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In this supplementary document, we present additional experi-
ments conducted with our method, specifically exploring different
rendering resolutions in Sec. A.1 and examining training and render-
ing efficiency in Sec. A.6. Furthermore, the implementation details
are provided, encompassing the strategies for point insertion and
deletion in Sec. B.1, the network architecture in Sec. B.2, training
details in Sec. B.3, evaluation details in Sec. B.4, and the data prepro-
cessing in Sec. B.5. For a more in-depth exploration, we recommend
referring to our supplemental video.

A ADDITIONAL RESULTS

A.1 Different rendering resolution
We present diverse resolution results of rendering on the same
case, demonstrating the capability of our method to achieve higher
resolutionswith enhanced details. It is noteworthy that all the results
in the main paper are rendered at a resolution of 512 × 512. In this
section, we conduct a comparative analysis of the same case using
different rendering resolutions, namely, 1024 × 1024 and 512 × 512.
As depicted in Fig. 9, the case rendered at a resolution of 1024×1024
exhibits superior quality in terms of appearance details.

5
12

10
2
4

Fig. 9. Qualitative comparison of different resolutions. We render
our Gaussian point-based avatar representation with different resolutions.
Compared to the lower resolution, the higher resolution recovers more
details.

A.2 MoreQuantitative Result
Considering article space constraints, we present only two results
in the main paper. We list other three results in Table 2. Case 3
indicates the second row in Fig. 10, case 4 indicates the third row in
Fig. 10, and case 5 indicates the first row in Fig. 10.

A.3 Long hair and Beards
Our methods can also handle cases with long hair (without flut-
tering) or beards. We present the results of rendering on the case
with beards (first row) and another case with long hair (second row).
As depicted in Fig. 11, both cases exhibit high quality in terms of
appearance details.

Error Metric (case 3) L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Nerface[Gafni et al. 2021] 0.016 0.1353 0.9213 26.32
IMavatar[Zheng et al. 2022] 0.016 0.1384 0.9127 25.31
PointAvatar[Zheng et al. 2023a] 0.014 0.0649 0.9313 28.53
Ours 0.010 0.0566 0.9514 30.83
Error Metric (case 4) L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Nerface[Gafni et al. 2021] 0.059 0.2655 0.8015 18.78
IMavatar[Zheng et al. 2022] 0.029 0.1509 0.8755 24.48
PointAvatar[Zheng et al. 2023a] 0.025 0.0954 0.8708 25.61
Ours 0.019 0.0896 0.8908 27.47
Error Metric (case 5) L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Nerface[Gafni et al. 2021] 0.012 0.1004 0.8702 28.26
IMavatar[Zheng et al. 2022] 0.015 0.1351 0.8974 27.11
PointAvatar[Zheng et al. 2023a] 0.013 0.0862 0.9033 28.97
Ours 0.009 0.0835 0.9293 31.76

Table 2. Quantitative evaluation. We report the other 3 quantitative
results on test poses and expressions. Our method also achieves better
rendering quality compared to SOTA methods.

A.4 Duration and Expression Diversity
Most of the video-based head avatar literature (including ours) em-
phasizes the diversity of facial expressions and poses in videos.
Giving a comprehensive range of expressions and poses is crucial
to achieving impressive performance. Similar to other video-based
person-specific portrait reenactment methods, such a dataset typi-
cally requires at least one minute long. In this section, we select two
clips from the training set of a specific case in Sec. 4 to serve as a
comparison group. Through this comparison, we aim to underscore
the significance of expression diversity. In Fig. 12, the first column
depicts the ground truth data, while the second column corresponds
to models trained on comprehensive videos lasting approximately
120 seconds. The third column corresponds to models trained using
data from the first clip, which spans 30 seconds and predominantly
features frontal facial expressions. The fourth column represents
models trained using data from the second clip, which extends over
60 seconds and showcases a mixture of both frontal and side facial
expressions.

