
ELECTRONIC COMPUTATION OF SQUARED RECTANGLES

ELECTRONIC COMPUTATION OF

SQUARED RECTANGLES

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN

DOCTOR IN DE TECHNISCHE WETENSCHAP

AAN DE TECHNISCHE HOGESCHOOL TE EIND­

HOVEN, OP GEZAG VAN DE RECTOR MAGNIFI­

CUS Dr K. POSTHUMUS, HOOGLERAAR IN DE

AFDELING DER SCHEIKUNDIGETECHNOLOGIE,

VOOR EEN COMMISSIE UIT DE SENAAT TE VER­

DEDIGEN OP VRIJDAG, 29 JUNI 1962, DES NA-

MIDDAGS TE 4 UUR

DOOR

ADRIANUS JOHANNES WILHELMUS DUIJVESTIJN
ELECTROTECHNISCH INGENIEUR

GEBOREN TE 's-GRAVENHAGE

DIT PROEFSCHRIFT IS GOEDGEKEURD DOOR DE PROMOTOR
PROF. DR C. J. BOUWKAMP

-1-

Summary

This thesis considers problems that arise when the calculation of squared
rectangles is automatized on an electronic computer. After the introduc­
tory chap. I, it is indicated in chap. 2 how a so-called c-net is coded such
that it can be processed by the computer. In particular, properties of the
net in connection with its planarity are easy to recognize using this code.
It is shown how, from the code of the original net, the code of the dual
net can be obtained. Also described is how the branches and the vertex­
vertex incidence matrix of the net can be found from the code of the
net. In chap. 3, a set of codes EN+l representing c-nets of order N+ I
is generated from the set of codes TN of all different c-nets of order N,
by addition of a wire in the latter c-nets or their duals. The set EN+l

may contain codes representing one and the same net or its dual. There­
fore a method is described how to each net a number can be assigned that
characterizes the net uniquely. Sorting with respect to this characteristic
number gives the set of codes TN+l of all different c-nets of order N + 1.
Additional information as to whether the net is selfdual or not is provid­
ed, and the number of its symmetry axes is calculated. In chaps 4 and 5
all squared rectangles obtainable from one given c-net are computed. It
is also determined whether the squared rectangle is perfect or imperfect
and, in the latter case, whether the imperfection is trivial or not. Finally,
chap. 6 shows a few typical results. In particular, we mention some typical
output of the computer PASCAL and a list of squared squares of orders
up to and including nineteen.

Resume

Cette these examine les problemes qui se posent lorsque Ie calcul des
rectangles divises en carres est automatise sur une calculatrice electroni­
que. Apres un chapitre I en guise d'introduction, Ie chapitre 2 montre
comment un graphe complet est codifie de maniere Ii pouvoir etre traite
par la calculatrice. Les proprietes du graphe par rapport Ii la question
de savoir s'il est planaire sont particulierement aisees Ii identifier en
utilisant ce code. nest montre comment, Ii partir du code etabli pour Ie
graphe original, on peut obtenir Ie code pour son dual. On y voit aussi
comment, Ii partir du code du graphe, on peut trouver la matrice d'inci­
dence aux sommets et les arretes du graphe. Au chapitre 3, un ensemble
de codes EN+l, representant des graphes complets d'ordre N+I, est
issu de l'ensemble des codes TN de tous les differents graphes complets
d'ordre N, en ajoutant une arete dans ces derniers graphes ou leurs duals.
L'ensemble EN+l peut contenir des codes representant un seul et meme
graphe ou son dual. Pour cette raison, une methode est decrite et montre
comment un nombre peut etre assigne pour chaque graphe complet, ce
nombre caracterisant uniquement Ie graphe. Un classement effectue en
tenant compte de ce nombre caracteristique donne I'ensemble des codes
TN+l de tous les differents graphes complets d'ordre N+ 1. Des informa­
tions supplementaires quant Ii savoir si Ie graphe et son dual sont
identiques ou non, sont fournies et Ie nombre de ses axes de symetrie
y est calcule. Aux chapitres 4 et 5, tous les rectangles divises en carres
pouvant etre obtenus Ii partir d'un graphe donne sont calcules, de meme
que leurs codes Bouwkamp tels qu'ils seront imprimes par la calculatrice.
n y est aussi etabli si la dissection est parfaite ou non, et dans ce dernier
cas, si l'imperfection est triviale ou non. Enfin Ie chapitre 6 expose
quelques resultats caracteristiques. Nous mentionnons particulierement
quelques reponses typiques donnees par la calculatrice PASCAL, ainsi
qu'une liste des carres divises en carres pour des valeurs jusqu'li et y
compris dix-neuf.

Zusammenfassung

Diese Arbeit behandelt die bei der elektronischen Rechenmaschine bei
der Automatisierung der Berechnung der in Quadrate unterteilten Recht­
ecke auftretenden Probleme. Nach der Einleitung in Kapitel I zeigt
Kapitel 2 die Verschltisselung eines sogenannten c-Netzes fUr die Ver-

-2-

arbeitung in einer Rechenmaschine. Durch diese Verschltissung lassen
sich besonders leicht die Eigenschaften des Netzes, was seine Ebenheit
betrifft, erkennen. Dann wird die Gewinnung der Verschliisselung des
Dualnetzes aus der Verschltissung des Originalnetzes gezeigt. Auch wird
beschrieben, wie sich die Knoten-Knoten Inzidenz Matrix und die
Zweige des Netzes aus der Verschliisselung des Netzes finden HiBt. In
Kapitel 3 wird eine Menge EN+l von Verschltisselungen, die c-Netze
der (N+l)-ten Ordnung darstellen, aus der Menge TN der Verschliisse­
lungen aller verschiedenen c-Netze N-ter Ordnung durch HinzufUgung
eines Drahtes in den c-Netzen oder ihren Dualen gewonnen. Die Menge
EN+l kann Verschliissungen enthaIten, die ein und dasselbe Netz oder
sein Dual darstellen. Es wird daher eine Methode angegeben, durch die
sich jedem Netz eine Zahl zuordnen HiBt, die das Netz eindeutig kenn­
zeichnet. Das Sortieren nach dieser kennzeichnenden Zahl ftirht zur
Menge TN+l der Verschliisselungen aller verschiedenen c-Netze (N+l)­
ter Ordnung. Weiterhin wird angegeben, ob das Netz selbst-dual ist oder
nicht. Es wird auch die Zahl seiner Symmetrieachsen berechnet. 1m
4. und 5. Kapitel werden alle in Quadrate unterteiIten Rechtecke fUr ein
gegebenes c-Netz und ebenso ihre Bouwkamp-Verschliisselungen, wie
sie von der Rechenmaschine gedruckt werden, errechnet. Es wird auch
bestimmt, ob das in Quadrate unterteiIte Rechteck voIlkommen oder
unvoIlkommen ist. 1m letzteren Fall wird festgesteIlt, ob die UnvolI­
kommenheit trivial ist oder nicht. Kapitel 6 zeigt schlieBlich einige
typische Beispiele. 1m besonderen werden einige typische Ausgaben der
Rechenmaschine PASCAL und eine Liste der in Quadrate unterteilten
Quadrate bis zur neunzehnten Ordnung angeftihrt.

CHAPTER 1

INTRODUCTION

This thesis is concerned with the problem of dissecting a rectangle into a
finite number of non-overlapping squares. In particular, we study the problems
that arise when one wants to calculate these dissections by an electronic
computer.

The terminology of Brooks, Smith, Stone and Tutte 1) and Bouwkamp 2)
will be used. A dissection of a rectangle into a finite number N > I of non­
overlapping squares is called a squared rectangle or a squaring of order N.
The N squares are called the elements of the dissection. The term "elements"
is also used for the (lengths of the) sides of the elements.

Ifthe elements are all unequal, the squaring is called perfect and the rectangle
is called a perfect rectangle; otherwise the squaring or rectangle is imperfect.
Examples of perfect and imperfect squarings are given in figs I and 2; the
numbers inscribed denote the lengths of the sides of the corresponding squares.

A squared rectangle that contains a smaller squared rectangle in its interior
is called compound. All other squared rectangles are simple. Apparently, the
squarings given in figs I and 2 are simple. An example of a compound squaring
!s given in fig. 3.

1 •

5 4-

15

4 7 I 8

~~
10 I 9

18

14

6

Fig. 1.

4

3

5

6

1172
975

453 522
256

69

916 360 ~
80.1

591

~300 %I
160 180

Fig. 2. Fig. 3.

Fig. 1. Example of a perfect squaring of order 9.

Fig. 2. Example of an imperfect squaring of order 9.

Fig. 3. Example of a compound perfect squaring of order 17.

-4-

The squaring is called trivially imperfect if it contains equal elements that
touch each other along a common side.

In 1903 Dehn 3) initiated the study of a somewhat more general problem,
namely, that of the (non-trivial) dissection of a rectangle into a finite number
of non-overlapping smaller rectangles. He proved the following theorem: If
each sub-rectangle has commensurable sides, then so has the original rectangle
and, moreover, all the sides of the rectangle and the sub-rectangles are mutually
commensurable.

In particular, by taking the sub-rectangles to be squares, Dehn found as a
corollary: Any squared rectangle has commensurable sides and elements.

Dehn did not go beyond announcing (and proving) this theorem and its
corollary. It remained an open question whether a perfect squared rectangle
did exist at all. However, such a squared rectangle was given in 1925 by
Moron' 4), when he gave the example of fig. 1.

Considerable progress was made by Brooks, Smith, Stone and Tutte 1) in
1940. They succeeded in separating the topological part from the metrical part
of the problem. The topological part of the problem appeared to be related
to the theory of linear graphs, while the metrical part proved to be connected
to the theory of current flow in electrical networks. They also gave a short
table of low-order squared rectangles.

The relation of the squared rectangles with electrical networks was also
considered by Bouwkamp 2) who gave a more-physical approach to the problem.
In Bouwkamp's paper a table was given of all simple squared rectangles of
orders up to and including 13. For that purpose, Bouwkamp introduced a
concise and efficient code for the squared rectangle. He supposed the rectangle
to be drawn in such a manner that its larger side is horizontal. Further, the
element at the upper-left corner should not be smaller than the three remaining
corner elements. After this orientation of the rectangle, the upper-left corner
of each element is taken as its representative point. The length of the sides of
the elements for which the representative points lie in the same horizontal
segment are assembled within parentheses in the order from left to right, the
elements within parentheses being separated by commas. The parentheses read
in order from top to bottom of the rectangle. Collinear horizontal segments
are taken in order from left to right. This code will be called the Bouwkamp
code of the squaring. For example, the codes pertaining to the squarings
given in figs 1 and 2 are as follows:

(18,15)(7,8)(14,4)(10,1)(9) and (6,4,5)(3,1)(6)(5,1)(4).

Brooks, Smith, Stone and Tutte 1) proved that there are no perfect rectangles
of order less than 9. The minimum number of elements necessary to divide a
square simply is also known 2). It is a simple imperfect squared square of order
13. Its code reads as follows: (12,11)(1,3,7)(11,2)(5)(2,5)(4,1)(3). Other examples

-5-

of simple imperfect squares were found by Bouwkamp, Duijvestijn and Me­
dema 5). There are none of order 14; those of order 15 are:

(20,8,11)(5,3)(2,12)(7)(19,8)(5,7)(11,2)(9),
(20,19)(1,3,8,7)(19,2)(5)(2,5)(12,1)(3)(8),
(23,18)(7,11)(18,3,2)(1,5,3)(4)(2,1)(12)(11).

Simple squared squares of higher order are given in chap. 6.
Willcocks 3) has constructed a perfect squared square of order 24, with code

as follows:

(81,51,43)(8,35)(30,29)(2,33)(31)(39,14,20,38)(9,5)(4,1)(3,18)(16)(64)(56)(55).

However, this square is compound in that it is built up of one square and
two squared rectangles. At present it is not known whether 24 is the minimum
number of elements necessary to divide a square perfectly. As to perfect and
simple squares, the best result known sofar is also due to Willcocks 7),
who has found a simple perfect square of order 37, with code as follows:

(728,378,406,435)(350,28)(405,29)(464)(648,347,83)(184,206,98)(10,454)(108)
(162,22)(336)(245,102)(20,142)(122)(210,54)(56,189)(250,594)(571,133)(438,94)
(344).

The existing tables of low-order squarings have been useful for the construc­
tion of squarings of special type (cf. the 24-order squared square of Willcocks).
For that reason, Ellis 8) started to extend the tables of perfect squarings so as
to include those of order 14. These calculations were entirely done by hand,
that is, without the use of electronic calculating machinery. It is practically
impossible to continue in this way to orders 15 and higher. Further extension
can only be carried out with electronic computation.

In trying to solve the problem of generating squared rectangles automatically
with an electronic computer, one meets a number of new problems. Especially,
how can the computer deal with the topolocigal aspects of the problem?

In the present thesis it will be described how the necessary new networks can
be generated automatically. A characteristic of the network will be calculated,
by which it can be judged whether two networks are different or the same.
Furthermore, it will be described how the Bouwkamp codes of all dissections
arising from a given network can be obtained automatically; it is also possible
to let the computer indicate whether a squaring is perfect or imperfect, and in
the latter case whether the imperfection is trivial or not. The first results have
been published by Bouwkamp, Duijvestijn and Medema 5)9), where all simple
squarings of orders up to and including 15 were given.

In describing the programmes occurring in this paper we closely followed the
rules of the ALGOL-60 language 10). In the ALGOL programmes it is assumed
that non-local variables have been introduced previously, unless stated other-

-6-

wise. The programmes written in ALGOL were translated into PASCAL (Philips
automatic sequence calculator) code. With the aid of these programmes all
networks of orders up to and including 19 were generated on PASCAL. Further,
for all possible networks of orders up to and including 20, possible squared
squares following from these were determined; the Bouwkamp codes of these
squared squares were printed by PASCAL.

Some of the results will be given in chap. 6. For example, in contrast with
early expectation, there does not exist a simple perfect squared square of order
less than 20.

CHAPTER 2

PROBLEMS OF CODING

2.1. Introduction

The relation of squared rectangles to planar electrical networks will now be
considered. It was shown in papers already referred to 1)2) that each element
of the squared rectangle corresponds to a wire or branch, while each horizontal
line segment corresponds to a vertex, and each vertical line segment to a mesh
not containing other parts of the network in its interior. The vertices corre­
sponding to the upper and lower horizontal sides are the poles of the network.

The network constructed in this way is called the normal polar network or
normal p-net 1); see the example of fig. 4.

18

14-

15

Fig. 4. Example of a squaring and its associated normal p-net; 8 = pole of the net.

A planar network (with more than one vertex) that is connected is called a net.
If two vertices of the net are assigned as poles, and no circuit is enclosing the
poles, the net is called a polar net or a p-net.

A c-net is a net that has no parts (consisting of more than one wire, and less
than all but one wire) joined to the rest at less than three vertices. Joining the
poles of a normal p-net by a wire gives a c-net (c) if the squaring corresponding
to the normal p-net is simple.

Now before the normal p-net is constructed, the rectangle can be turned
through 90 degrees. Then joining the two poles by a wire again produces a c-net
(c'). The net c' is called the dual of the net c. Obviously, c is also the dual of c'.
Therefore, c and c' form a pair of dual c-nets.

Dual nets can be drawn in such a way that the vertices of either of them lie
inside the corresponding meshes of the other, while corresponding branches,
and only these, cross each other. Brooks, Smith, Stone and Tutte 1) proved
that the dual of a c-net is a c-net. Apparently, any simple squaring can be
obtained from an appropriate c-net.

To illustrate the various concepts, consider the c-net of fig. 5, obtained from
the normal polar net of fig. 4. For later purposes this c-net will be called the
reference net. The reference net and its dual (dashed lines) are drawn in fig. 6.

-8-

Fig. 5. The reference net.

First some notations will be introduced. The number of vertices of a net will
be denoted by K, that of its dual by K', while the number of meshes is denoted
by M and M' respectively. The number of wires is denoted by B. Henceforth B
is called the order of the net. Apparently one has M' = K, K' = M, while
according to the theorem of Euler the following relation holds:

K + M = K' + M' = B + 2.

