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Abstract

Previously, it was shown in a paper by Kaldewaij and Schoenmakers that for top-
down skew heaps the amortized number of comparisons required for meld and delmin is
upper bounded by logφ n, where n is the total size of the inputs to these operations and
φ = (

√
5+1)/2 denotes the golden ratio. In this paper we present worst-case sequences of

operations on top-down skew heaps in which each application of meld and delmin requires
approximately logφ n comparisons. As the remaining heap operations require no compar-
isons, it then follows that the set of bounds is tight. The result relies on a particular
class of self-recreating binary trees, which is related to a sequence known as Hofstadter’s
G-sequence.

1 Introduction

Top-down skew heaps are probably the simplest implementation of mergeable priority queues
to date while still achieving good performance. As with other so-called self-adjusting data
structures the catch is that the performance is merely good in the amortized sense, but in
many applications this is perfectly acceptable. Figure 1 displays a purely functional version
of top-down skew heaps, which is based on the original version of Sleator and Tarjan, the
inventors of skew heaps [9]. Compared to the set of programs described in [9], however, we
use operation single instead of an insert operation (note that insertion of a into heap x can
be achieved as meld.(single.a).x).

The efficiency of skew heaps is entirely due to the particular way operation meld is de-
fined. Informally the effect of meld.x.y can be described by two steps. First, the rightmost
paths of trees x and y are merged, where the left subtrees of the nodes on the merge path
stick to their nodes. Second, the left and right subtrees are swapped for every node on the
merge path. Intuitively, the second step turns the potentially long merge path, which is a
rightmost path, into a leftmost path of the resulting heap. In actual implementations it is
worthwhile to program meld performing a single pass over the rightmost paths, while at the
same time building up the leftmost path (see [9]). As shown in [3], it is then possible to get
a simple implementation of mergeable priority queues that permits an interesting degree of
concurrency.

In [4, 8] the following upper bounds have been proven for the amortized costs of the
operations in terms of comparisons (each unfolding of meld.x.y requires one comparison if
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empty = 〈 〉
isempty.x = x = 〈 〉
single.a = 〈〈 〉, a, 〈 〉〉
min.〈t, a, u〉 = a
delmin.〈t, a, u〉 = meld.t.u

meld.〈 〉.y = y
meld.x.〈 〉 = x
meld.〈t, a, u〉.y = 〈meld.u.y, a, t〉, a ≤ min.y
meld.x.〈t, a, u〉 = 〈meld.x.u, a, t〉, a ≤ min.x

Figure 1: Purely functional top-down skew heaps, where 〈 〉 denotes the empty tree and
〈t, a, u〉 denotes a tree with left subtree t, root a, and right subtree u.

x and y are both nonempty). These bounds improve upon the original bounds of Sleator
and Tarjan [9] by more than a factor of two. As explained in [8, Chapter 5], these bounds
do only hold for functional programs that restrict the use of skew heaps to “linear usage”
as if operations delmin and meld were destructive (e.g., using both delmin.x and meld.x.y in
the same expression is not allowed). It is interesting to note that Okasaki has been able to
remove this restriction of linear usage for many purely-functional data structures by making
judicious use of lazy evaluation (see [6, 7]).

Theorem 1 (cf. [8, Lemma 9.2]) There exists a potential function such that the amortized
costs for top-down skew heaps satisfy (in terms of comparisons): empty, isempty.x, and min.x
cost 0, single.a costs at most 1, delmin.x costs at most logφ |x|, and meld.x.y costs at most
logφ(|x|+ |y|), where φ = (

√
5 + 1)/2 denotes the golden ratio.

Here, we have used |x| to denote the size of tree x, which is defined equal to one plus the
number of nodes of x. A recursive definition is given by: |〈 〉| = 1 and |〈t, a, u〉| = |t|+ |u|.

In this paper we will show that the above set of bounds is in fact tight. We do so by
presenting worst-case sequences of operations on top-down skew heaps in which the actual
cost of each operation matches the alloted amortized cost of Theorem 1. Clearly, meld forms
the central operation on skew heaps. In the next section we first consider a special version
of meld that operates on unlabelled binary trees. This special version takes maximal time
for a particular class of trees. In the subsequent section we then show that these cases
actually arise in applications of skew heaps, which implies that the bounds of Theorem 1
are tight. Our methods resemble the methods used to obtain lower bounds on the amortized
complexity of union-find data structures (see, e.g., [1, 11, 12]), in which finding a suitable
class of self-recreating (or, self-reproducing) trees also constitutes an important part of the
solution. Throughout the analysis we find it instrumental to use a functional notation.