Ground Truth Ours Ground Truth Ours

Fig. 11. Long Hair and Beards. We train our method on the dataset of a
man with a beard and a woman with long hair.
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Fig. 10. In qualitative comparisons, MonoGaussianAvatar demonstrates superior performance in producing photo-realistic and detailed appearances compared
to state-of-the-art methods.

Ground Truth Complete Video (120s) Clip 1 (30s) Clip 2 (60s)

Fig. 12. Duration and Expression Diversity.We train our method on the
same dataset with different duration.

A.5 User Study
To enhance the quantification of the quality of our method, we con-
duct a user study concentrating on two metrics: expression accuracy
and video rendering quality, comparing with state-of-the-art (SOTA)
methods.We randomly sample 10 video clips from 5 cases (2 subjects
from IMavatar [Zheng et al. 2022], 1 subject from NeRFace [Gafni
et al. 2021], and 2 subjects captured by us) mentioned in Sec. 4. In
our user study, 15 participants are enlisted to evaluate each video,
focusing on two aspects: "visual quality" and "expression accuracy."
Notably, we provide the participants with ground truth data as a
reference for their assessments. The results, as depicted in Table 3,
underscore our approach’s superiority, as it attained the highest
ratings for both visual quality and expression accuracy.
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Method Visual Quality ↑ Expression Accuracy ↑
Nerface[Gafni et al. 2021] 12.67 23.33
IMavatar[Zheng et al. 2022] 0 0
PointAvatar[Zheng et al. 2023a] 8.67 8.00
Ours 78.67 68.67

Table 3. User study. The table exhibits the percentage of participant eval-
uations for each method concerning both visual quality and expression
accuracy.
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0 min 14 mins 1.25 hours 6.5 hours

Fig. 13. Qualitative comparison of training stages.We document the
convergence process of our MonoGaussianAvatar. In comparison with the
implicit-basedmethod detailed in Table 4, our approach exhibits significantly
faster convergence.

Method Training time (hour) Runtime(s)
Nerface[Gafni et al. 2021] 48h 2s
IMavatar[Zheng et al. 2022] 54h 38s
PointAvatar[Zheng et al. 2023a] 11h 0.05s
Ours 9h 0.03s

Table 4. Training time and Runtime (per image).We provide compre-
hensive insights into the training time and animation runtime of both our
method and state-of-the-art (SOTA) methods. Notably, our approach attains
superior efficiency in both training and animation compared to the existing
state-of-the-art methods.

A.6 Training and Animation Efficiency
As illustrated in Table 4, we present a comprehensive comparison
of training time and runtime of animation per image for the same
case, underscoring the notable efficiency of our method in both
training and animation processes. Moreover, we depict the training
convergence process of our method in Fig. 13, illustrating its efficient
training performance in two distinct cases.

B IMPLEMENTATION DETAILS
In this section, we provide implementation details on the strategy
of point insertion and deletion, network architecture, and training
details. Furthermore, our code will be made available for research
purposes. It is pertinent to note that we implemented our approach
in PyTorch utilizing an NVIDIA GTX 3090.
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Fig. 14. The initialized MLP. In the initialized MLP, each linear layer is
succeeded by weight normalization, and the activation function utilized is
the Softplus, with the exception of the final layer.

B.1 Point Insertion and Deletion
We elaborate on the detailed process of point insertion and deletion,
elucidating the settings for rendering radius and sampling radius.