Let N be a net with vertices VI, ... , VK, K ~ 2, and let INC[i,j] be a
matrix such that

INC [i,j] = 0, if Vi and Vj are not connected,
INC [i,j] = -1, if Vi and Vj are connected,
INC [i, i] = the number of wires at Vi.

--------- , , ,,,
\

\
\, \

;'-~-"", '-'-, \
" \----1,

I
/

/
/

/

/
/

-'

Fig. 6. The reference net and its dual.

~ (i 7'= j)

It was shown by Brooks, Smith, Stone and Tutte 1) that all first cofactors
of INC are the same, except for the sign. Their common absolute value is
called the complexity of the net; it is denoted by C. It can be shown that dual
nets have equal complexities; furthermore the complexity equals the number
of complete trees of the net 1).

Simple squarings can be obtained from a c-net by placing an electromotive
force of value C in one of the wires (all wires have unit resistance). The current
flow caused in the network is called the full flow, while the currents are called
the full currents. The highest common factor (HCF) of the full currents is

-9-

called the reduction factor, denoted by RF. If instead an electromotive force
of value Cj(HCF) is placed in the wire under consideration, one obtains the
reduced flow and the reduced currents.

The sides of the squaring obtained in this way are the full sides and reduced
sides respectively. The full horizontal side equals the current caused by an
electromotive force of value C in its own wire, while the full vertical side is
equal to the potential difference between the two ends. The reduced horizontal
and reduced vertical sides are obtained if instead an electromotive force of
value Cj(HCF) is applied.

A squared rectangle that contains a squared rectangle of lower order in its
interior and any corresponding p-net are called compound; all other squared
rectangles and p-nets are simple. If a p-net has a part not containing a pole
joined to the rest by only two wires, or if it has a pair of vertices joined by two
(or more) wires, then these wires will have equal currents. If these currents are
not zero, the resulting imperfection is said to be trivial.

2.2. Code of the c-net

Next we come to the question of how a general network can be stored into
an electronic computer. Obviously the vertex-vertex incidence matrix INC can
be used for this purpose; the network is determined uniquely by the matrix
INC, and vice versa.

However, it is quite difficult to find out whether the network is planar or not
if only the matrix INC is given. In addition, even if the network is known to
be planar, it is still difficult to draw the net without crossings from the knowl­
edge of INC alone.

In order to overcome these difficulties, a new code is introduced. It is assumed
that the planar network is drawn on the sphere. The vertices are numbered
arbitrarily from 1 to K.

The boundary of a mesh contains a set ofvertices. A code ofa mesh is obtained
as follows: While walking in the positive sense along the boundary of the mesh,
starting with· Vi, we encounter Vj, Vk, VI, ... , until we return to Vi. The
sequence Vi, Vj, Vk, ... , Vi is a code of the mesh.

Example:

A possible code of mesh I of the reference net is I 2 6 5 I, as can be seen
from fig. 7; but we can also take 2 6 5 I 2 , 6 5 1 2 6 or 5 I 2 6 5.

A code ofa net is the sequence of codes of all its meshes separated by zeros.
At the end two more zeros are added. Hence this code of the net can be consider­
ed as a vector V[t], t = 1, 2, ... , 2(B + M) + 1.

Example:

A code of the reference net is as follows:
1 2 6 5 I 0 2 3 6 2 0 3 5 6 3 0 3 4 5 3 0 I 5 4 1 0 1 4 3 2 I 0 O.

-10-

It should be noticed that a different code would have been obtained if the
vertices were enumerated in another way. Furthermore, the chosen codes of
the meshes may be permuted in the code considered. Any of the codes so
obtained is sufficient to characterize the net topologically.

ry
5~-------"'''''

6~__-------co'»3

2

Fig. 7. The reference net.

2.3. Determination of the branches of the c-net

A wire contains two vertices of the net. To each pair of vertices Vi and Vi
of a wire two arrows are associated. The first is directed from Vi to Vi and the
second from Vi to Vi. The wire with the arrow directed from Vi to Vi will be
called branch Vi Vi, the other is branch Vj Vi. A branch is therefore an oriented
wire; it contains two vertices, which are denoted by branch 1 and branch 2.
If only one of the two branches Vi Vj and Vj Vi is used to indicate the associated
wire, then the net has B branches.

Therefore the branch i is denoted by its two vertices, namely, branch 1[i]
and branch 2[i], with i = 1, 2, ... , B. In the same way the branches of the
dual net are denoted by branchdual 1[i] and branchdual 2[i]. It is further as­
sumed that the meshes are numbered from 1 to M in the same sequence as
their codes occur in the code of the net.

The branches of the net and its dual can be derived from the code V[t] of
the net by the following programme:
procedure form branches (V, branch 1, branch 2, branchdua1 1, branchdual 2,

K,M);
integer K, M;
integer array branch 1, branch 2, branchdual 1, branchdual 2, V;

begin integer m, t, tt, i;
t: = m: = 1; tt: = 0;

begin: for i: = 1 step 1 until tt do
begin

if V[t+l] = branch l[i] 1\ V[t] = branch 2[i]

-11-

(hen

begin
branchdual 2Ii]: = m; go to next

end
end i;

tt: = tt + I; branch I[tt]: = V[t]; branch 2[tt]: = V[t+I];
branchdual I [tt]: = m;

next: t: = t + I;
if V[t+l] = 0
then

begin
if V[t+2] = 0
then go to end;
m: = m + 1; t: = t + 2

end;
go to begin;

end: B: = tt; M: = m; K: = B + 2- M
end form branches

Example:

Applying the procedure form branches to the code of the reference net one
obtains a set of branches which are given below:

I
2
3
4
5
6
7
8
9

10

branch I [i] branch 2[i]
1 2
2 6
6 5
5 1
2 3
3 6
3 5
3 4
4 5
4 I

branchdual 1[i]
1
1
1
I
2
2
3
4
4
5

branchduaI2[i]
6
2
3
5
6
3
4
6
5
6

2.4. Dualization of the c-net

From the code V[t] of the net it is possible to obtain the code of the dual net.
To see this, it is first necessary to define the concept of adjacent vertex and
adjacent branch of a vertex. An adjacent vertex V2 of a vertex VI is a vertex
that is connected to VI. The branch VI V2 will be called an adjacent branch of VI.

A mesh is said to be left of a branch Vi Vj of its boundary, if the sequence Vi Vj
occurs in the code of the mesh. In that case the branch is said to be right of the

-12-

mesh. The mesh is said to be right of a branch Vi Vj if the sequence Vj Vi occurs
in the code of the mesh; if so the branch is left of the mesh.

Example:

In the reference net the mesh 1 is left of branch 12, but right of branch 21.

Now it is known that the vertices of the dual net are corresponding to the
meshes of the original net and that the meshes of the dual net are corresponding
to the vertices of the original net. Assuming again that the vertices are numbered
from 1 to K, while the meshes are numbered from 1 to M, according to the
occurrence of their codes in the code of the net, we choose the enumeration of
the meshes of the dual net equal to the enumeration of their corresponding
vertices of the original net. The same is done for the vertices of the dual net and
the meshes of the original net.

Next we consider an arbitrary vertex Yo. To this vertex Vo a set of left-cyclic­
ordered adjacent branches will be associated in the following way: Take an
arbitrary adjacent vertex VI of Vo; then search the left mesh £1 of Vo VI; then
search the other adjacent vertex V2 of Vo in £1; then search the left mesh £2

of Vo V2; and so on, until VI has been reached again.
The set Vo VI, Vo V2, ... , Vo Vk, where k ~ 3, will be called the left-cyclic­

ordered adjacent branches of Yo. If leji is replaced by right, then the right­
cyclic-ordered adjacent branches of Vo are obtained.

The sequence £1, £2, ... , £k, £1 is precisely a code of the mesh Vo of the
dual net.

If this procedure is carried out for all vertices of the net, the code of the dual
net is obtained. How it can be done in an automatic way is described by the
procedure dualize, as follows:
procedure dualize (branch 1, branch 2, branchdual 1, branchdual 2, K, V);

integer K;
integer array branch I, branch 2, branchdual 1, branchdual 2, V;

begin integer i, j, I, h, t, search, remember;
integer array vector 1, vector 2[1 :B];
t: = 0; i: = 1;

start: I: = 1;
for j: = 1 step 1 until B do

begin
if branch 1[j] = i
then

begin
vector 2[/]: = branchdual 1[j];
vector 1[/]: = branchdual 2[j]; I: = I -+

end;
if branch 2[j] = i

-13-

then
begin

vector 1[I]: c= branchdua1 1[j];
vector 2[/]: = branchdua1 2[j]; [: = [+ 1

end
end;

t: = t + 1; V[t]: = vector 1[1]; search: = remember: = vector 2[1];
begin: for h:· = 1 step 1 until [-1 do

begin
if vector 1[h] = search
then

begin
t: = t + 1; V[t]: = search; search: = vector 2[h];
if search = remember
then go to continue;
go to begin

end
end;

continue: t: = t + 1; V[t]: = 0; i: = i + 1; if i= K + 1
then go to end;

go to start;
end: t: = t + 1; V[t]: = 0
end dualize

Example:

The code of the dual of the reference net will become

6 1 5 6 0 1 6 2 1 0 2 6 4 3 2 0 4 6 5 4 0 1 3 4 5 1 0 1 2 3 1 0 O.

2.5. Determination of the vertex-vertex incidence matrix of the c-net

The vertex-vertex incidence matrix INC is easily determined from the
branches of the original net. It is described by the following programme:
begin integer i, j, k, m, 11;

for i: = 1 step 1 until K do
for j: = 1 step 1 until K do INC[i,j]: = 0;

for k: = 1 step 1 until B do
begin

m: = branch l[k]; 11: = branch 2[k];
INC[n,m]: = INC[m,n]: =-1;
INC[m, m]: = INC[m, m] + 1;
INC[I1, 11]: = INC[I1, n] + 1

end
end

-14-

2.6. Wheels
Finally, a set of special nets are worth mentioning, namely the so-called

wheels. A wheel is a c-net with an even number B of branches, with one vertex
PtB and B~1 vertices pa, where Pk means a vertex incident with k branches
(see fig. 8).

Fig. 8. The first few low-order wheels.

The code of a wheel having B branches is determined by the procedure wheel.
It is supposed that W has been declared as integer array variable.

procedure wheel (B); value B;
integer B;

begin integer MDP, t, I;
MDP:=B.-:-2 +l;t:=l;
for I: = 1 step 1 until MDP-2 do

begin
W[t]: = W[t+3]: = I; W[t+l]: = MDP; W[t+2]: = 1+1;
W[t+4]: = 0; t: = t + 5

end;
W[t]: = W[t+3]: = MDP-l; W[t+l]: = MDP; W[t+2]: = 1;
W[t+4]: = 0; t: = t + 5;
for I: = 1 step 1 until MDP-I do

begin
W[t]: = I; t: = t + 1

end;
W[t]: = 1; W[t+l]: = W[t+2]: = 0

end wheel

CHAPTER 3

IDENTIFICATION PROBLEM

3.1. Introduction

Consider the set SB of c-nets having B wires. Let s be an element of SB and
Sf its dual. Then, according to Tutte 11), we have the following theorem: If sis
not a wheel, then at least one of the nets s and Sf can be constructed from an
element a of SB-l by addition of a wire joining two vertices of a.

With the aid ofthis theorem, the set SB can be constructed from the set SB-l.
To this end, we start with the set TB-1 of the codes of the (B-l)-wire c-nets;
for each element of SB-l, we have one element of TB-l. Take one element of
the set TB-l; it represents a certain (B-l)-wire c-net. Add a wire in this c-net,
in so far as the result is a B-wire c-net, and construct a code representing the
latter c-net. If this procedure is carried out for all elements of TB-l and for all
possibilities of adding wires, a set };B of codes is obtained, of which each code
represents a B-wire c-net. Let s be an element of SB, then either s or its dual Sf

is represented by an element of };B.

In the set };B there may be many codes representing the same net. Now two
questions arise:
(1) How can the set };B be constructed in an automatic way on an electronic

computer?
(2) How (if };B is available) can equal nets represented by different codes be

identified, and how can this be done on a computer, so as to obtain the
set TB?

3.2. Generation of nets by means of their codes

Apparently, addition of a wire to a c-net s, by joining two of its vertices,
gives a non-planar network unless these two vertices belong (before joining)
to one and the same mesh of s.

Let the net s contain a mesh R of b wires (b > 3) and let VI V2 V3 ... Vb VI
be the code of R. Apparently a net s* is obtained if two vertices Vi and Vj,
not being adjacent vertices, are joined by a wire. This can be done in b(b-3)j2
different ways, and in any of these ways the mesh R is split into two smaller
meshes, Rl and R 2 •

For example, if VI is joined to V3 two new meshes having the following codes
are obtained: VI V2 V3 VI and V3 V4 '" Vb VI V3. The total number of
elements of these codes exceeds the number of elements in the code of mesh
R by 3. This is true if two arbitrary non-adjacent vertices of R are joined, for
any R of s. Hence the number of elements of the code of the new net s* exceeds
the number of elements of the code of the original net s by 4 (in the code of s*,
the codes of R l and R2 are separated by the element 0).

-16-

In the following programme it is described how, starting from a code re­
presenting a certain net, the codes of the new nets are obtained (addition of
a wire in the original net). If the original net is not selfdual, then the dual net
is constructed and the procedure repeated (addition of a wire in the dual net).

procedure generate nets (W); integer array W;
comment if the net from which the new nets are generated is selfdual,

it is assumed that a Boolean variable selfdual is true, othel
wise selfdual is false;

begin Boolean dualized;
dualized: = false; go to con 2;

con 1: if dualized V selfdual
then go to finished;
form branches (W, branch 1, branch 2, branchduall, branchdual2, K, M);
dualize (branch 1, branch 2, branchdual 1, branchdual 2, K, W);

dualized: = true;
con 2: begin integer i, ii, m, S, t, MM, p, q, a, b, I;

integer array sum [1 : M + 1], multiplicity [1 : M];
m: = t: = sum [1]: = i: = 1;

label: if W[t+2] = 0
then

begin
t: = t + 3; i: = i + 1; sum [i]: = t;
multiplicity [i-I]: = m; m: = 1; if W[t] = 0

then go to follow
end;

t: = t + 1; m: = m + 1; go to label;
follow: MM: = i- 1;

for ii: = 1 step 1 until MM do
begin

if multiplicity [ii] > 3
then

begin
q: = sum [ii] - 1;
for a: = 1 step 1 until sum [ii] - 1 do V[a]: = W[a];
for b: = sum [ii + 1] step 1untilsum[MM+l]do V[b+4]: = W[b];
for s: = 1 step 1 until multiplicity [ii] - 2 do

begin
for I: = S + 2 step 1 until if S = 1 then multiplicity [ii] - 1

else multiplicity [ii] do
begin

p:=q+l;

-17-

for m: = s step 1 until I do
begin

V[p]: = W[m+q];p: = p+l
end;

V[p]: = W[s+q];p: = p+l; V[p]: = 0; p: = p+l;
for m: = I step 1 until multiplicity [ii] do

begin
V[p]: W[m+q];p: = p+l

end;
for m: = 1 step 1 until s do

begin
V[p]: = W[m+q];p: = p+l

end;
V[p]: = W[/+q]; V[p+l]: =0;

comment at this point the net can be identified,
the procedure form TNSTAR will be explained
later; form TNSTAR;

end I
end s

end if
end ii

end block con 2; go to con 1;
finished:
end generate net

Example:

From the code of the reference net (which is selfdual) four new codes can be
generated. The new codes are denoted by Vk[t] (k= 1, 2, 3, 4), while that of the
reference net is denoted by Wet].

t = 1(1)37
Wet] = 1 2 6 5 I 0 2 3 6 2 0 3 6 5 3 0 3 4 5 3 0 1 5 4 1 0 1 4 3 2 1 0 0
VI!:t] = 1 2 6 1 0 6 5 1 6 0 2 3 6 2 0 3 6 5 3 0 3 4 5 3 0 1 5 4 1 0 1 4 3 2 1 0 0
~W=2652051250236203653034530154101432100

V3[t] = 1 2 6 5 1 0 2 3 6 2 0 3 6 5 3 0 3 4 5 3 0 1 5 4 1 0 1 4 3 1 0 3 2 1 3 0 0
V3[t] = 1 2 6 5 1 0 2 3 6 2 0 3 6 5 3 0 3 4 5 3 0 I 5 4 1 0 4 3 2 4 0 2 1 4 2 0 0

3.3. Identification problem

We now return to question (2) of sec. 3.1, which may be phrased somewhat
differently as follows: How can we find out whether or not two different codes
represent one and the same net? What is more, how can we uniquely charac­
terize the net if and when it is represented by one of its many possible codes?
This set of problems is henceforth referred to by the expression "identification

-18-

problem". To solve this identification problem is of course much more com­
plicated than the construction of the set of codes })B.