2 Unlabelled case

We consider the following operation 1 on unlabelled binary trees, which is strongly related
to operation meld:
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〈 〉1 〈 〉 = 〈 〉
〈t, u〉1 y = 〈y1u, t〉.

As part of operation x1 y the rightmost paths of x and y are traversed in alternating order
starting with x. Note that for each application of x1 y we need that x 6= 〈 〉 if y 6= 〈 〉, which
is ensured if |x| ≥ |y|. This will be the case.

The goal of the analysis is to define a sequence of trees for which 1 is expensive, while
the resulting tree is again an element of the sequence. In light of Theorem 1 the cost of x1 y
(which is defined as the sum of the lengths of the rightmost paths of x and y) should be close
to logφ(|x|+ |y|). It will be no surprise that the Fibonacci sequence plays an important role
in our construction.

Define the Fibonacci sequence Fk, k ≥ 0, as usual by F0 = 0, F1 = 1, and Fk = Fk−1 +
Fk−2, k ≥ 2. Next define two related functions L(n) and R(n), n ≥ 0, as follows:1

L(0) = R(0) = 0
L(n) = Fk−1 + L(n− Fk)
R(n) = Fk−2 +R(n− Fk), n ≥ 1,

where k is uniquely determined by Fk ≤ n < Fk+1. Hence k ≥ 2. As an alternative
characterisation of L and R we will often use the next two lemmas.

Lemma 1 L(Fk + a) = Fk−1 + L(a), for 0 ≤ a ≤ Fk−1 and k ≥ 1.

Lemma 2 R(Fk + a) = Fk−2 +R(a), for 0 ≤ a ≤ Fk−1 and k ≥ 2.

A few simple properties of L and R are given by the next lemma.

Lemma 3 L(n) + R(n) = n, L(n) ≥ R(n), L(n + 1) ≥ L(n), and R(n + 1) ≥ R(n), for
n ≥ 0.

Next we prove the three main lemmas we need.

Lemma 4 L(L(n− 1)) = R(n), for n ≥ 1.
Proof By induction on n. If n = 1 both sides are zero. For n ≥ 2, let k denote the unique
integer satisfying Fk < n ≤ Fk+1 (hence k ≥ 2). Then we have:

L(L(n− 1))
= { definition L }
L(Fk−1 + L(n− 1− Fk))

= { Lemma 1, using 0 ≤ L(n− 1− Fk) ≤ Fk−2 }
Fk−2 + L(L(n− 1− Fk))

= { induction hypothesis }
Fk−2 +R(n− Fk)

= { Lemma 2, using 0 ≤ n− Fk ≤ Fk−1 }
R(n).

1Through the on-line version of Sloane’s “Encyclopedia of Integer Sequences” [10], we found out that
we had rediscovered Hofstadter’s G-sequence [2, p.137], since function L(n) satisfies L(0) = 0 and L(n) =
n− L(L(n− 1)), n ≥ 1 (use Lemmas 3 and 4).
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2

Lemma 5 L(L(n)− 1) = R(n− 1), for n ≥ 1.
Proof By induction on n. If n = 1 both sides are zero. For n ≥ 2, let k denote the unique
integer satisfying Fk < n ≤ Fk+1 (hence k ≥ 2). Then we have:

L(L(n)− 1)
= { Lemma 1, using 1 ≤ n− Fk ≤ Fk−1 }
L(Fk−1 + L(n− Fk)− 1)

= { Lemma 1, using 0 ≤ L(n− Fk)− 1 ≤ Fk−2 }
Fk−2 + L(L(n− Fk)− 1)

= { induction hypothesis }
Fk−2 +R(n− Fk − 1)

= { definition R }
R(n− 1).

2

Lemma 6 R(L(n)− 1) = R(L(n− 1)), for n ≥ 1.
Proof For any n ≥ 1, we have:

R(L(n)− 1)−R(L(n− 1))
= { Lemma 3 (twice) }
L(n)− 1− L(L(n)− 1)− L(n− 1) + L(L(n− 1))

= { Lemmas 5, 4, resp. }
L(n)− 1−R(n− 1)− L(n− 1) +R(n)

= { Lemma 3 (twice) }
0 .

2

Given functions L and R we now define a sequence of unlabelled binary trees Gn, n ≥ 0,
as follows:

G0 = 〈 〉
Gn = 〈GL(n−1), GR(n−1)〉, n ≥ 1.

