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INTRODUCTION

» Supply and demand interactions
» Volatility and Investor Behavior
> The Role of Twitter

> Sentiment Analysis (SA)



RESEARCH QUESTIONS

Main Aim: The study focuses on exploring the effect of sentiment derived from Twitter
on the price movement of Bitcoin and find the optimal time to lead the best prediction.
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To what extent does
sentiment expressed in
Tweets significantly
impact on Bitcoin price
movement?

02 03

Which prediction model What is the optimal time
demonstrates the most lag that significantly

accurate prediction for influences the accuracy of
Bitcoin price movement? Bitcoin price movement?



LITERATURE REVIEW

Ye et al, 2022: Low et al, 2024 Inclusion of sentiment data enhances prediction model

performance.
Bidirectional Encoder Representations from BERT method enhances context understanding and offers a
Transformers (BERT) (Devlin et al, 2018) pre-trained model adaptable for various downstream tasks.

Two RoBERTa variants trained on large Twitter datasets

RoBERTa Variants with different domain-specific introduced by Jose et al, 2022, and Juan et al, 2021. There's
knowledge a lack of direct effectiveness comparison in previous
studies.

DL models, particularly LSTM, GRU, and BiLSTM, are
favored due to their capacity to capture complex data
relationships.

Trend in Cryptocurrency Price Prediction (Murray et
al, 2023; Jaquart et al, 2022)

Previous studies used defined time lags. But no studies

Time | itien et al, 2022 TEVIo ) -
ime lags concept (Critien et al, 2022) investigate how time lags affect the prediction models
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Data Preparationto Forecast by Twitter Sentiment (Source: Author)

Problem Framing: Predicting Bitcoin price
movement as binary classification.

SA and non-SA scenarios: Utilizing
sentiment analysis (SA) as a multivariate
forecasting method, non-SA as a univariate
forecasting method.

Sentiment Scores: Extracted from RoBERTa
models introduced by Jose et al. (2022) and
Juan et al. (2021) for Twitter data.

Statistical Methods: Employing Augmented
Dickey-Fuller test (ADF) and Autocorrelation
for analysis.

Prediction Models: Three neural network
(NN) models utilized - LSTM, GRU, and
BiLSTM - after data preparation.



METHODOLOGY (2/3)

DATA ACQUISITION AND PROCESSING

Bitcoin Price: Gathered from Binance APl at 1-hour intervals.

Real-time Twitter Data: Retrieved via tweepy Python library from Twitter APl v2, filtering for
English tweets containing "btc" or "bitcoin".

Twitter Dataset: Initially 285,405 tweets, reduced to over 285,000 after cleaning.

Timeframe: Data spans January 31, 2023, to June 6, 2023.
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METHODOLOGY (3/3)

INTRODUCING LAG

Continuous Time Lags: Investigation spans from 2 to 17 hours to determine optimal lag for
prediction model performance in both scenarios.

Lagged Datasets: Training instances encompass observations from preceding days, corresponding
to the lag duration. For instance, a lag of 2 includes data from the previous 2 days.

ORIGINAL MODIFIED
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H4 0 03 | 04 1 05 | 06 | 0 F1: target movement (up:1, down: 0)
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lag is 2 so all observations from last

0 2 days are variables for prediction.

At H3, f1(t) is the actual target
movement. We train all observations

within 2 last days to predict the
movement at H3.

H5 1 0.9 0.1

Dataset with lagging feature of 2-hourlag (Source: Author) 3



RESULTS (1/4)

RESULTS OF STATISTICAL ANALYSIS

Non-Stationary Time Series: ADF test indicates Bitcoin price as non-stationary, with an ADF
statistic of -1.4954 and p-value of 0.535780, failing to reject the null hypothesis at 1% critical
value.

Strong Positive Correlation: Strong positive correlation observed for lags up to 500 hours,
indicating a high degree of autocorrelation in the data.
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R ES U LTS (2/4) RESULTS OF PRICE MOVEMENT PREDICTION
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Model Performance: Initially, SA-lacking models
outperform, but sentiment-inclusive models surpass
them in accuracy for the last 5 hours.
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RESULTS (3/4)
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Accuracy without sentiment comparison
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GRU Superiority: GRU outperforms LSTM and
BiLSTM in both scenarios.

SA Impact: Including SA notably enhances model
performance for longer time periods (12 hours and
beyond).

Top Accuracy: GRU with TweetNLP sentiment
achieves the highest accuracy at 20.3%, closely
followed by GRU with Bertweet sentiment at 20.2%.
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RESULTS (4/4)

RESULTS OF PRICE MOVEMENT PREDICTION

Consistent Accuracy: All models maintain accuracy above 80% after 12 hours, with
the inclusion of SA surpassing non-sentiment cases.

SA Impact: Highest accuracies observed with SA inclusion, notably with GRU

leading, followed by BiLSTM with TweetNLP sentiment achieving 89.44% accuracy.

Small Accuracy Difference: The accuracy gap between sentiment and non-
sentiment scenarios remains relatively small, below 2%.

GRU Superiority: Significant accuracy gap observed for GRU model from 13 to 16
hours, surpassing other models by 2% to 3%.

Consistent SA Performance: Accuracy difference between SA datasets remains
around 1%.

12



LIMITATION

Limited Feature Scope: Focus solely on Twitter sentiment

attributes.
English Tweets Only: Collecting exclusively English Tweets.

Missing Criteria: Unable to incorporate user interaction due to API

restriction.

Timeframe Restriction: Analysis confined to specific time intervals.
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CONCLUSION

Impact of Sentiment on Bitcoin Price: Sentiment expressed in Tweets notably
influences Bitcoin price changes, particularly over 12 hours or longer.

Model Performance with Sentiment Analysis: Incorporating sentiment analysis (SA) led
to the highest accuracy (90.3%) using a 2-layer GRU model with TweetNLP sentiment
at a 16-hour lag.

Comparative Analysis of Prediction Models: GRU outperformed LSTM and BiLSTM
models in both sentiment and non-sentiment scenarios, achieving a maximum accuracy
of 87.47% (non-sentiment) and 90.3% (with SA) at specific time lags.

Optimal Time Lag Influence: Results suggest optimal lag times of 16 hours and 17
hours within the limited timeframe analyzed, but longer datasets may yield different
optimal lag times.
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