Two nets are equal if an enumeration of the vertices can be found such that
the vertex-vertex incidence matrices INC of the two nets are equal. In principle
it is possible to run through all K! permutations of the vertices of one net and
compare the corresponding incidence matrices with that of the other net.
However, such a procedure takes a long time, even on a fast computer.

It would be much better if from the code there could be found a characteristic
of the net determining the latter in a unique way. In a first attempt to find such
a characteristic, we tried several simple and obvious possibilities. However,
already at an early stage it became apparent that these characteristics did fail
to characterize the net uniquely.

The characteristics can be divided into two types: Type 1 of characteristic
is such that two nets having different characteristics are different. Type 2 of
characteristic is such that two nets having equal characteristics are equal.
Apparently a characteristic of both type 1 and type 2 determines the net uni­
quely.

3.4. Type-l characteristics

We will see in how far the identification problem can be solved ifuse is made
of a characteristic that is of type 1 and not of type 2. If the generation process
of sec. 3.2 is applied to the set TB-1 the set })B is obtained. The set })B has
many more elements than the set TB. That means, many nets corresponding to
codes in })B are equal. With the characteristic under consideration, nets having
different characteristics can be discriminated. However, nets having equal
characteristics need not be equal; that is, the remaining undiscriminated nets
represented by elements of })B have to be tested in a different way. This causes
much extra labour if the set })B is much larger than the set TB.

Some simple examples of characteristics of type 1 will be discussed now. The
first example is a vector A of which the elements A[k] denote the number of
vertices incident with k wires, k ~ 3. The reference net consists of 2 P4'S and
4 P3'S. Hence A[3] = 4 and A[4] = 2. A short notation is A = 3442•

Another example is the combination of the characteristic A of a net with A'
of its dual, (A, A'). For example, in the case of the reference net we have
(3442,3442).

That the characteristic (A,A') is not of type 2 can be seen from fig. 9, where
two different nets with the same characteristic (A,A') are shown.

A third and last example of characteristics of type 1 is due to Bouwkamp.
He considered a matrix D of which the elements D[k,j] denote the number of
wires that connect a vertexpk to a vertexpj. Apparently D is symmetric. Further­
more, D has the property that the sum of the elements to the right of the main
diagonal plus the trace equals the number of wires B ofthe net. For the reference

-19-

net and its dual the matrices D and D' are as follows:

The combination of the four characteristics A,A',D,D' will be denoted by
1= (A,A',D,D'). It is easy for the computer to determine I from the code of
the net, but I is by no means fully discriminating. For example, SI6 has 249
elements, except for duals, but there are in this case only 169 different charac­
teristics I (see also fig. 9).

Fig. 9. Example of two distinct c-nets with the same characteristic I.

3.5. Type-2 characteristics

A characteristic of type 2 can be used as a sieve. Nets having equal charac­
teristics can be omitted. Especially if the characteristic is selective not much
extra work has to be done. First the remaining nets having different charac­
teristics can be classified according to their complexity. Only nets having equal
complexities have to be investigated. Now the characteristic I of type 1 can be
applied. If this does not discriminate either, then at last the Bouwkamp codes
can be calculated; with the aid of these codes two nets can always be dis­
criminated.

3.6. A characteristic of both type 1 and type 2

Consider the vertex-vertex incidence matrix INC of the net as obtained from
the code of the latter. The off-diagonal elements of INC are either zero or minus
one. We replace the off-diagonal elements by their absolute values. Then an
element on the diagonal is the sum of the off-diagonal elements in the same
row (or column). The new matrix will be denoted by X, with elements Xij
(i,j = 1, 2, ... , K).

To X an integer G(X) will be associated. The binary notation of G(X) is
obtained by writing the elements of X to the right of the main diagonal in the
sequence XI2 XI3 ... XIK X23 X24 ... X2K ... XK-I,K so that its decimal value
is given by

K-l
G(X)= L

i~l

KL Xij 2,CK-i)CK-i-1HK-j.

j~i+l

-20-

G(X) is called the identification number of the net in relation to the code of
the net under consideration. If G(X) is known, X and INC are known, and vice
versa: From the identification number the upper triangle ofX can be constructed
while the lower triangle follows from the symmetry ofX; the diagonal elements
may be found from the sums of the off-diagonal elements in the same row.

Let now the matrix X be transformed by interchanging the kth row with the
lth row and at the same time the kth column with the lth column. This trans­
formation is nothing but a new enumeration of the vertices; such an enumeration
is called a permutation. For every permutation we have an X and the corre­
sponding G(X). Let GM be the maximum of G(X) on the group of permutations.
The number GM is independent of the particular choice of the code of the net.
Hence GM is a characteristic of both type 1 and type 2; it is called identification
magnitude.

A permutation (there may be more than one) for which G(X) is maximum on
the group of permutations ofX brings the matrix in the maximal form, say. The
matrix can be brought into this maximal form by running through all possible
permutations (there are K! of them) and by testing which permutation gives the
maximal G. If K is large this process is time consuming.

Instead of considering the full permutation group one can consider a sub­
group of the group of all permutations (by imposing enough requirements on X)
and maximize G(X) on this subgroup.

Let P be a permutation of the full permutation group of the net. To each P
there corresponds an identification number G(Xp). If G(XpI) = G(Xp2) = ...
= G(Xpi) we identify the elements PI, ... , Pi to an element h. These new
elements h form the set H.

If there exist PI and P2 such that G(XpI) = G(Xp2) it is possible to deform
the net topologically, after having fixed the enumeration (corresponding to the
permutation pI) to the vertices, such that the deformed net can be considered
as the non-deformed net with an enumeration corresponding to the permuta­
tion P2.

Next, let the set H* cH be such that if h*EH* the permutations corresponding
to h* are satisfying certain criteria CR I , CR2, ... , CRs• Then the identification
problem is solved if enough criteria can be found (i.e. s just so large) that the
set H* contains only one element. If H* contains more than one element the
identification number Gcan be maximized on H*, and the work involved may be
considerably less compared to the maximization on the full permutation group.

Another possibility to determine the maximum of G on a certain permutation
group H** is to construct certain paths through H**, of which it is known
that they lead to the maximal G on H** (steepest ascent).

3.7. Example of a type-2 characteristic

Instead of maximizing the identification number G one can maximize other

-21-

numbers defined on the permutation group. For example, the following
procedure was attempted. In a maximalization process tested on one of the
available computers the number G* was maximized where G* is defined by

It is assumed that the main diagonal elements of the matrix X are non-increasing
and remain so in the maximalization process. The transformation applied to X
was the interchange of two rows and the corresponding columns. The columnsj
and k (and the corresponding rows) were tried for interchange when X[i,j] = 0
and X[i,k] = 1, k > j, while the main diagonal elements remained non-in­
creasing. The process was stopped when no i, j and k could be found such that
G* increased when the columns j and k were interchanged. The reason why this
process works only as a sieve is that there are cases where more than two rows
and columns have to be interchanged simultaneously in order to increase G*.
The sieve works much better if the method is applied to both the original net
and its dual. This was tested on those codes of L'16 that are representing nets
for which K = M = 7 and it gave perfect discrimination. The method is still
unsatisfactory even when both the original and dual nets are "maximized"
because a special programme is necessary for identifying the nets as soon as
the identification numbers corresponding to the "maximum" permutation have
been calculated: one has also to remember which nets are dual. The method that
can be used is that of drawing chains in the set L'B. A chain can be drawn either
when two codes correspond to nets having equal identification numbers or
when it is known that the nets are dual. The process of drawing chains has been
carried out on a computer.

3.8. Weights and scores

With the method of "weights and scores" a sequence of importance of the
vertices of the net is calculated that does not depend on the particular code
representing the net. As soon as a sequence of importance (this is a permutation)
is known the identification number corresponding to that permutation is cal­
culated. This identification number is used to characterize the net.

To each vertex of the net a weight is assigned; all weights are assembled in
a vector: weight [i], i = 1(1)K. The weights can change during the process; the
process of weights and scores is ready when the weights of all vertices are
different.

The process starts with the weights of all vertices equal to 2. New weights
are assigned after "scores" have been calculated. The scores are given by a
vector: score [i], i = 1(1)K. Depending on the value of a Boolean variable:
fromdual, scores are calculated with the aid of the weights of the original or
the dual net. The scores are calculated by the following programme:

-22-

begin integer i;

Boolean fromdual;
integer array weight original, score [1 :K], weight dual [1 :M];

for i: = 1 step 1 until K do score [i]: = 0;
if I fromdual
then

for i: = 1 step I until B do
begin
score [branch 1 [i]]: = score [branch 1 [ill + weight original [branch 2 [i]];
score [branch 2[i]]: = score [branch 2 [ill + weight original [branch l [ill
end

else
for i: = I step I until B do
begin
score [branch l [i]]: ~= score [branch I [ill +weight dual [branchduaI2[i]];
score [branch 2[i]]: = score [branch 2[i]] +weight dual [branchduall [ill
end

end

Example:
For the reference net the start is as follows:

vertex i

I
2
3
4
5
6

weight [i]
2
2
2
2
2
2

When the scores are calculated (fromdual is false) one obtains

score [i]
I 6
2 6
3 8
4 6
5 8
6 6

With the aid of the score a new weight is calculated. One tries to discriminate
between vertices that have equal weights so far, by means of their scores. First,
all vertices of weight 2 are searched; those among them having the lowest score
get a new weight equal to 2. The vertices having the next lowest score get a new
weight twice as large, and so on. Then all vertices of (old) weight 4 are searched;

-23-

those among them having the lowest score get a new weight twice as large as the
last given weight, and so on, until all vertices have got new weights.

The maximum weight is remembered. Then again new scores are calculated.
The process is stopped if the maximum weight assigned equals 2K or if the
maximum weight has not been changed. In the latter case we shall say there is
"no gain". Consequently, in continuing the discussion of our example, the next
step for the reference net is

I
2
3
4
5

6
Maximum weight = 4.
Then

I
2
3
4
5
6

Maximum weight = 8.
Finally

1
2
3
4
5
6

weight [i]
2
2

4
2
4

2

weight [i]
2
2

8
4

8
4

weight [i]
2
2
8

4

8
4

score [i]
8
8

10

10

10
10

score [i]
14

14

18

18

18

18

Maximum weight = 8, hence there is no gain. The reason that the process
stops on no gain, if it is applied to the reference net, is that the reference net has
certain symmetry properties. Apparently in any permutation of the reference
net the vertices I and 2, 4 and 6, 3 and 5 can be interchanged without changing
the identification number corresponding to that permutation.

3.9. Procedure identify

Now the procedure identify will be described. When the branches of the ori­
ginal and dual nets have been found, this procedure calculates a sequence of

-24-

importance of the vertices. This sequence is given by a vector: location [i],
i = l(l)K. If, entering the procedure, fromdual is false, scores are calculated
with the aid of the original net alone. If fromdual is true, scores are calculated
the first time with the aid of the dual net, and later with the aid of the original
net. If, after coming back from the procedure, the Boolean variable nogain is
false, the identification process is ready; if nogain is true, the identification
process is not yet ready. The maximum weight assigned is indicated by the
procedure. It is assumed that weight original [K+ 1] is equal to zero. The
procedure identify is given by the following programme:

procedure identify (K, weight original, weight dual, location, maxweight, n,
branch 1, branch 2, branchdual 1, branchdual 2);

integer K, n, maxweight;
integer array weight original, weight dual, location, branch 1, branch 2, branch

dual 1, branchdual 2;
begin integer z, weightstorage, t, i, k, q, s, I, min;

Boolean ready;
integer array new location, score [1 :K];
nogain: = false;

start: z: = 1; weightstorage: = 1; t: = 1;
for i: = 1 step 1 until K do score [i]: = 0;
if fromdual
then

for i: = 1 step 1 until B do
begin

score [branch 1 [ill: = score [branch 1 [i]) + weight dual [branch
dual 2[ill ;
score [branch 2 [i]]: = score [branch 2 [ill + weight dual [branch
dual 1 [ill;
fromdual: = false

end
else

for i: = 1 step 1 until B do
begin
score [branch 1 [ill: = score [branch 1 [ill + weight original
[branch 2 [i]];
score [branch 2 [i]): = score [branch 2 [i]) + weight original
[branch 1 [i]];

end;
label 1: for i: = z step 1 until K do

begin
if weight original [location [ill #- weight original [location [i+1]]

-25-

then go to continue
end;

continue: if i > z

then
begin
for k: = z step I until i do weight original [location [k]]: = 0;
label 2: min: = M * 21' K; ready: = true;
for I: = z step I until i do .
begin
if score [location [I]] < min 1\ weight original [location [I]] = 0
then
begin
min: = score [location [/]]; ready: = false

end
end;

if ready
then go to continue i;
weightstorage: = 2 *weightstorage;
for n: = z step I until i do
begin
if score [location [n]] = min
then
begin
weight original [location [n]]: = weightstorage;
new location [t]: = location en]; t: = t + I

end
end n;

n: = i; go to label 2
end of then of i > z

else
begin
weightstorage: = 2 * weightstorage;
weight original [location [i]]: = weightstorage;
new location [t]: = location [i]; t: = t + I

end else;
continue i: z: = i + I; if z ;:;; K

then go to label I;
if weightstorage "* 2 l' K
then
begin
if weightstorage = maxweight
then

-26-

begin
nogain: = true; go to finish

end
else

begin
for s: = I step I until K do location [s]: = new location [s];
maxweight: = weightstorage; go to start

end else;
for s: = 1 step I until K do location [s]: = new location [s];

finish:
end identify

3.10. Procedure identification

In the case of no gain the procedure identify is applied to the dual net. Then
it is applied again to the original net, now calling the procedure with fromdual
is true. It may happen that after coming back from the procedure there is still
no gain. If the maximum weight is not increased, it is investigated whether the
dual net has been used with the aid of the original net (if so, then dual with
fromdual is true). If the maximum weight has been increased, but there is no
gain, the dual net is identified (application of the procedure identify) with
fromdual is true. When no further improvement can be made due to the sym­
metry, one of the vertices having equal weights (one with the maximum possible
weight) is chosen; its weight is increased by unity. Then the procedure identify
is called again for the original net, with fromdual is false. The number of choices

nogain identification­
number

initialize
weight dual.

location dual
dual with fromdual

:=.false

procedure identify
(dual net)

-27-

lX we.ight original =
~member max weight

original

identification
number

yes

max we~ght dual =
remember max weight dual

may be more than one; it determines the degree of symmetry of the net. If no­
gain is false the identification number corresponding to the permutation loca­
tion [i] of the vertices of the original net is calculated.