We dub these trees “golden trees” because the ratio of the sizes of the left subtrees to the
right subtrees approaches the golden ratio φ (since L(n)/R(n) approaches φ). The golden
trees can be seen as a supersequence of the Fibonacci trees [5, p.414] in the sense that a
golden tree Gn corresponds to the Fibonacci tree of order k whenever n = Fk+1 − 1, k ≥ 0.
See Figure 2, trees G0, G1, G2, G4, G7, and G12 correspond to Fibonacci trees.

The main lemma for golden trees is stated below. It says that if two golden trees of
appropriate sizes are melded, then the result is a golden tree as well. In particular, if the left
and right subtrees of the root of a golden tree Gn are melded, then the result is a Gn−1 tree.
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Figure 2: Gn trees for n = 0, . . . , 13.

Lemma 7 GL(n) 1GR(n) = Gn, n ≥ 0.
Proof By induction on n. Clearly true for n = 0. For n ≥ 1, we note:

GL(n) 1GR(n)

= { definition G }
〈GL(L(n)−1), GR(L(n)−1)〉1GR(n)

= { definition 1 }
〈GR(n) 1GR(L(n)−1), GL(L(n)−1)〉

= { Lemmas 4, 6, and 5, resp. }
〈GL(L(n−1)) 1GR(L(n−1)), GR(n−1)〉

= { induction hypothesis, using L(n− 1) < n }
〈GL(n−1), GR(n−1)〉

= { definition G }
Gn.

2

The cost of computing Gn from GL(n) and GR(n) can now be related to the size of Gn.
Clearly, we have |Gn| = n + 1. As defined before, the cost of x1 y is equal to the sum of
the lengths of the rightmost paths of x and y. Alternatively, the cost of x1 y is equal to the
length of the leftmost path of x1 y (see, for example, Figure 3). Using ||x|| to denote the
length of the leftmost path of x, formally defined by ||〈 〉|| = 0 and ||〈t, u〉|| = ||t||+ 1, we then
have the following lemmas.

Lemma 8 L(Fk − 2) = Fk−1 − 1 and L(Fk+1 − 3) = Fk − 2 , for k ≥ 3.
Proof (Only first part, second part is similar.) By induction on k. If k = 3 both sides are
zero, and if k = 4 both sides are one. For k ≥ 5, we have:

L(Fk − 2)
= { definition F }
L(Fk−1 + Fk−2 − 2)
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Figure 3: Operation G8 1G5 viewed as first merging the rightmost paths and then swapping
the subtrees of all nodes on the rightmost path, resulting in G13.

= { Lemma 1, using Fk−2 ≥ 2 }
Fk−2 + L(Fk−2 − 2)

= { induction hypothesis }
Fk−2 + Fk−3 − 1

= { definition F }
Fk−1 − 1.

2

Lemma 9 ||Gn|| = k−2, for n ≥ 0, where k is the unique integer satisfying Fk ≤ |Gn| < Fk+1.
Proof By induction on n. Clearly true for n = 0 (and k = 2). For n ≥ 1 (hence k ≥ 3), we
note that ||Gn|| = ||GL(n−1)||+1. From the induction hypothesis we get that ||GL(n−1)|| = k−3,
so the result follows provided Fk−1 ≤ L(n − 1) + 1 < Fk is implied by Fk ≤ n + 1 < Fk+1.
For the lower bound we note that Fk − 2 ≤ n − 1 implies that Fk−1 − 1 ≤ L(n − 1), using
Lemma 8. For the upper bound we note that n−1 ≤ Fk+1−3 implies that L(n−1) ≤ Fk−2,
again using Lemma 8. 2

This leads to the following conclusion. Let Fk ≤ n+ 1 < Fk+1 and consider the computation
of the meld of GL(n) and GR(n). On account of Lemma 9 the actual cost of this operation
is ||Gn|| = k − 2. The upper bound (Theorem 1) for the amortized cost of this operation
is logφ |Gn| = logφ(n+ 1), which is bounded by approximately k − 0.67, using that Fk+1 ≈
φk+1/

√
5. So, the actual cost differs at most a small constant from the alloted amortized cost

for such a meld operation.