We randomly initialize 400 points on a sphere. During the initial
40 epochs, we employ a two-fold strategy: pruning points with
opacity below 0.1 and upsampling the points to a predetermined
quantity (specified as 400, 800, 1600, 3200, 6400, 10000, 20000, 40000;
the designated quantity is updated every 5 epochs). Notably, we
utilize existing points as centers and sample additional points on
the sphere, ensuring that the sampling radius equals the radius
of the sphere during the upsampling process. Simultaneously, the
radius for both sampling and rendering is systematically reduced
by a factor of 𝜆𝑓 = 0.75 every 5 epochs. Over the subsequent 20
epochs, we configure the designated point quantity to be 80000 and
100000, with an update occurring every 10 epochs. Additionally,
the reduction in epochs for both sampling and rendering is set at
10. During the final stage of training, we consistently upsample
points and maintain the point number (100000) after pruning points
each epoch. In the 61-100 epoch stage, both the sampling radius and
rendering radius undergo a reduction by the same factor every 5
epochs. Beyond the 100th epoch, the sampling radius is maintained
at a constant value of 0.004. In our rendering process, we integrate
the scales of our Gaussian points with the rendering radius.

B.2 Network Architecture
We show the architecture of the initialized MLP in Fig. 14 and the de-
formation MLPs in Fig. 15. The initialized MLP, discussed in Sec. 3.1,
serves as a Gaussian parameter prediction network. Given the mean
position 𝑥𝑐 , it outputs the rotation 𝑟𝑐 , scale 𝑠𝑐 , opacity 𝑜𝑐 , and color
𝑐𝑐 in the initialized space. The left segment of the deformation MLPs,
introduced in both Sec.3.1 and Sec.3.2, delineates the motion process
from the initialized space to the canonical space and ultimately to
the deformed space, in terms of the mean position. Conversely, The
right segment of deformation MLPs, detailed in Sec. 3.2, facilitates
the deformation of the remaining Gaussian parameters from the
initialized space to the deformed space.
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Fig. 15. The Deformation MLPs In the left segment of the deformation
MLP, each linear layer is succeeded by weight normalization, and the acti-
vation function utilized is the Softplus, with the exception of the final layer.
Conversely, in the right segment of the deformation MLP, each linear layer
is succeeded by weight normalization, and the ReLU function serves as the
activation function, except for the final layer.

B.3 Training Details
We show the lossweights as follows: we choose 𝜆RGB = 1, 𝜆D−SSIM =

0.25, 𝜆flame = 1, and 𝜆vgg = 0.1 for all of our experiments. For the
flame loss, we set 𝜆e = 1000, 𝜆p = 1000, 𝜆w = 1. The training pro-
cess is optimized using the Adam optimizer with a learning rate of
𝑙𝑟 = 1𝑒−4 and 𝛽 = (0.9, 0.999). Additionally, we implement a learn-
ing rate decay at the 80th and 100th epoch, employing a decay factor
of 0.5. Moreover, we implement a decay of flame regularization at
the 20th, 30th, 50th, and 70th epoch, employing a decay factor of
0.5.

B.4 Evaluation Details
Consistent with the approach employed in NHA [Grassal et al. 2022],
we undertake fine-tuning of pre-tracked FLMAE [Li et al. 2017]
expression and pose parameters both in the training and evaluation
phases. The detailed loss weights during training are outlined in
Sec. B.3 of the Supp. Mat. In the evaluation process, we exclusively
employ the RGB loss.

B.5 Data Preprocessing
We adhere to the identical data preprocessing pipeline as employed
in PointAvatar [Zheng et al. 2023a], which is derived from IMa-
vatar [Zheng et al. 2022]. Additionally, we employ consistent camera
and FLAME parameters across all methods. This ensures a fair com-
parison of head avatar methods, eliminating variations introduced
by different face-tracking schemes during data preprocessing.
For the three human subjects captured by us, the initial prepro-

cessing involves cropping the images to a square shape and resizing
them to dimensions of both 512×512 and 1024×1024. Subsequently,
we apply the data preprocessing pipeline mentioned above to further
process the images

B.6 Ethics
We conducted experiments by capturing images of three human
subjects using smartphones and additionally utilized data from three
human subjects obtained from other datasets. For the 3 subjects
captured by us, written consent was obtained from all subjects for
the use of the captured images in this project. The data will be made
publicly available for research purposes.
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