The calculation of this identification number is shown in the accompanying
flow chart. The associated programme is given by the procedure identification.

procedure identification (V, identificationnumber);
integer identificationnumber;
integer array V;

begin integer i,j, workstorage, maxweight original, maxweight dual, remember
maxweight original, remember maxweight dual, n original, n dual;

Boolean dual with fromdual, fromdual, nogain, I;

-28-

integer array weight original, location original [1 :K+ I], inverse location
[I :K], weight dual, location dual [l:M+1];

number of choices: .= 0;
for i: = I step I until K do

begin

weight original [i]: = 2; location original [i]: = i
end;

location original [K+ I]: = K + I; weight original [K+1]: = 0; from
dual: = false; maxweight original: = 2;
identify (K, weight original, weight dual, location original, maxweight
original, n original, branch 1, branch 2, branchdual 1, branchdual 2);
remember maxweight original: = maxweight original;
ifinogain
then go to form identificationnumber;
for i: ~= 1 step 1 until M do

begin
weight dual [i]: = 2; location dual [i]: = i

end;
location dual [M+I]: = M + I; weight dual [M + 1]:=0; fromdual
: = false; maxweight dual: ~= 2; dual with fromdual: = false;
identify (M, weight dual, weight original, location dual, maxweight dual,
n dual, branchdual I, branchdual 2, branch I, branch 2);
remember maxweight dual: = maxweight dual;

two: fromdual: = true;
three: identify (K, weight original, weight dual, location original, maxweight

original, n original, branch 1, branch 2, branchdual 1, branchdual 2);
ifinogain
then go to form identificationnumber;
if maxweight original = remember maxweight original
then

begin
if dual with fromdual
then

begin
five: weight original [location [n original]]: =

weight original [location [n original]] + 1;
number of choices: = number of choices + I; dual
with fromdual: = false; go to three

end; go to four
end;

remember maxweight original: = maxweight original;
four: fromdual: = true;

-29-

identify (M, weight dual, weight original, location dual, maxweight dual,
n dual, branchdual I, branchdual 2, branch 1, branch 2);

dual with fromdual : = true;
ifi nogain
then go to two;
if maxweight dual = remember maxweight dual
then go to five;
remember maxweight dual: = maxweight dual; go to two;

form identificationnumber:
for i: = I step 1 until K do inverse location [location original [i]]: = i;

identificationnumber: = 0;
for I: = 1 step I until B do

begin
i: = K + I - inverse location [branch I [I]];
j: = K + I - inverse location [branch 2 [I]];
if i > j
then

begin
workstorage: = i; i: = j;j: = workstorage

end;
identificationnumber: = identificationnumber +
2t«K t2+K+i*(i-2*K+I)-2*j)--:-2)

end
end identification

3.11. Input and output procedures

It is assumed that the procedure identification calculates an invariant of the
net. Let s again be an element of SN and s' its dual. Then the set SN* is built
up as follows: If the number K of vertices of s is smaller than the number M
of meshes, s is put in SN*. If K > M then s' is put in SN*. If K = M then of
the nets sand s' that with the smaller identification number is put in SN*.
If the net is selfdual s is put in SN*.

Each element of SN* is represented by one of its possible codes. This code is
called a representative of the element of SN*. The set of representatives of all
elements of SN* form the set TN*. Now taking one element of TN *, new nets
are generated with the aid of the procedure generate nets. As soon as a new net
is generated, the procedure form TNSTAR is called. In this procedure the
identification number is calculated using the procedure identify, while with the
aid of the procedure new net test it is determined whether this element of TN+1 *
was already found. The parameter H, which is integer, denotes the number of
new codes of TN+! * found so far.

In the procedure form TNSTAR the procedure WRITE is used which is

-30-

described below. It writes on magnetic tape the code of a new element of TN+l *,
the number of choices, an indication whether the net is selfdual or not, and an
indication whether the element is the last element of TN+l* or not. In this
procedure it is assumed that two new standard functions are added to the
ALGOL-60 language. The first one is the procedure write (E), where E is an
expression. This procedure writes an integer or real on magnetic tape. The
second procedure is the parameterless procedure read, which reads the next
number from magnetic tape. The format on tape determines whether the result
is integer or real.

The procedures form TNSTAR, WRITE and new net test are given below.

procedure WRITE (W, number of choices, selfdual); integer number ofchoices;
Boolean selfdual;
integer array W;

begin integer i; write (W[l]),
for i: = 2 step 1 until i do

begin
write (W[i]); if W[i-l] = 0 1\ W[i] = 0

then go to end
end;

end: write (number of choices);
if selfdual
then write (1)
else write (0)

end WRITE;

procedure new net test (V, storage); integer storage;
integer array V;

begin integer p;
own integer array id number [1:4 t (B-9)];
for p: = 1 step 1 until H do

begin
if storage = id number [p]
then go to end

end;
H: = H + 1; id number [H]: = storage; WRITE (V, number of choices,
selfdual);

end:
end new net test;
procedure form TNSTAR;
begin integer array U [1:2*(2*B-:-3+B)+2)];

form branches (V, branch 1, branch 2, branchduall, branchdua12, K, M);
ifK=M

-31-

then
begin

identification (V, identificationnumber);
storage: = identificationnumber;
dualize (branch 1, branch 2, branchdual 1, branchdual 2, K, U);
form branches (U, branch 1, branch 2, branchduall, branchdua12,
K,M);
identification (U, identificationnumber);
if identificationnumber < storage
then

begin
selfdual: false; new net test (U, identificationnumber)

end
else

begin
if identificationnumber > storage
then

begin
se1fdual: = false; new net test (V, storage)

end
else

begin
selfdual: = true; new net test (V, storage)

end
end

end
else

begin
ifK>M
then

begin
dualize (branch 1, branch 2, branchdual 1, branchdual 2,
K, U);
form branches (U, branch 1, branch 2, branchdual 1, branch
dual 2, K, M);
identification (U, identificationnumber);
selfdual: = false;
new test net (U, identificationnumber)

end
else

begin
identification (V, identificationnumber);
selfdual: = false; new net test (V, identificationnumber)

-32-

end
end

end form TNSTAR
With the aid of procedure READ the code of a net, the number of choices,

an indication whether the net is selfdual or not, and an indication whether the
net is the last net of TN* or not, are read from magnetic tape. The programme
is given below.

procedure READ (W, number of choices, selfdual, end of file);
integer end of file, number of choices;
Boolean selfdual;
integer array W;

begin integer i, j;
W[l]: = read;

for i: = I step 2 until i do
begin

W[i+l]: = read; W[i+2]: = read;
if W[i+l] = 0 1\ W[i+2] = 0
then go to end

end;
end: number of choices: = read;

j: = read; ifj = 0
then selfdual: = false
else selfdual: = true;

end of file: = read
end READ

3.12. Complete generation and identification programme

We start with the set 88* consisting of one element. This element is generated
by the procedure wheel (8). Its code is written on magnetic tape. From the set
8 8 * the set 89* is formed, and so on. Finally the complete programme is given
in programme 1. It is assumed that a procedure stop is added to the ALGOL
language. This procedure stops the machine.

CHAPTER 4

DETERMINATION OF NETWORK CURRENTS

4.1. Introduction

In chap. 2 it was mentioned that the rectangle dissections can be obtained
from the branch currents of a net after placing an electromotive force equal to
the complexity in one of the branches of the net. In a net having N branches
an electromotive force can be placed in N different ways, which will lead to
N dissections (possibly all different). The currents in the branches follow
uniquely from Kirchhoff's laws:
(1) The sum of the currents at any vertex is zero.
(2) In each electrical mesh, the sum of the electromotive forces is equal to

~IsRs, where Is and R s denote the branch currents and the branch resist­
ances respectively in the mesh under consideration.

4.2. The branch-mesh incidence matrix

It is clear that there are M-1 independent electrical meshes of the net. For
these electrical meshes a choice will be made from the M meshes of the net.
Apparently there are M possible choices. In an electrical mesh a current ifm],
m = l(1)M - I, will be assumed. The positive direction of a mesh current is
that of the positive sense of the mesh. The branch currents and mesh currents
are connected by the relation I = n. Here I is the vector of the branch currents
having the elements I[k], k = l(1)B, while i is the vector of the mesh currents
having the elements i[m], m = l(l)M - 1, and ris the branch-mesh incidence
matrix having B rows and M-1 columns. Furthermore we consider the vector E
with elements E[k], k = 1(1)B, denoting the electromotive force in branch 1[k],
branch 2[k] and the vector e with elements e[m], m = 1(1)M-1, denoting the
sum of the electromotive forces in mesh m. The vectors E and e are connected
12)13) by the relation e = T'E, where r' denotes the transpose of r. Now
writing Z for T'r, it can be shown 12)13) that e = Zi and 1= rZ-1 T'E,
where Z-l means the inverse of Z. The matrix Z has M-1 rows and columns.
Furthermore, Z is symmetric and non-singular.

From the definition it follows immediately that Z' = (r' r)' = r'r = Z.
Hence Z is symmetric. That the matrix is non-singular follows from the fact
that the branch currents are determined uniquely by the electromotive forces
and the resistances in the branches of the net and from the fact that the set of
mesh currents i[m], m = 1(1)M-1, is a maximal set of linearly independent
mesh currents.

Now another matrix which is denoted by y will be considered. It is obtained
as follows: Consider the mesh currents in the M meshes of the net and let these
currents form a vector j. Hence j has the elements j = j[m], m = l(I)M; one

-34-

of these elements is linearly dependent on the other elements. The matrix y is
defined by I = yj. Apparently r can be obtained from y by omitting a suitable
column in y. In fact M different T's can be obtained from y. Since only planar
networks will be considered, it is easy to see that in each row of the matrix y

two and only two elements are different from zero: in fact in a planar network
each branch occurs in exactly two meshes. The sum of these elements is zero.
The number of non-zero elements in a column is equal to the number of
branches in the mesh corresponding to that column.

Next the matrix ~ = y'y is formed. The matrix Z follows from ~ by omitting
one row and the corresponding column. Obviously the matrix ~ is singular.
The elements nr, s] of ?; are either zero or minus one for r =#"- s. This element
is obtained by multiplying the rth column of y by the sth column of y. Now r

and s are denoting meshes. If rand s have no branch in common this product
is zero. However if rand s are incident this product equals minus one. The
meshes rand s can only have one branch in common, and the positive directions
of the mesh currents is such that the mesh currents in the common branches
are opposite. The elements ni, i] are equal to the number of branches in
mesh i. Hence it is clear that?; is the vertex-vertex incidence matrix of the dual
net.

It was shown by Brooks, Smith, Stone and Tutte 1) that the absolute value
of all first cofactors of ?; are equal to the complexity C of the net. This also
implies that Z is non-singular.

4.3. Calculation of the currents

From the relation I = rZ-1 T'E one can obtain all possible dissections from
the net. Any particular dissection is obtained by placing an electromotive force
of value C in a particular branch of the net. In that case the vector E contains
only one non-zero element, and the resulting vector I hence is one column of
R = rZ-1 T' multiplied by the complexity. Therefore each column (or row)
of R determines the elements of a rectangle.

The inverse of Z is obtained by using Gaussian elimination and backsub­
stitution. It is described in programmeII and can be traced through the comments.

The matrix R can be obtained from ZINV = Z-l using the following pro­
gramme, where it is assumed that Rand ZINV are declared as integer array
variables; the bounds of the subscripts follow from R[1 :B, 1 :B] and ZINV
[1 :M, 1 :M].

begin integer i, r, s;
for i: = 1 step 1 until M do

begin
ZINV 0, M): = 0; ZINV (M, 0: = 0

end;

-35-

for r: = 1 step 1 until B do
begin

for s: = 1 step 1 until B do
R[r, s]: = ZINV [branchdua1 1[r], branchdua1 1[s]]

-ZINV [branchdual1[r], branchduaI2[s]]
-ZINV [branchduaI2[r], branchdua11[s]]
+ZINV [branchdua1 2[r], branchdual 2[s]]

end
end

When the branch currents are known the imperfection can be tested. It is
described in the following programme, where it is assumed that the variable
imperfection is Boolean.

begin integer i,j;
imperfection: = false;
for i: = 1 step 1 until B-1 do

for j: = i + 1 step 1 until B do
begin

if R[r, i] = R[r,j]
then imperfection: = true

end
end imperfection

Furthermore zero currents can be counted. It is assumed in the following
programme that the variable zero currents is declared as integer.

begin integer i;

zero currents: = 0;
for i: = 1 step 1 until B do

begin
if R[r, i] = 0
then zero currents: = zero currents + 1

end
end zero currents

Finally we describe the calculation of the reduction factor RF for row r of
R[r, s]. The programme that calculates RF uses the procedure HCF(x, y) which
determines the highest common factor of two integers x and y. The variable
RF is integer.

begin integer I, hcf;
procedure HCF(x,y); integer x,y;
begin integer RN1, RN2;

RN1: = x; hcf: = y;

-36-

algorithm: RN2: = RNl- hef*(RNI --:- hef);
if RN2 =I- 0
then

begin
RNl: = hef; hef: = RN2; go to algorithm

end;
hef: = abs(hef)

end HCF;
HCF(R[r, 1], R[r, r]);
for l: = 2 step 1 until B do HCF(R[r, l]), hef);
RF: = hef

end determination RF

CHAPTER 5

CONSTRUCTION OF BOUWKAMP CODES

5.1. Introduction

After having calculated the matrix R, it will be described in the sequel how
the Bouwkamp codes of all dissections belonging to R can be obtained. The
kth row or column of R is representing the currents in the branches of the
original net after an electromotive force of value C has been placed in branch:
branch l[k], branch 2[k].

5.2. The vector ordered current

Of all vertices VI, ... , VK of the original net the respective left-cyclic­
ordered adjacent branches are considered. Their currents are considered as
elements of a vector "ordered current". The sequence of the elements of ordered
current is as follows: The currents through the left-cyclic-ordered adjacent
branches of vertex I are put into ordered current first; the currents of the left­
cyclic-ordered adjacent branches of vertex 2 are put into ordered current next;
and so on. Apparently ordered current has 2B elements.

After a column of R has been calculated, it is necessary to know where, in
ordered current, a particular element of this column has to be stored positive,
and where, again in ordered current, it has to be stored negative. This informa­
tion is given by two vectors, namely, positive [k] and negative [k], k = I(I)B.
Hence the current in branch: branch 1[k], branch 2[k] is given by the element:
ordered current [positive [k]], while the current in branch: branch 2[k], branch
I[k] is given by the element: ordered current [negative [k]].

If an element of ordered current is given we also want to know to which
branch this current belongs. This information can be obtained from a vector:
from [k], k = I(l)2B. The current: ordered current [k] is flowing in branch:
branch I [from [k]], branch 2 [from [k]]. The following relation holds: k =

from [negative [k]] = from [positive [k]]. Finally we need to know for any
vertex Vi the smallest I such that the branch belonging to ordered current [I]
is an adjacent branch of Vi. Let this smallest I be h. The vector: address [k],
k = I(I)K, is defined by: address [k] = h.