3 Labelled case

The central properties achieved in the previous section are the facts that tree Gn can be
written both as Gn = GL(n) 1GR(n) and as Gn = 〈GL(n−1), GR(n−1)〉, n ≥ 1, and that ||Gn|| is
approximately equal to logφ n. In this section we use these results to construct a worst-case
sequence of skew heap operations. The plan is to consider a particular sorting program and
to see to it that each meld and delmin takes maximal time.

sort.N = h.(g.N)
g.0 = empty
g.1 = single.some
g.n = meld.(g.L(n)).(g.R(n)), n ≥ 2
h.x = [ ], isempty.x
h.x = min.x`h.(delmin.x), ¬isempty.x
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Function g first builds a skew heap, where the elements for the singleton heaps are chosen
appropriately. We will show that it is possible to choose each singleton element such that each
g.n heap is a Gn-tree, and moreover such that each tree to which h is applied, is a Gn-tree
as well. It then follows from the results for the unlabelled case that the applications of meld
and delmin all take maximal time.

For this to hold it suffices to show the existence of a labelling for which each application of
meld and delmin simulates the behaviour of 1 . The next lemma captures the essence, where
we limit ourselves to labellings without duplicates.

Lemma 10 Consider any labelled Gn-heap x, n ≥ 0. Then there exist a labelled GL(n)-heap
t and a labelled GR(n)-heap u such that meld.t.u = x.
Proof On account of Lemma 7, we know that Gn = GL(n) 1GR(n). This defines a one-to-
one mapping between the nodes of Gn on the one hand and the nodes of GL(n) and GR(n) on
the other hand. If we now copy the labels of x to trees t and u according to this mapping,
we know that both t and u are heaps, and that indeed meld.t.u = x provided that the labels
of the rightmost paths of t and u alternate, starting with t. This is indeed true because the
leftmost path of x forms an increasing list. 2

We work backwards to show that the labels in the program sort (in single.some) can be picked
such that each application of delmin and meld simulates 1 . First consider a labelled version
of the Gn trees, such that delmin.Gn = Gn−1 and min.Gn = −n. The sequence is defined
inductively by G0 = 〈 〉 and Gn = 〈t,−n, u〉, n ≥ 1, where t is a labelled GL(n−1) tree and
u is a labelled GR(n−1) tree such that meld.t.u = Gn−1. The existence of these labelled trees
is guaranteed by Lemma 10. This fixes all the trees to which h is applied, hence tree g.N
as well. On account of Lemma 10 it follows that there exist labelled versions of g.L(N) and
g.R(N) for which meld yields g.N . Repeating this argument it then follows that a (unique)
assigment of the inputs to single exists that satisfies our requirements. As the argument holds
for any N , N ≥ 0, we have proved that:

Theorem 2 There exist sequences of operations on top-down skew heaps such that the heaps
may get arbitrarily large and for which the actual costs satisfy (in terms of comparisons):
empty, isempty.x, min.x, and single.a cost 0, delmin.x costs at least logφ |x| − c, and meld.x.y

costs at least logφ(|x|+ |y|) − c, where φ = (
√

5 + 1)/2 denotes the golden ratio and c is a
small constant, c < 2.

4 Concluding remarks

As defined in Figure 1 operation meld.x.y terminates as soon as the end of the rightmost path
of either x or y is reached. It is also possible to define meld such that melding continues until
both rightmost paths are completely traversed. The same bounds apply to this version of
meld. (Actually, this version was analyzed in [4], and in [8] it was shown that the same upper
bounds hold for both versions.)

It would be interesting to extend our results to bottom-up skew heaps as well. In [8] several
sets of amortized bounds have been derived. Just as for top-down skew heaps, operations
empty, isempty, single, and min all take O(1) time. One set of bounds [8, Lemma 9.10] says
that it is possible to amortize the costs (counting comparisons) such that the amortized costs
are at most 3 for meld and at most 1 + 2log2 |x| for delmin.x. This improves upon the original
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bounds by Sleator and Tarjan of [9] by a factor of two. A new parameterized set of bounds
that is incomparable with previous bounds [8, Lemma 9.12] says that the amortized costs can
be chosen at most 1 + εlogβ(|x|+ |y|) for meld.x.y and at most 1 + (ε+ 2)logβ |x| for delmin.x,

where β = (ε+1)ε+1

εε , for any ε > 0.

Picking ε = φ in the latter case yields as upper bounds φ
φ+2 logφ(|x|+ |y|) for meld.x.y and

logφ |x| for delmin.x. Since we now know that the bounds of Theorem 1 are tight, it follows
that bottom-up skew heaps outperform top-down skew heaps, as the bound for meld is better.
It is an interesting open problem whether the bounds for bottom-up skew heaps are tight as
well.
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