shown in particular that, when a= 4, G, ..., the number
of complex zeros is finite. This result is included in Theo-
rem (11) above. Finally we may .add that Fa [z) is of much
importance in Waring's problem.

§

* CompUs Reiidus, vol, xxxvii (1853), pp. 202—200, and passim.

t Comptes Rendus, vol. clxxvi. (1928), pp 1118-11-20.

I Proc. Loni/. Math. Sot: l'-'i, vol. xxii. (1923), pp. 57-72

J Ci. II. Uurdy and J. K LittlewouJ, Goltinger Nuchrichttn (1920), pp. 33-54.
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THREE i\
T-DIMENSIONALS.

By F. C. Pitt-Bazett.

I shall begin by defining some n-dimensional terms, tliat

is, I sliall enumerate in order after each its analogue in one,

two, and three dimensions. The terms are: Close—segment
(or finite line), polygon (or closed figure), polyhedron (or

solid); Content—length, area, volume; Minimum (close)

—

segment, triangle, tetrahedron ; Power (close)—segment, te-

tragon (or quadrilateral), hexahedron ; and Reciprocal (close)

—

segment, tetragon, octahedron. I shall represent the adjective

n-dimensional by «, and by co-n the general analogue of

collinenr and co-planar. It is with some of the descriptive

properties of the above-mentioned closes that this brief note

is concerned, and— in the case of their regular forms—with

some of their metrical properties also.

I shall assume the following properties of n-space : that it

contains an infinity of n — 1-spaces, and that by motion to

infinite extent in a direction which it does not contain it

generates an n + 1-space: that it is the intersection in general

of r+1, and never of less than r+1 n + r-spaces, and can
contain n + 1 and no more arbitral ily situated points.

First, let us investigate the elevation of a close from n- to

n+ 1-space. The Minimum is elevated by introducing an

(n + l)st vertex, non-co-n with the others, and associating it

with all the elements of the close. In the case of the Power
a second Power is taken nowhere co-h with the first, and
corresponding elements associated. The elevation of the

Reciprocal will become clearer shortly.

Next, let ua consider the number of r's contained in an s

in the various cases, and denote this function by •! >• . For
the Minimum we have ^' >

and by known results in the lower dimensions we obtain
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the binomial coefficient. So for tlie Power the equation is

'' =f*-
1
l + 2f

S - 1

„-,)- + 2

l.-

and leads in a similar way to

We can now define the Reciprocal as having an n— r

corresponding to every »•— 1 of the Power of the same order;

and, replacing s by n, we have for the Reciprocal

:}=-'(,:,)

.

in particular, it has 2" n — l's and In vertices. Now the sum-
total of elements in a Minimum n — 1 is 2", including the — 1

element—the reciprocal of the close itself—and so this identity

suggests that the Reciprocal is formed by associating two

?i — 1 Minima by means of their reciprocal elements, that is,

an r — 2 of the one to the corresponding n— r ot the other,

and the consistency of this suggestion will be seen in what
follows. The one Minimum may be supposed to be translated

and reciprocated into the other, for a Minimum is clearly

self- reciprocal.

Now suppose )•>*, so that -j > becomes the number of

»''s at an s, and as this function depends on the order of the

complete close of which these are elements, I shall denote

(")
it by 1 r \ . This gives us

J ,- L = J >- 1 I = (eventually) - r - s V

is) U-lJ I J

Ui—s— 1) ,»,. • \ In - s\

= {,-._ i}
(
M,m,uun

' )
= U- J'

these equations holding for both the Minimum and the Power.

Neither I rl nor, in general, \
*

I can be found for the third

close by reciprocation, and so we must resort to another
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method ; -I [ will hold the same value for the Reciprocal as

for the Minimum, except when s-=u, a case which lias already

been discussed. It is clear, on reflection, that

since the last term refers to a Mininum ; thus

','•

1 = 2'- ("

~

r)«~ > 1*1= r- (
n - & - 1

*r" is)

A neater and more satisfactory method comes from using the

general relation, true for all closes,

n \ ( n

' r I \s
:}>

for \ * [ in the three cases is simply \ I for Minimum, Power,ply
jj

foi
'

:

Minimum respectively; this gives the same results as before.

It is interesting to note the relation & (—
)

r
i _, r — 0,

satisfied by the closes, which has for its analogues: a segment

is the join of two points, n = s and S+F=E+2; while still

more worthy of notice is the —1 element, which persists

everywhere, even in the point—the zero-dimensional close

—

and which reciprocates into the reciprocal close.

By analogy the whole content of a Minimum is the ntb

power of its edge, here unity, divided by factorial n, and

multiplied by the square root of the determinant of the n"'

order having its principal elements unity and remaining

elements equal to h If this determinant be denoted by w
n ,

we have

u
n
= u

n_ x
/ 2 + 1 /

2"= (n + 1) / 2", since u
x
= l.

Thus the whole content is

(« + 1)3/2 /2»/2(n + l)!,

and the s content accordingly

(s + 1)3/2 („ + i)!/2*/2(« -«)! {(«+!)!}'.
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The wliole content of tbe regular Power is by analogy unity,

the nlb power of its edge, so that its s content is merely j
> .

The s content of the Reciprocal will be ^
s

-'

2«/2+ln !/(n-s+l)!{(«+l)!j*,

with an exception, as usual, when s — n. The determination

of the whole content of a Reciprocal is based on the fact that

it has a diametral n — 1 Reciprocal; this follows by recipro-

cation from the obvious property of the Power that, corre-

sponding to any pair of opposite n — l's, there exists a single

point at infinity at which all the others meet, this property

being inherent in the nature of the elevation of the Power.

It now appears that every n — 1 of a Reciprocal belongs to its

own w-Minimum, having its opposite vertex at the centre

of the Reciprocal. Every edge at this centre will be of

length V2 and every right angle; thus we obtain the total

content

2"/2
/»!;

for example, the length of the Reciprocal segment is \J2, and

not unity.

These results may be conveniently set forth, as in the

accompanying table

:

Close: r's in or at an s s content

r <s

Minimum

:
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