In the next programme it is described how the vectors positive, negative,
from, and address can be obtained assuming that the vectors branch 1, branch 2,
branchdual 1 and branchdual 2 are given.

procedure left cyclic ordered adjacent vertices (branch 1, branch 2, branchduaII,
branchdual 2, positive, negative, address, from, K);

begin integer h, i,j, k, remember, meshsearch;
k: = 1; i: = I; address [0]: = 0; address [1]: = 1;

-38-

search first branch:
for j: = 1 step 1 until B do

begin
if branch 1[j] = i
then

begin
remember: = meshsearch: = branchduall[j]; from [k]: = j;
positive [j]: = k;
go to go on searching

end;
if branch 2 [j] = i

then
begin

remember: = meshsearch: = branchduaI2[j]; from [k]: = j;
negative [j]: = k;
go to go on searching

end
. endj;

go on searching:
k:=k+l;
for h: = 1 step 1 until B do

begin
if branch 1[h] = i /\ branchdual 2[h] = meshsearch
then

begin
if branchdual 1[h] = remember
then go to continue;
from [k]: = h; positive [h] = k; meshsearch: = branchdual
1[h];
go to go on searching

end;
if branch 2[h] = i /\ branchduall[h] = meshsearch
then

begin
if branchdual 2[h] = remember
then go to continue;
from [k]: = h; negative [h]: = k; meshsearch: = branchdual
2[h];
go to go on searching

end
end h;

continue:

-39-

i: = i + 1; address [i] : = k; if i i= K + 1
then go to search first branch

end left cyclic ordening adjacent vertices

Example:

After applying the procedure left cyclic ordening adjacent vertices to the
reference net we find:
i branch 1[i] branch 2[i] branchdual 1[i] branchdual 2[i] positive [i] negative [i]
11 2 1 6 1 4
2 2 6 1 2 6 18
3 6 5 1 3 20 14
4 5 1 1 5 17 2
52 3 2 6 5 7
6 3 6 2 3 10 19
7 3 5 3 4 9 15
8 3 4 4 6 8 11
9 4 5 4 5 13 16

10 4 1 5 6 12 3
from [i] address [i] from [i]

1 1 1 11 8
2 4 4 12 10
3 10 7 13 9
4 1 11 14 3
5 5 14 15 7
6 2 18 16 9
7 5 21 17 4
8 8 18 2
9 7 19 6

10 6 20 3
Next we calculate a vector: reduced ordered current. The elements of reduced

ordered current are equal to the corresponding elements of ordered current
divided by the reduction factor RF: reduced ordered current [k] = ordered
current [k] -:- RF. The following programme determines the vector: reduced
ordered current. It should be noted that, to simplify notation, the vector:
current [s] is identical with R[r, s] for fixed rand s = 1(1)B.
begin integer i;

for i: = 1 step 1 until B do
begin

reduced ordered current [positive [i]]: = current [i] -:- RF;
reduced ordered current [negative [i]]: = -CUlrent [i] -:- RF

end
end

-40-

reduced ordered current [i]
7

1

8

-32
15
8

9
-14
-18

32

11
12
13
14
15
16

17
18
19
20

Example:
Calculating the reduced ordered currents of the reference net, for r = 3,
one obtains:

reduced ordered current [i]
10

-9
- 1
-10
-4

14
4

- 7
.....:...15

18

1
2

3

4

5
6
7

8

9
10

5.3. Determination of the Bouwkamp codes

Now we consider the left-cyclic-ordered adjacent branches of a vertex Vo
and their currents:

Voh current Vo VI

VOVk current VOVk
In these (cycle of) currents the first positive current following some negative
current or other is searched (there are at least one positive and one negative
current). The corresponding branch, Vo VI say, is put in class Cpos. All successive
branches Vo Vl+1, Vo Vl+~, ... , Vo Vs that carry a positive current are put in
class Cpos. The branch Vo Vs+ 1, carrying a negative current, is put in class
Cneg, while all successive branches Vo Vs+2, Vo Vs+3. . .. , Vo Vt that carry a
negative current are put in class Cneg. All indices of the second vertex are taken
mod(k). Then the following theorem can be formulated:

All branches Vo VI, Vo Vk are belonging either to Cpos or C neg

if the network is planar.
Now a begin can be made with building up a Bouwkamp code of a dissection

originating from a net after having placed an electromotive force in one of the
branches of the net. This branch is called the accumulator branch. Starting from
the accumulator branch we follow the current in the positive direction. If in the
case of the reference net the third row of R is used, we find that the accumulator
branch 6,5 is carrying a reduced ordered current equal to 32. Then one of the
vertices Va. of the accumulator branch will be passed. In the reference net this
is vertex 5. The next step is to consider the left-cyclic-ordered adjacent branches
of Va. In particular the branches of Cpos of Va are considered. The sequence in

-41-

which they occur in Cpos is just the way in which the corresponding squares
have to be drawn. Notice that the reduced currents of the 1eft-cyclic-ordered
adjacent branches of Va are given by the elements: reduced ordered current
[address [Va]], ... , reduced ordered current [address [Va+1]-1].

In the reference net one has:
branch

56
53
54
51

Cpos

53
54

51

reduced ordered current

15
8

9

The Bouwkamp code can be started with the reduced ordered currents belonging
to the branches of Cpos of Va. In the example a part of the Bouwkamp code is
as follows: (15, 8, 9).

The next step is to find the vertex with which the process has to be continued.
To this end a vector "contour" is defined. It is assumed that the vertex Va has
a level zero. After having drawn the Bouwkamp code so far, the vector contour
contains the levels of the adjacent vertices of Va belonging to branches of Cpos

of Va. The level of Vi equals the level of Vi plus the absolute value of the reduced
current of branch Vj Vi. The adjacent vertices corresponding to the elements of
contour are forming the vector "vertex contour". In the example of the reference
net one has:

contour [1] = 15
contour [2] = 8
contour [3] = 9

vertex contour [1] = 3
vertex contour [2] = 4
vertex contour [3] = 1

The next step is to find the minimum of contour [i]. In the case of more than
one element equal to the minimum, the element with the smallest subscript is
considered first. Let this element be contour [q]. In the example the minimum
of contour equals 8, while the corresponding vertex, namely, vertex contour [2]
equals 4.

reduced ordered current
7
I

Cpos

43

41

The class Cpos of vertex contour [q] determines which squares can be drawn
next. In the example one has:

branch
43
41

45

The Bouwkamp code can be extended with the reduced ordered currents of the
branches of the class Cpos of vertex contour [q]. In the example one has:
(15,8,9)(7,1). A right parenthesis will be added only if contour [q+1] =F- con­
tour [q].

-42-

Then the vectors contour and vertex contour are updated. The vector contour
is determined as follows: The element contour [q] is replaced by the levels of
the adjacent vertices of vertex contour [q]. The element vertex contour [q] is
replaced by the just-mentioned adjacent vertices of vertex contour [q]. The
example therefore gives:

contour [I] = IS
contour [2] = 8 + 7 = 15
contour [3] = 8 + 1 = 9
contour [4] = 9

vertex contour [1] = 3
vertex contour [2] = 3
vertex contour [3] = 1
vertex contour [4] = 1

vertex contour [1] = 3
vertex contour [2] = 1

The following step is the condensation of the vectors contour and vertex
contour. If for any i contour [i] = contour [i+ 1] and vertex contour [i] =
vertex contour [i+ 1], then the elements contour [i+ 1] and vertex contour [i+ 1]
are omitted. The new vectors contour and vertex contour then have one element
less than the old vectors. This process is repeated until no more elements can
be omitted. Then the minimum of contour is searched again, and so on. The
whole process may be stopped when both vectors contour and vertex contour
have only one element. The element contour [1] will then be equal to contour [1]
= (complexity-accumulator current) -:- RF while vertex contour [1] will be
the other vertex of the accumulator branch.

The example of the reference net is running through the following steps.

After condensation one has
contour [1] = 15
contour [2] = 9

The minimum of contour is contour [2] and is equal to 9, while vertex contour
[2] = 1. The left-cyclic-ordered adjacent branches of vertex 1 and their currents
are:

branch
12
15
14

Cpos

12
reduced ordered current

10

The Bouwkamp code can be extended to (15,8,9)(7,1)(10). Updating contour
and vertex contour gives

contour [1] = 15
contour [2] = 19

vertex contour [1] = 3
vertex contour [2] = 2

There is no condensation necessary. The minimum of contour is contour [1]
and is equal to 15; vertex contour [l] = 3. The left-cyclic-ordered adjacent
branches of vertex 3 and their currents are:

branch
32
34
35
36

-43-

CPOS

36
32

reduced ordered current
18
4

The Bouwkamp code can be extended to (15,8,9)(7,1)(10)(18,4). Mter updating
and condensation one obtains

contour [1] = 33
contour [2] = 19

vertex contour [1] = 6
vertex contour [2] = 2

The minimum of contour is now contour [2] and is equal to 19, while vertex
contour [2] = 2. The 1eft-cyclic-ordered adjacent branches of vertex 2 and their
currents become:

branch
21
23
26

CPOS

26
reduced ordered current

14

The Bouwkamp code can be extended to (15,8,9)(7,1)(10)(18,4)(14). After up­
dating one has:

contour [1] = 33
contour [2] = 33

After condensation one obtains:
contour [1] = 33

vertex contour [1] = 6
vertex contour [2] = 6

vertex contour [2] = 6

Now the process is ready.
It is clear that another Bouwkamp code of the same dissection would have

been obtained if, instead of the left-cyclic direction, the right-cyclic direction
was chosen. Furthermore other Bouwkamp codes are obtained by starting with
the other vertex of the accumulator branch either using the left or the right­
cyclic direction; it is then necessary to use C neg instead of Cpos,

If we want to code the dissection with the restriction given in Bouwkamp's
paper 2), that the larger side is horizontal and that the left upper corner element
should not be smaller than the three remaining corner elements, it is then some­
times necessary to consider the dual net also. This is so if the complexity is
greater than twice the current through the accumulator branch in the original
net.

The currents of the dual net can be obtained as follows. Assuming a current
in the accumulator branch of the dual net equal to the current in the corre­
sponding accumulator branch in the original net minus the complexity, the

-44-

current in branch: branch 1[i], branch 2[i] of the original net is equal to the
current in branch: branchdual 1[i], branchdual 2[i] of the dual net. Then the
same procedure as described before can be used for obtaining Bouwkamp codes
corresponding to the dual net.

The four corner elements can be obtained from the first and the last element
of the set Cpos of the accumulator vertex Va and from the first and the last
element of the set Cneg of the other vertex of the accumulator branch. The
four corner elements are denoted by former first, next first, former second and
next second, respectively. If in a Bouwkamp code corresponding to the original
or dual net two consecutive elements are equal, a Boolean variable: trivial
imperfection is assigned true. The complete procedure is given in programme II.
In this programme it is assumed that two new procedures are added to the
ALGOL language, namely stop and punch (E). Depending on the result of
expression E, the procedure' punch (E) punches the result in the next free
columns of the punch card. The procedure stop stops the computer.

CHAPTER 6

SOME RESULTS

From the wheel S8 we obtained the sets S9, SlO, ... , S19 using the electronic
computers PASCAL and STEVIN of the Philips computing centre. The pro­
grammes were so arranged that the generated and identified nets could be
written on magnetic tape, punched on cards or punched on paper tape. For
orders up to and including 16, the list of identification numbers was stored in
the core memory while for higher orders it was stored on the magnetic drum.
In the latter case we applied the following sorting method.

The drum has a capacity of 16384 words of 42 bits. The identification number
needs at least two words for orders higher than 16. We can therefore store
8192 identification numbers on the magnetic drum. Let the identification
number I consist of the bits a45, ... , a3, a2, al; then four numbers are formed,

13 13 13 6
namely, ~ ak2k-1, ~ ak+132k-l, ~ ak+262k-1 and ~ ak+392k-l. Let-tA

k~ 1 k~ 1 k~ 1 k~ 1

be the sum (modulo 213) of these four numbers. If locations A and A+1 of the
magnetic drum contain zeros, then the identification number is new and is
stored in these two locations. If the locations A and A +1 contain non-zero
numbers, it is investigated whether the contents of A and A + 1 is equal to 1.
If so, the net represented by I was already found. If not, the contents of the
next two locations, namely, A+2 and A+3, are compared with I, and so on.
If I is not found on the drum, I is stored in the first two locations containing
zeros and following upon the locations A and A +1.

We found that the sets Sk* have the following number of elements. The
computing time on PASCAL is also given below:

k

8

9
10
11
12
13
14
15
16
17

18
19

number of c-nets
except for duals

1
1

2
2

8
11

37
79

249
671

2182
6692

computing time

5 minutes
15 minutes
50 minutes
2·5 hours
7 hours

-46-

The codes and identification numbers of the nets of 815* and 816* were
punched on cards. The cards were sorted with respect to the identification
number and were listed on one of the available printers. In table I we give
a fotographic copy of this output. The format is as follows: code of the net,
number of choices, selfdual (1 means selfdual), identification number.

As soon as the nets were available, we investigated whether perfect or im­
perfect simple squared squares could be obtained from these nets. To that
end we used programme II ofthe determination of Bouwkamp codes. However,
the code was only punched if the reduced sides were equal. The codes were
sorted according to increasing reduced sides.

The nets of orders 20 were generated. They were kept in the computer. The
nets having a complexity satisfying the relation C = 2kA2, where k and A are
integers, A ~ 15, were punched on paper tape after they had been identified
and had passed the procedure new net test. This programme took 30 hours
of computing time.

The reason why we considered only complexities equal to 2kA2 with A ~ 15
was the following. We wanted to know whether perfect squared squares of
order 19 exist. Now the largest element of a perfect squaring is greater than 18.
If a perfect squaring exists then its reduced side is certainly greater than 19.
Hence by taking A ~ 15 we have not missed any simple perfect squaring of or­
der 19. On the other hand we did not want too many nets as computer output
so we chose A not too small. From experience of low-order squared squares
we expect that no other simple imperfect squared squares of order 19 exist
than those contained in table II.

From these nets the Bouwkamp codes of the squared squares were punched
on cards. In table II we give a fotographic reproduction of the codes of the
imperfect squared squares of orders up to and including 19. The format is as
follows: C = complexity, 8 reduced horizontal side * reduced vertical side,
* or blank (* means imperfect, blank means perfect), RF reduction factor,
Bouwkamp code, number of choices.

At last we give all Bouwkamp codes of a few nets (of orders 10, 20, 21 and 22)
as typed by the on-line typewriter of PASCAL. We did not use the on-line
printer because only 92 print wheels are available which is too few for the
Bouwkamp codes. The same format is used as above. There are only two extra
characters, namely, trivial imperfection and the number of zero currents. A
reproduction of this output is given in table III.

REFERENCES

1) R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, Duke math. J. 7,
312-340, 1940.

2) C. J. Bouwkamp, Proc. Acad. Sci. Amst. 49, 1176-1188, 1946; 50, 58-78, 1296-1299,
1947 (= Indag. math. 8, 724-736, 1946; 9, 43-63, 622-625, 1947).

3) M. Dehn, Math. Ann. 57, 314-332, 1903.
4) Z. Moron, Przeglad Mat. Fiz. 3, 152-153, 1925.

-47-

5) C. J. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Catalogue of simple squared
rectangles oforders nine through fourteen and their elements, Department of Mathematics,
Technische Hogeschool, Eindhoven (Netherlands), May 1960, 50 pp.

6) T. H. Willcocks, Fairy Chess Rev. 7, Aug/Oct. 1948.
7) T. H. Willcocks, private communication, July 1961.
8) R. C. Ellis, private communication, November 1959-0ctober 1960; The perfectable

rectangles of order 14, and List of 16-wire c-nets, as yet unpublished manuscripts.
9) C. 1. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Tables relating to simple

squared rectangles of orders nine through fifteen, Department of Mathematics and
Mechanics, Technische Hogeschool, Eindhoven (Netherlands), August 1960, 360 pp.

10) J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaar­
den and M. Woodger, Numerische Math. 2, 106-136, 1960.

11) W. T. Tutte, Proc. Acad. Sci. Arnst. 64 A (= Indag. Math. 23), 441-455,1961.
12) W. Cauer, Theorie der linearen Wechselstromschaltungen, Akademie-Verlag Berlin,

2nd. ed. (1954), pp. 56-91.
13) G. Kron, Tensor analysis of networks, John Wiley & Sons, Inc., New York (1939).

TABLE I

Codes and identification numbers of S15* and S16*

617601271023720734707467045640165105325021520354300 3 0 3777423
317301271 023720 1341 0 1521025620632603643046540 514500 2 0 7566764
617601271023720347304574056750465401641032130143100 1 0 7715522
617601271023720347304574056750465404324026420216200 2 0 7175530
617601271023720347304574056750465401641043240214200 2 0 7171422
6178601271023720347304587405685046540643260216200 0 0 767524302
6285602182026720273207654704374045840148101234100 1 0 767524501
6178601271023720347304587405685046540643603216300 I 0 767544122
1821028320384304875405765081678034530523501256100 0 0 767560203
2842013821034830245201631043674047540612602576200 0 0 1365564302

8568021862026720273207654704374045840108101234100 0 0 1473447250
1856101621026720273207650704374045840814801234100 0 0 1473465411
6186012781023720347300574056875046540164310321300 1 0 1476425530
6186012781023720347304587405685046540164310321300 1 0 1522533622
4184012810234820145101621026720732703754301576100 1 0 1563526700
8568021862026720273203765430458401481023420412400 0 0 1563564302
7187012810238203583046854067860476404534032174300 I 0 1573253401
7187012810238203583046854067860476404532402174200 0 0 1573464501
7187012810238203548304684067860457640175105321500 1 0 1577050322
7187012810238203583046854067860476401741045321400 0 0 1577051203

6178601271023720348730458405685046540164310321300 2 0 1625215552
6186012781023720347304587405685046540643260216200 1 0 1661633310
1821028320384304754048740576508167802345620612600 0 0 1665113630
2842013821034830245201631043674047540612560576500 0 0 1665407350
6178601271023720348730458405685046540643260216200 0 0 1665413330
1821028320384304750048740576508167801234510561500 0 0 1665423314
6186012781023720347304587405685046540164104321400 0 0 1665423341
1821028320384304754048740576508167802345205612500 0 0 1665423611
2872023482045840567850165101531032130354306127600 0 0 1665425511

'4183401281023820145101621032673037543057650615600 0 0 1666130370

1821028320384304154048140576508167803456306123600 0 0 1666131134
6178601271023872034830458405685046540164310321300 0 0 1666431131
8568061860162102672027320376543045840814801234100 0 0 1667030351
1821028320384304754048740576508167803453056123500 0 0 1667031115
4184083480128102382014510162103267303754301576100 1 0 1667031213
8568021862026720273203765430458401481012310341300 1 0 1706222656
1856101621026720273207657054375045840814801234100 1 0 1706224556
8568021862026720273207657054375045840148101234100 1 0 1706424536
4854021452025632013671070170847805865068760123100 1 0 1706431217
7128702348204584067860856801651015321035430176100 0 0 1'115650611

6178601271023872034830458405685046540643260216200 0 0 1725530701
4184032830813802482010510163102367420475401576100 0 0 1725550611
1821028320384304875405765081678023452025620612600 0 0 174176"302
4184013281024820145101631023672074270475401576100 1 0 1741764501
7128702348204584056785016510153103213035430176100 0 0 1745314710
8568021820862802672027320376543045840148101234100 0 0 1745315501
1821028320384304875405765081678012341014510561500 0 0 17"534"522
1856101621026720273203765430458008148023420412400 0 0 11"5344541
1821028320384304754008740576508167804564061234600 0 0 1145350611
2872034830823804584056785016510153210354306127600 0 0 1145360603

-48-

6178601271023872034830458405685046540432402164200 0 0 1745622701
6178601271023872034830458405685046540164104321400 0 0 1745660303
1485210263202562036730741370478405865068760123100 1 0 17..6222651
1856101621026720273203765430458408148012310341300 0 0 1746224532
41840128102348201451016210267320375..3057650615600 1 0 17.. 6224551
1821028320384304754048740576501671078170123456100 2 ,0 1746324541
1821028320384304754048740576508167801231034561300 0 0 1746424531
1281087180234820458405678501651015321035430176100 0 0 1746627003
1821028320384304754048740576508167801234104561400 0 0 1747212341
2842082380348305125024520163210367430475401576100 1 0 1747222603

1821028320384304754048740576508167802342045612400 0 0 1747230303
2842038230213203483024520163104367404754061257600 1 0 1747252023
4184012810234204824014510162102673203754301576100 2 0 1747254013
6178601271023872034830458405685046540643603216300 1 0 1747260107
6186012810238203483045840568504765402143201672100 2 0 1761526700
7187012810238203543048340468406786045764017532100 0 0 1765113304
7181012810238203583046854067860476405325021145200 0 0 1765422701
7187012810238203583068560546506786047640114532100 1 0 1766122524
1187012810238203583046854067860476401745105321500 0 0 1767012341
1187012810238203548304684067860457640175310321300 0 0 1767022505

7181012810238203583046854067860476401745310321300 0 0 1761030303
7187012810238203583046854061860476407457053217500 0 0 1767112214
7187012810238203548304684067860457640753703217300 0 0 1767112421
1181012810238203583046854067860476407453703217300 0 0 1767114411
7181012810238203548304684067860457407641017532100 0 0 1767142045
71870128102382035830468540678604764U7453270217200 0 0 1767150015
7187012810238203548304684067860457640753270217200 0 0 1767150023
8218083280843808548086580876808178012341045671400 1 0 1776425003
8218083280843808548086580816808178012310345671300 1 0 1777050023

18210283203843047540481405765081678034563062360612600 0 0 16735025,
16210283203543041540487~05765081678023452051250561500 2 0 161524612
18210283203843047540481405165081618034530512350561500 1 0 767560216
18210283203643047540487405765Q81618034530523505612500 1 0 761560423
71870128102382035830468540678604164017.. 10453403214300 0 0 777650130
710701281023820358304685406786047640174104532.. 021 ..200 0 0 117660411
18210283203843047540487405765081678023452061260256200 1 0 1532171422
41040128102348201451016210267207327075470437401516100 2 0 1563566700
71870 1281 02~820358304685:,Ot18604764045340314303211300 1 0 1577253401
71010128102382035830468540678604764045324027420217200 0 0 1577464501

85680618601621026720213203765·.30458408148023420412..00 1 0 1633613041
8568021820862802612027320765410437404584014810123"100 0 0 1663537210
2E420138210348302.. 520163104367..0475406126057650625600 1 0 1661566160
18210283203843047540487405765081618045640623460612600 0 0 1663566430
85680218208628026720273207657054375045840148101234100 0 0 1665361416
18210283203843047540481405165081618034530612360356300 0 0 1665361443
61186012110231203481304584056850465404324026420216200 1 0 1666521430
18210283203843047540487405765081678023420612602456200 0 0 16665351.30
71870128102382035830468540678604164053250245202114200 0 0 1675631310
71870128102382035830468540618604764045340317430321300 0 0 1675651130

11870128102382035830468540678604764011410321301453100 0 0 1617424530
11870128102382035830468540678604164017410532150145100 0 0 1677425122
11870128102382035483046840678604574016470175105321500 0 0 1611431211
85680218620261202732076510543750458401481012310341300 2 0 1106424537
18210283203843047540481405165081678034530562350612600 0 0 1716430635
18561016210267202732076570437407547045840814801234100 0 0 1124143462
13210283203843041540487405765081678012310561501345100 0 0 1724745452
61860121810237203473045874056850465401641032130143100 1 0 1726522654
18210283203843047540487405765016710781702345205612500 1 0 1726522662
18210283203843041540487405765081678012310456406134600 1 0 1126524562

18210283203843047540487405765016710781702345620612600 1 0 1126530362
18210283203843041540481405765081678012310345630613600 0 0 1726624552
18210283203843047540487405765081678012310345305613500 1 0 1126630352
11870128102382035430483404684067860457640115105321500 1 0 1734613650
71870128102382035830685605465067860476404532402174200 1 0 1736414570
71870128102382035830468540678604164017410532502145200 0 0 1136424562
11810128102382035830685605465067860476401741045321400 1 0 1736430651
18210283203843048754051650816780345305235025620612600 0 0 1743356250
18210283203843047540487405765081678045640634606123600 0 0 1743666411
85680618601621026720273207657054375045840814801234100 1 0 1146224653

65680618601621026720273203765430458408148012310341300 1 0 114632..562
18210283203843047540487..05165016110781101234104561400 2 0 1746364522
16210283203843047540487405765081678012341056150145100 0 0 1146627114
18210283203843047540487405765016710781701231034561300 0 0 1746627411
28720348308238045840567850~65101531032130354306127600 1 0 1146633211
18210283203843047540487405765081618023420561250245200 1 0 1146635111
61786012710238720348304584056850465404324026420216200 0 0 1141232101
18210283203843047540487405765081678012310456140134100 0 0 1147252431
71870128102382035430483404684061860451640753210217200 0 0 1164751130
71870138103483045840568506766057650254320275201723100 1 0 1765526700

-49-

11870128102382035830685605465067860476401745310321300 1 0 1766224552
71870128102382035830685605465067860476407453210217200 0 0 1166522630
18210283203843047540487405765081678023420456406124600 0 0 1766524530
71870128102382035830685605465061860476401745105321500 0 0 1766525114
71870128102382035830468540678604764074570531750321300 0 0 1766525122
71870128102382035430483404684067860457640753703217300 0 0 1766521104
71870128102382035430483404684067860451640175310321300 0 0 1766530330
71870128102382035830468540678604764017451053250215200 0 0 1766560431
71870128102382035830468540678604764074570532502175200 0 0 1761117401
7187012810238203'430483404684067860457407647017532100 0 0 1767132304

71870128102382035830685605465067860476407457053217500 1 0 1761152124
71870128102382035830468540678604764074570511505321500 0 0 17671522n
71810128102382035483046840678604516407537031130321300 0 0 1767153005
11870128102382035830468540678604764053250274520217200 0 0 1767426501
71870128102382035830468540678604764074537031730321300 0 0 1767441003
71870128102382035830468540678604764017451032130153100 0 0 1767450131
71870128102382035830468540678604764074570211207532700 0 0 1767524302
71870128102382035483046840678604574076470753210217200 1 0 1767524501
71870128102382035830468540678604764074570321730753700 1 0 1767544122
71870128102382035830468540678604764074537021720732700 0 0 1767560203

82180832808438085480865808768081780123104564067134600 1 0 1776424530
82180832808438085480865808168081180123104567401134100 1 0 1176431211
82180832808438085480865808768081780123103456306713600 0 0 177n24302
82180832808438085480865808768081780123103453056713500 1 0 1777424501
82180832808438085480865808768081780123410456740114700 1 0 1777444122
82180832808438085480865808768081780123103456730113100 0 0 1177460203
719701289102382035483046840679860457640175101532100 1 0 71706406022
719701289102382035830468540619860647601741014532100 1 0 77706424003
189210293203943075870498540576508167802345620126100 0 0 331341252301
189210293203943075870498540576508167801234101456100 1 1 361641212322

718970128102382035483046984067960457640375301732100 0 0 363661420203
718970128102382035483046984067960457640275320112100 0 0 363665000423
119701289102382035483046840679860457640375301732100 1 0 365651404114
192102932039430758704985405765091678901234510156100 1 . 1 365651404122
719701289102382035830468540679860647604514017532100 0 0 365651420203
192102932039430758704985405765091618903453012356100 0 0 365655000423
719701289102382035830468540679860647603745301732100 1 0 371631404122
192102932039430758704985405765091678902345201256100 0 0 371631420203
719701289102382035483046840679860457404764017532100 0 0 371635000423
719701291023892035430348304698406796045764017532100 0 0 474257126004

812980234920469406789601765101531013210356430187100 1 0 474316526004
718970128102382035830569850546506796047640174532100 0 0 475116152024
298209234590569506789601761016431046540283207138700 0 1 475215116420
192102932039453048654049840687609178905675012357100 0 0 415215152024
718970128102398203593046954067960647602453201742100 0 0

~~~~ g~~~~~~719701289102382035483046840679860457640175310132100 0 0
189210293203984307587048540576508167802345620126100 0 1 475247026003
192102932039430758704985405765091618903456301236100 0 0 475304546041
298209234904694057896501751015321045640354301128700 0 1 475306132005
189210293203984307587048540576508167803456301236100 0 0 475306426003

219202932039843048540586506876011891012310134567100 1 0 415416122424
718970128102382035830469854067960647601741014532100 0 0 475605112222
398308238093459056950678960176101643210465407128700 0 0 475605113005
718970128102398203549304694067960457640175101532100 0 0 475605407003
712967017310378303843065876048540569502592013452100 0 0 475606122045
196710173210378303843065816048540569509125902345200 0 0 475606422023
718970128102398203593046954067960647601741014532100 0 0 475607012023
189710812802398203493045940569506·796017210276543200 0 1 575413110214
819780129102392035493046940679604584048764018532100 0 0 575413140045
192102932039430698604965405675068760917890123457100 0 0 575416101045

189710812802398203493045940569506796011621026543200 0 0 575601504122
192102932039430698604965405687509178902345201257100 0 0 575601520105
189710812802398203493045940569506796017652102543200 0 0 575601520203
298201392103493046940579650789707587012851031564300 0 0 575605100145
189710812802398203493045940569506796017654210243200 0 1 575605100415
192102932039430698604965405687509178902345120127100 0 0 575605100423
192102932039843075870485405765091618903456301236100 0 0 630345252301
528502148202563201367101741047984058965069760123100 1 1 630522517300
189210293203943075870498540576508167803456301236100 1 0 630523252501
189210293203984304875405765081678034530235620126100 2 1 630524507700

189210293203943075870498540576508167801231013456100 0 0 644545130701
718970128102382035430349830469406796045764017532100 0 0 660544315501
192102983203843075897048540576509167903456301236100 0 1 660545212701
192102932039453048654049840687609118901235610167100 0 0 664645412211
189210293203984304875405765081678034530235201256100 0 0 665240512021
618960128102398203493045940569504765402743201672100 0 0 670322336002
956906796021972027682028320386543045940149101234100 1 0 670322536001
189210293203984307587048540576508167801231013456100 0 0 670433252022
192102932039453048654049840687609178903567301237100 0 0 670526114411
956790219720276820283205486503843045940149101234100 0 0 670611664003



-50--
195671017210276620263205466503643045940914901234100 0 0 670615244043
192102963203643046754057650916769012310134510156100 0 I 670621316410
617696012710237203467304596405695046540264320162100 0 0 670621346042
192102983203843075970489540576509167901231013456100 0 I 670621352022
192102963203643048975405765091679012310345301356100 0 1 670621352041
189210293203943049875405765061676012310134510156100 0 0 670621354012
967907129701731037630384304876540569502592013452100 0 0 670621546022
192102932039843047540487405765091678902342012456100 0 0 670621564003
239820345930569506789601761032430164210465407128700 0 0 670622326042
192102983203843075670485405765091676901231013456100 0 0 670623116014

712967017310378303843046765405695025920234520132100 0 0 670623116041
719701289102382035430349630469406796045764017532100 0 0 670623216012
189210293203943075670498540576506167602345201256100 0 0 670624322414
18971 0612602362034983045900 569506796017654101432100 0 1 670624322441
718970126102362035498304694067960457640275;20172100 0 0 670625144016
169210293203943075810498540576508161803453012356100 0 0 670625144043
718970128102396203593046954061960647603453017432100 I 0 670625160007
I By 71 0612802382034983045940569506796017621026543200 0 I 670704306422
1897106126023620349830459405695061960176510 154.l21 00 0 1 670704314411
19210293203945304665404984_06876091' 890235620 12611 00 0 0 670704606212

719701291023892035483046840679860451404764011532100 0 0 670704642015
192102932039453048654049840687609178902356720127100 0 0 670704644013
189210293203943075987049540576508167803456;01236100 0 0 670706206016
192102932039843075870485405765091678903453012356100 0 0 670706206043
192102983203843075870465405765091678903456301236100 0 0 670706222007
719701269102382035483046984067960457404764017532100 1 I 670706406023
192102932039430756704965405165091618901231013456100 0 0 671302236003
716970128 I 02382049840354830946906 796045 764017532100 0 0 671420347042
719701289102382035498304694067960457640175310132100 0 0 671422126422
189101921029320394307587049854057650816760123456100 0 0 671422126441

189210293203984307587048540576508167802342012456100 0 1 671422134122
719702892012910823803548304684067986045764017532100 0 I 67142222611.2
192102932039843075870485405765091679078970123456100 I 0 671424101422
189210293203943075987049540576508167801234101456100 0 0 671600335003
617960127102389720348304598405695046540164101432100 0 0 671600364043
189210293203943075870498540576508167801234510156100 0 I 671601217003
396302159320236202674201478510589506976079870124100 0 0 671601246043
719701291023892035830469854067960647601745310132100 0 0 671601252023
119701291023892035483046984061960457640175310132100 0 0 611601254013
718970128102382035483046984067960457640175310132100 0 0 611602226016

118970128102382035830469854067960647601745310132100 0 0 671603016023
193104239404954058650598506876091189024562013267100 0 0 611604206162
189210293203943075987049540576508167804564012346100 0 I 611604207016
192102932039430758704984048540576509167890123456100 0 0 61160"2070"3
719701289102382035498304694067960457640175101532100 0 0 611604223001
619601289102378203413045987405695046540164101432100 0 I 611604242063
719701289102382035983046954067960641601741014532100 0 0 611604260017
119701291023892035483046984067960457640175101532100 I 0 611605006216
192102932039430478540491405865091687903453012356100 0 0 611605006423
719701291023892035830469854067960647601741014532100 0 0 671605044017

956790219720216820283205865038543045940149101234100 0 1 705141155501
618960128102382034983045940569504765402743201672100 I 0 120261526700
712967011310378303843048765405695025920134210245200 0 0 721060371501
192102932039843075870485405765091678901231013456100 0 0 721141252701
718970128102382035498304694067960457640175101532100 I 0 721240364522
719701289102382035830469854067960647601745310132100 0 0 721240565203
189210293203943047540498740576508167802345201256100 0 0 721240665103
719701291023892035483046840679860457640175310132100 0 1 721300670303
189210293203943075870498540576508167802342012456100 0 0 721301454303
812802982023492046940678960176510153210356430187100 0 1 721412425603

192102983203843047540487405165091678901231013456100 0 0 721442222114
192102932039843047540487405765091678903453012356100 0 0 721442231303
719701289102382035830469854067960647601741014532100 0 0 721443024103
918907187012810238203498304594056950679601765432100 I 0 125256020423
189101921029320398430475404874057650816780123456100 I 0 740522515114
718970128102382035983056950546506196047640174532100 I 0 741501424103
95679071970'1721027682028320386543045940149101234100 0 0 741502230523
192102932039830384304754048740576509167890123456100 I 0 141502424523
945905295023920349306125601732103784304865401687100 2 1 741502444163

, 192102983203843047540487405765091678903453012356100 I 0 741503050217

118107897012810238203549830469406796045764011532100 0 1 745542120145
712970234892045840567985016510153101321035430176100 0 1 145543010213
192102932039453058650485404984068760917890123567100 0 0 150537000423
719101289102382035498304694067960457640275320172100 0 0 150725100216
718910128102398203543034930469406796045764017532100 0 0 751301262001
718707897012810239820354930469406796045764017532100 0 0 151522120145
189210293203943059850587504954057650816780123456100 0 0 751522120421
312930394304954058650598506876017821028920134567100 I 0 751523002423

, 239820345930569507897067960176101643210465407128700 0 0 751523010115
298204594092349056950678960176101643105465071328700 1 0 751524101423



-51-

718970128102398203549~04694067960457404764017532100 0 0 751526001017
192102983203843048754057650916789012310345301356100 0 1 760262332041
719701291023920354893046840679860457404764017532100 0 0 760473404411
129101971023489204584056798501651021532035430176100 0 1 760473440023
396302159320236720274201478510589506976079870124100 0 1 760661510211
192102932039430478404854049740586509168790123456100 0 0 760665100415
956790219202972027682028320386543045940149101234100 0 0 760665400115
718970128103983023820935490469406796045764011532100 0 1 761060547022
189101921029320398430758704854057650816780123456100 0 0 761060564212
719701289102382049840354830946906196045164017532100 0 1 761240370023

928902182029320394307581049854057650167810123456100 0 0 761240626114
619601278910237203473045874056985046540164101432100 0 1 761240626122
192102932039830384307587048540576509167890123456100 0 0 761240662015
189710812802382034983045940569506796047654017432100 1 1 761241217003
219202932039430498540586506876017891012310134567100 0 0 761302416023
112897023482045984067960569501651015321035430176100 1 1 761440613211
719701291023892035483069860468409679045764017532100 0 1 761442115023
189210293203943075870498404854057650816780123456100 0 0 76144221U32
189210293203943047540498404874057650816180123456100 1 0 761442222216
192102932039430478540497405865016871091790123456100 I 0 761442223007

192102983203843075870485405765091679018970123456100 0 0 761442407023
718970128102398203593056950546506796047640174532100 0 0 761442414131
519503293013910245920156101731023784204865401687100 0 1 761442424115
192102983203843058950597504854057650916790123456100 0 0 761462120145
719701291023920354893046840679860457640115310132100 0 1 761602414033
192102983203843075870485405765091618903453012356100 0 1 761644201017
119101289102382035498304694067960457404764017532100 0 1 161645000217
928902182029320398430758704854057650161810123456100 I 1 170522502222
192102982028320384307587048540516509167890123456100 1 0 710522540023
192102983203843075870485405765016781091890123456100 0 1 110621310212

192102932094590395304865404984068760911890123561100 0 110624301043
189210293203983038430758704854051650816780123456100 1 170625100216
9789011870128102,9820,493045940569506796017654.>2100 0 111420341043
192102932039430698604964046540568150917890123457100 0 771422220143
192102932039430/58705983049540576509167890123456100 0 77143200504.'1
189710812802398203493045940569506196051650175432100 0 111604aOl017
1897108128023982034930459405695067960465401764.'12100 1 771605000217
189101971081280239820349.'1045940569506796017654.'12100 0 17541200.'1045
198101291023920349304594056950679607897021876543200 2 111402020423

TABLE II

List of simple imperfect squared squares of orders up to and including 19

c= 1058 S 23* 23* . RF 23 ( 12 .11 , ( 1 .3 .7 Jill. 2 , I 5 ) ( 2 .5 , 14,] ) I3 , 0

c= 3042 39* 39* RF 39 (20, B d 1) (5.3) ( 2, 12 ) ( 7 I fI9, B' f 5,71111,2) (9' 0
c= 3042 5 39* 39* RF 39 IZOtl9) (113,8,7)( 19,21 (5)(2,51 112tll (3) (810
(= 3362 41* 41* RF 41 (23 tiS) 17, III ( 1 B, 3,2) ( 1 ,5,3) (4) (2,1) (IZI (Ill 0

c= 4608 S 48* 48* RF 48 128.20) 17.5.8) 1203 , 19 J 120.8) 1111 112.5) I 2.9) (7) a
(= 4608 5 48* 48* RF 48 (28,20) CBtl21(ZO,9,71 (5,71 (2,5) (11) (3,2) (91 (8)0
(= 4608 S 48* 48* RF 48 IZ8,20)(11,91(ZO,8)(Z,71{S,51(S,311121(Z,9}(710
(= 5202 S 51* 51* RF 51 (22 d 4,15 I ( 13 d ) ( 16 J( 13,9) (9,4) (4,5) (20 I { 16,11 ( 15) 0
(= 5408 S 52* 52* RF 52 (28,24) ( 7,9,8 I ( 24,4 J ( 1,6) ( 5) ( 1,7) (4,6) ( 15) (13) 0

. (=10890 5 11* 11* RF495 (4,3,4) 11,21 13,21( 1,3) (1,2111,2)(41 (194) (311
(= 9248 5 34* 34* RF 136 (199151 (4,5,6) (15,7,1115,1 )(7) (1,4) (8) (1,6)1510
(= 7688 5 62* 62* RF 62 (33,29114,5,20) 129,791) (61 (13) (7,13) (9,4) r 1,6J ISlO
(= 8192 S 64* 64* RF 64 (36,281 (9,8,11) (28,8) (3,5) (7,2) IS) 12,9)(7) (201 (1610
(= 8192 S 64* 64* RF 64 (36,28) 19db81 f28,S) (3,5) {7,21 (5,9,2) (7) (20) (1610
(= 8450 S 65* 65* RF 65 i3 3,32) ( 1 d, 8,20) ( 32,2 ) ( 5 ) ( 13 ) (2,5,13 I ( 12 ,11 131 (8) 0
(= 8450 5 65* 65* RF 65 {3 6,291 ( 16,13) ( 14 tl-:l: ,9) (4, 9) (4,20 tl J (5) ( 1,1 61 ( 15 I (14) 0
(= S978 S 67* 67* RF 67 (39,281 (12,7,9) (5,2) (II) 128,8,31 (Z,7,S) (51 120J (19)0
(= 9248 S 68* 68* RF 68 125,20,231(Stl2,3J (26) (23,71 (191 f20,3) (7,19) (17,5) (1210
(= 9248 S 68* 68* RF 68 136,32) 14,6,7,lSI,(32,8){S,I) (81 (1,4) (91{6,211 (1510
(= 9248 S 68* 68* RF 68 (36, 3 2) 18,9,15) {32, 41 ( 11 d J ( 101 (4 tll ) ( 17, 8l ( 1,10) (9) 0
(= 9522 5 69* 69* RF 69 (39,30) (7tl2,11)(Z,5) (30tlll (3,81 (8,7,2) (S){ZOl (1910
(= 9800 S 70* 70* RF 70 13 B, 32) 16,9,17' 132,8,4) (1,81 ( 5 ) (7 tl ) {61 (4,211 ( 17) a
(= 9800 S 70* 70* RF 70 139,31 ) 15 t7 ,r 9 I (3,2) ( 1 ,8) I 31,12) ( 5,3) (2,1 ) (20 I ( 191 0
(= 9800 S 70* 70* RF 70 (41,29 I III tIB ) ( 2,5,41 ( 29,11 tI ) (31 11,3 I ( 7,2) (231 { 1810



-52-

(=15488 5 44" 44" RF176 ( 24,20) (a tl2l ( 20 t 4 I ( 7 t 5 1 (4,3 t 5) (2,3) (9) ( 1 ,2) (8 I ( 7 J 0
(=12800 5 80" 80" RF 80 (44,36118,28) (36,161 (9,7J (5,7,16) (2,51 (11' 13,21 (9) 1810
(=12800 5 80" 80" RF 80 (44,36) (lh9d6J (36,8) fZ,71{B,5) (S,3) (28) (2t9) (7) (1610
(=12800 5 80" 80* RF 80 144,36) (16,7,5, B) ( 2,3 I {91 ( 36,8 I ( III (28, 5 ) (2. 9 ) ( 7) ( 16·) 0
(=12800 5 80" 80" RF 80 151.29 I 11401 5 I 113 .111 161129.13.91 19.41 14.5 I I 20 I 116.n 115 10
C=13448 5 82" 82" RF 82 (47,35) ( 12,23 J ( 35 tI2, 5,7) (3,2) ( 1 ,5,3) (4) (2 d) (24 I (23) 0
(=13448 S 82" 82" RF 82 151>311 1150161 19.501 I 14d31131.16.41 1911131 1221115011 11410
(=14112 S 84" 84" RF 84 (44,40 1 (7,13,201 (40,4) C1 ,6) ( 5 ) 111,6,7) 15,1 ) (4,24' (20) 0
(=14112 5 84* 84" RF 84 (48,36) (9,7,20) (2,5)( 8,3) (36,7,5) (8) 12tlll (9) (28) {ZOID
C=144'0 <; 85* 85" RF ~"i (19,? 5,211 (4,J 7) ( 1'5, ] 4 ) ( 1 tl6) ( 21 d 7 d I I 15 , ( 161 ('31 , (4,291 (25) 0
(=14450 S 85* 85" RF 85 (46,19) 19t1ld91 (39,71 17,Zl(5,Bl 15,2) 13dll181 (271 (19)0
(=14792 S 86" 86" RF 86 (47,39) (7,5,89191 (2,3) (9) (39,8)( 11) (12,5) 12,28) (7) (19JO
C=14792 S 86" 86" RF 86 (47,39) (8 d 2 J19) ( 39,9,7 I (5,7) ( 2,5) ( 11) ( 3,2 I ( 28 ) ( 8) ( 191 0
C=14792 5 86* 86* RF 86 ( 47 ,39 I ( llJ 8,20 ) ( 39, 8 J (3,5 ) ( 5 ~ 7 , 2 ) / 7J ( 11 , Z ) ( 9) I Z7 ) ( 20 I 0
C=14792 5 86" 86* RF 86 (51 t3 5) /15,201 ( lJ 5,91 ( 35,13,4) (9) (4 d6 J ( 13 I ( 22 J ( 1,15) ( 1410
C=15138 S 87" 87" RF 87 (48,39) (7d2,20) (2,51(39tlll (9,8) (8,3) (28) (2,71 (5) (2010
C=15138 S 87" 87" RF 87 ( 48 ,39 J ( 8, 11 ,20 ) ( 3, 5 ) ( 39 ~ 7,·2) ( 5 1 ( 2 , 9 , ( 7 I j 12 J ( 8 ,28 ) ( 20 ) 0
C=15138 5 87* 87" RF 87 ( 51 ,36 J ( 14,22 I { 1,13 J ( 36 d 6 J (9,13) (4,9 I ( 20 ) (5 ,4) ( lJ 16) I 15 '0
(=16562 5 91* 91* RF 91 (52,39) 115,24) {39,7,61 {4,6,5J {It9)(81 (1,4) (7) {281 (24)0

(=29160 S 18" 18* RF810 ( lIt 71 r 3,41 ( It 2' (7, '1, ,2) ( 1,3) ( 1,2) Cl, 2) (4 J ( lt4) (3 J 0
(-28800 5 30* 30* RF480 113.8.91 17 oj 1110 118.3.2 I 11.5>3) 14) 1 2.11111111>1 0 I 1910
(=24200 S 55' 55" RF220 128.271 17.8,) 2 I 116>12 I 16.• 1 I 15.4) 116 I 18 >15 1111> 5 I 11.7) 1610
C=25088 S 56* 56* RF224 124,14,181 ( 10 t 41 ( 7 tI51 ( 14,10,9,1) (8) ( It 8,23 I (4.,71 ( 1 B) ( 15) 0
(=25088 5 56" 56* RF224 130.12 >14 I 17".211 ), 15 1141 III I 14>1 11 126>1 2.3 II 7 I I 2.16 I 11410
(=25992 5 57" 57* RF228 ( 30,27 I I 11 tl6) ( 11 ,7, 12 ) I 4 ~ 3 ) ( 4,7 J (l , 21 ( 16 I ( 15,3. I ( 2 tl4 ) ( 12 I 0
(=26912 S 58" 58" RF232 !3 0,28) (2,6,7 tl3 I { 28,4}.( 9,11 (a 1(4,9 I ( 15,2) (6) ( 1, a I (1) 0
(=28800 5 60" 60* RF24U (32,28) 14,5,6,131 /2a,1d) (5,1 J (7) {1,41 (8) (1,191 IS) 113}0
(=30752 S 62" 62" RF248 133.29 I 18.9.121 129.4 I III .1117" 1 14>1 11 13.8 I 1141 11 >1 0 I 1911
C=,0752 5 62" 62" RF?48 ( 34,28 I (5,8,15) ( 1,4) I 28,7) ( 1,7) (5 ) (6 tl ) ( 5 , II /4 tl91 ( 15 I 0
(=27'% 5 83" 83" RFl66 131.22>30119>13117.231123.171111.21191113.71 16>1111301 129112410
C=22472 5 106* ]06* RF106 (55,51) (4,5,] 1,31 ) ( 5It 7 d ) (Ed f 24 ) (7,24) ( 20,1+) ( It 6) (5) ( III 0
(=22472 S 106* 106* RFIOA 155.51 114>11>361151.8111>101191119118.9>191115.41 l!l.ll 11010
(=22472 5 106* 106* RF 106 ( 59,47 J ( 12,35) (47,24) ( 2,5, 4 ~ 2 4) ( 23,1 ) I 3} ( 19:3) ( 7'2) (5) ( 12 J 0
(=22472 5 106" 106* RF106 159.471124.23) 147>121 12.5.4.121 135>11131 11>31 17.21 151 12410
(=22898 S 107* 107* RF107 (54,53) (1~3t8,21,201(53,21(51 (13) 12,5,131 (33,l) (3) (B) (2UO
C=22898 S 107* 107* RFl07 ( 59,48 J ( I1d3,24) 148, B, 10 ~4) {2 d 1 J (6 I {6,2 I (4, 14) (351 I 10) (24) 0
(=22898 5 107* 107* RFI07 I 59,48 J ( 11 , 13·~ 24 ) ( 4a , 14,6,2) ( 4,11 I ( 10 I ( 35 ) (10 ,4 ) I 2 , B I ( 6 I I24 ) 0
(=23~28 S 108* 108* RF 108 164.44 I 116 >11 >1711 5·.61 120.11 (24 I 144.20 I 14.11> 5 II 24 I 16.23111710
C=23328 s 108* 108* RF108 164,44) (20,24) (44,24,11 ,5' ( 1,23 J (6 J ( 171 ( 20,4) ( 6 t 171 116,5) / III 0
C=237A2 5 109* 109* RFl09 158.51 I 17 >1001 1 .23) I 51 ,j 1,3 1 112 >11 1121 I 7.4113 >13 I 135 I 110 I 123 I 0
C=24200 5 110* 110* RF110 ( 5 7 ~ 21,32 I ( 10 d l' (9,11 (89361 ( 17) ( 53,211 ( 10,9 d 7) ( 1,8) ( 32) (25 J 0
(=24200 S 110* 110* RFI10 ( 57,24,29) ( 13,6,5) 11,33) (7) (20 ) ( 53,241 ( 13,20) (6,7 J (29,1 ) {281 0
(=24200 5 110* 110" RFl10 ( 57,53) (4,5,24,20) I 53,7 d I (6) ( 13 ) (7, 13) ( 33, to,.) ( 1,6) ( 5 ) I 24) 0
(=24'00 S 110* 110* RFI10 ( '; 7'53 I (8, 9 ,36 J (53,4) III d ) (l0 I (21) 14,11,211 ( 17, a J ( 1 ,10) {91 0
C=?4?00 S 110* 110* RF110 160.27.23 I 14.1 91 116.1 5 I 11.33 I 1171 150.271 116.1 7 I 123.41 1 19.1l 118 I 0
C=24642 5 111* 111* RFl11 (60, 51) (9,8 d 5 d 9) ( 1,7 I ( 51,19) ( 13,9) (6, 13 ) (8 tl ) ( 7 I ( 32) ( 28) 0
C=24642 S 111* 111* RF111 (60, 51 ) Cll tlS, 2 5) ( 5199 ) 17,4 J ( 191 (16) (9,16) I 26 ~ 11,7) (4,19) 115 ) 0
(=24642 5 111* III * RF 111 {62 ,49 J 120 f 29 J ( 49,6,7) {5, II (4,13,6 f 51 (9 J (I, 4) ( 7 J { 331 ( 29) 0
(=24642 S 111* 111* RFl11 (68,43 I (23,20) ( 3,171 ( 7919) (43,20,5 J { 121 ( 5 ti2) ( ~, 26,7 J ( 23) ( 19) 0
(=25088 5 112* 112* RFl12 (60,521 (8tl,,15,16) (52916) (1192) (9,a)17,9) (13~2) (36) I 11) (2410
(=25088 5 112* 112* RFl12 ( 64,48) (7,5,8,281 ( 2'31 (9) ( III (48,20,5) { 2,9 J (1 J (8 ~ 36) ( 28 J 0
(=25088 5 112* 112* RF112 164.481120.281148.9.7115.7.8112.51111113.21191 1811361 12810
(=25"8 S 11~* 11 3* RF11 , (66,47) 123,241 (47,1 q) ( 5,7,1) (6,191 ( 13) ( 28,6) ( It B, 2 3) ( 7 J ( 1510
(=255~8 5 113* 113" RFl13 168.45 I 126.1 91 17.12) 145.20.3 I 112.19.51117 1 I 5.71 125 I 123.3 I 120) 0
(=25992 5 114* 114* RF114 141> 39 >34 I 15.2911 2.1 1> 311 134.91120 I 19.20 I 15.44.2 I III I I 39 I 13ll 0
(=25992 S 114* 114* RFl14 160.29.25114.2ll 116.171 1150111391 154.211 117.41114.291116.11 11510
(=25992 S ]14* 114* RFl14 163.511 112.1 10 281 I 1>1 0 I 151013.121 13.7114.111110.3 I 17 I 135112810
(=26450 5 115* 115* RF115 (65,50) (16,20,14) ( 5,9) ( 50,14,1 ) (13,4) ( 1 ,4) (9, 16) { 13 J ( 361 [29 I0
(=26450 5 115* 115* RF115 (-67,48) fIb 9,28) ( 2,7) 18,51 ( 12 l (48,20,7) ( 5,2 l 13,39) 181 (2B) 0
(=26.450 S 115* 115* RF115 (68,471 (15,32) (6,9) [47,15,8,4) 11,a") (5) 17,1)(6) {4,36J (32)0
(=26912 S 116* 116* RFl16 160.56) 14>1 2.6.7.2711 56.8 I 15,1118 I 11>41121 I 1121 16.331 127 I 0
(=26912 S 116* 116* RF116 160.561 14>1 2 >1 3.271 156.8 I ( 19>1 11141 18.33 I 115.4 I 112 I 114. 11113 10
C=26912 S 116* 116* RFl16 160.56114>12>15>11>141156.8118.31117>311171114.41 1121 131112910
C=26912 S 116* 116* RF116 (60,56) (4 tl2 d 5,25) ! 56,8 I ( 10,7,31 (8,10 l (3,4' ( 13 J ( 12) (35) (25) 0
(=26012 S 116* 116* RFl16 (65,51) 19 tl3, 29) I 5,4) { 1 d6 J (51,20 1 ( 9 f 36) ( 16,41 { 131 (15 tlll141 0
C=26912 5 116* 116* RF116 168.481 123.25) I 48.17.31 f 19.71 15.20 I 1121 112.5 I 17.26.31 1 23 I 11910
(=27078 S 117* 117* RF1I7 165.52 I 18>1 2 >32115., 1 I 2 .11 1131152.20118.5113.2 I 11.33113210
(=27378 5 117* 117" RFl17 168.49 I 126.231 149 >12.7 I 13.20115.19 >12) 117 I 17.51 I 25 I 13.23 I (20) 0
(=27378 5 117* 111* RF117 170.471 118. 29) 13.4.11 I 12.1115 I f 47.18.7 I I 3.2 I 11>411 1111 129 I 0
(=27848 5 118* 118* RFl18 162.561112.8.7.2911 56.6111.6114.51121.11 112118.4)1331 12910
(=27848 5 118* 118* RF 118 169.49 I 18>1 1> 30 I 15.~ I 12 >12 I 171 149.19.8 I 15.71111> 2 1 1391 130 I 0
(=28322 S 119* 119* RFl19 170.49 I 117.321 14.6.71 149.17.81 15.11 18111.41191 16.381 13210
(=28800 S 120* 120* RF120 162.58118.901 5.26 I 1 58.41 111.11 110114.11 I 117.8111.361 19 I 12610
(=28800 S 120* 120* RFl20 1·70.50) 119.31111> 3.8>7 I I 50.19.21 15112.5 I 112 >1113 I I 391 1 311 0
(=29768 S 122* 122* RF122

::::::;~r::~::~::~~~~~~;:::*~:~:i~~;~~~~~:~::~;:~:~::~::;~:::710(=29768 5 122* 122* RF122
C=31752 S 126* 126* RF126 168.5811110150321158.9.1118.41110.91117) 11>81 111114>36113210



-53-

TABLE III

A few examples of squarings obtained from various nets

.. "'" ,," """P.F" 5 (6,4,5K~,1)(6)(5.1)(4) , 00.. "0 S 6,. 6' (36,35 )(5,21) )(25 ,9 ,2)(7)( 16) , 00.. "'"
,,. ,. 2 (18,15)(7,8)(14,4)(10,1)(9) , 00

.,; '"''
,,. ,.

'" " (18,15)(7,8)(14,4)(10,1)(9) \ 0 0.. "0 B ". ,.
'" 2 (18,15)(7,8)(14,4)(10,1)(9) , 00.. Jjos 6,. 6, (36 ,35)(5,28)(25,9,2)(7)( 16) , 00.. '00 , ,," 5 (6,4,5)(3,1 )(6)(5,1 )(4) , 00.. 130 g ,,.

'" " (lS,lS)(7,8)(14,4){1O,1)(9) , °°.. ,"" 69- 6, (.36,33 )(5,28 )(25,9,2)(7)( 16) , 0 °.. ''0 S ",. 6< (36,35 )(5,28 )(25,9 ,2)(7 J( 16) 100

Coo ?M52 S 664" 659 EF 24 (357,507)(47,10T,153)(3,44}(302,s8)(17,11,16j(6,S)(82,46)(81)(199)(163) 000
Coo 31752 S 5665" 4919 r-J" 3 (2480,1403, lTnl(S33,501,3.69)(596, 1550)(37,46lt.)(S75)(148,912)(2439,41 )(764)(1634,42)(1592)
0- 31752 S 5737"" 4847 RF 3 (25~2,1400,lm)(1039,369)(842,1304)(143,724,112)(2295,219,)8)(181)(552,462)(400)(1166)(1676) 000

Ca 31752 S 2866* 2426 RF 6 (1218,7l;.11,901f)(48!l-,260)(100,165,6:59)(295,65)(230)(1208,10)(423,11)(352,244)(883)(775) 000

e- 31752 S 591* 585-~ RF 27 (320,27.')(41,94,136)(8,33)(265,41,22)(19,3)(16,2<l)(76)(72,42)(173)(148) 000

e- '1152 S 610l1- 65' RF 24 (300,310)(46,Ba,116)(4,42)(293,71)(33,97)(104)(9,167)(40,66)(l1S,26)(92) 000

e- "152 S 617* 559* p"." 21 (301f, 150, 163)(131, 13)(116)(25,60,52)(255,41,8)'(33)(8,2;<0)(12,2)(10)(142) 000

Ca 31152 S 662-- 661 RF 24 (342,156,164)(148/')(172)(;.8,7S,)2)(46,158)(3-19,61)(21,103)(82)(176,9)(167) 000

c.. 31152 S 5855* 41"9 3 (2385,1510, 1900)(856;{111)(3811, 1516}(142,956)(234.J1,1I1 )(1039)(225,555,116)(379,1313)(1264)(934) 0 0 0

e- 31752 S 6023* 4561 R." j (2390,1576,944,1313)(57;1,369)(334,1348)(12jj,111j)(590,l28)(462)(500,'52){2111,219)(1952)(1900) 000

C:o 31152 S 2686* 2£06 RF 6 (141 I ,1215)(136,464,675)(1195,352)(24,210,2}O)(57,o)(190,20)(19,656)(269){467,99)(368) 0'00

c.. 31152 S 5591* 11993 RF 3 (2622,2169)(117,428,222JI)(2171,379,208,64}(181)(171,J7){88,130)(46,42)(600)(596)(1196) 000

C= 31152 S 1173* 1755*?F 9 (923,850){n,185,t16,~16)(832,164)(9,167)(52,11~)(216)(126,16)(110,13)(489)(452) 000

C= 31152 S 133<'- 590 RF 24 (312,198,223)(148,50)(25,42,156)(58,11)(59)(40,18)(278,34){22,55)(244)(211) 000

Ca 31152 S 136'5* 1280 RF 12 (495,419;452)(16,194,149)(116,336)(339,232)(115,220)(239)(107,125)(64,492)(4116)(428) 006

C= 31152 S 1450;1 1196 RF 12 {600,428,4.22)[123,299)(130,181,11T)(611,176)(42,88)(596,46)(31,208)(111)(1<.15)(379) 000

C= 31752 S 2646* 2!11l6 RF 6 (1228,817,801)(16,785)(1I21,1I12}(1218,10}(9,213,190)(1l4o)(23,161)(230H92,860){168) 000

C>o 31752 S 1408* 1238 RF 12 (6!J-:;!,336,430)(242,94-)(191,333)(64,135,4-3)(<''2,142)(596,110)(39,l88)(1!19)(475}(337) 000

0- 31752 S 234* 207* RF 12 (107,G4,IJ))(1,62)(27;}s)(16,11){26,23)[100,23)(3,82)(2,27)(25)(52) 0 ° 0

C= ;11152 S 1'26* 126* EF126 (68,5B)(11,15,32)(58,9,l)(8,4)(10,9)(17)(l,B)(11){4,36)(3l2) 000

Ca 52893 5 30269" 22624

C=o 52893 s 3528* 2349

C= 52893 s 28106* 24187

c.. 52893 S 9609* 8022
c.. 52893 S 31361* 21532

e- 52893 S 9}11&f 8283

em 5289;1 S 27311· 25582
C= 52893 S 28631· 2~56

C= 52893 S 990" 969

C= 52893 S 31448. 21445

C= 52893 S 27371. 25522

C= 52893 S 21614* 25219

c.. 52893 5 26776* 26117

C= 52893 S -8832* 8199

C>o 52893 5 29032* 23861

c.. 52B93 5 27940* 24953

0- 52893 3 2<}2Q)"- 23690

Ca 52893 s 3QOlr.3* 22850

C= 52693 S 28991* 2,e96

C= 52893 s 9438* 519::5

C= 52893 s 28514~ 24319

(11464,7398, 11407}(4066,3332)(1 \ 11,1544,677)(867, 11211)(11160,3268, 1102)(725,386)(339,47)(2458)(2166)(7892) 0 0 0

9 (1322,966, 1240)(312,350,274)(405, l1W)(44,200,68)(1027,339)(149,299)(183,17)( 166)(104)(688) 0 0 0

(12289,7530,8887)(4159, 1139, 1032)(707,325)(2828;6384)(2446)(1718,3556)(11898,4006,1144)(2862)(1024,8916)(1892) 0 0 0

3 (4283,2551 ,2175)(1435,8i/2,224)(1211,2215)(836,S6)(180)(297, 1138)(845;171 )(3139,841 )(74,2972)(2898) 0 0 0

(12289,.5491,10581 )(3516,3440,1475)(860,615)(245, 1095\ )(1105)(136,4J.IQ9)(222,31<.90)(9243,3268)(5915,783)(5192) 0 0 0

3 (4756,2201,259' )(2011,190)(2581 )(JIG1, 790, 760)(83,378)(3)21, 1011,295)(30,)311 )(49,171 )(122)(2510) 0 0 0

(9933,8491,8861)(1442,3799,2854,396 )(2458,6825)( 6756,4619) (945,l>361)( 4144)(2131,2482)( 1322,9870)(8893)(8548} 0 0 0

(12849,1456,8330J( 4367,2219,872)( 1565,1637)(2001,218)(1783)( 14·1 ,)631)( 1024,3490 )(11407,2466)(8941,652 )(8289) 0 0 0

RF 21 (560,430)(74,124,232}(43,31)(12,19)(13,42)(35,108)(4<l$I,135,29)(106 )(33,301)(274-) 000

(11464,8941, 11043)(2523,3675,2743){641, 10402)(9981,4006)(9}2,2452)(2854, 175})(233,2219)( 1986)(5975,885)(5090) 0 o· °
(15120,12251 )(3521,4280,4450)(10402,4066,652)(31114, 159)()799, 1240)(1070,3380)(2310)(6336, 1144)(249;'441)(5192) 0 0 0

(14268,6558,684B)(6268,290)(11)8){ 1442,3666, 11(0)(2505,5192)(10951,4-759)(2535,3637)(6192,1 102)(351 ,5441 )(5090) 0 0 0

(14110,12666)(1444,4619,6603)(12007,3547)(372,25oB, "139)(3919)(1494,245)(68J+8)(1783,725)(2219)(1,5111,1161 )(3380) 0 0 0

3 (J.610,4222)(;88,878,170,2186)(418g,809)(108,(l62)t319,661){1128)(113,549)(780)(344,205)(2391)(2252) 000 -

(12251,5792,4541,6448)(2654,1907)(411-09,138;;)(727, 7,528)(4144)(2691, 1118)(4305,2151)(11610,641 )(3332)(:n8S)(1631) 0 0 0

(14110,13830)(510,21}7, lI123)(108113, 1907,1070,290)(860)(831,233)(153,107)(.3&i)(218, 168)(3012)(2962)(5914) 0 0 0

(12567,1743,8893)(6268, 1lq5)(325,21'[2,6396)(lZloo)(1153,1I7)(2219)( 11123, 1444)( 124o,513)(727,2005)(9679)(B401) 0 0 0

(12001,1138,4450,6448)(2452,1998)( 1565,6881 )(1341,1111 )(6033,1105)(2676){24.46)(2482,264o)(10843, 1164)(9679)(9521) 0 0 0

(12048,8548,8401 )(2427,5974)(2828,)440,2280)( 1160,3541)(612, 1544,612)(932;4280)(118W,872){334G)(9521 )(7628) 0 0 0

3 (4177,2486,2775)(972, 1225,2B9)(936,"212S)(119,2~3j(1222,1192)( h016,880){30,3290)(1211, 112l3)( 1004)(2132) 0 0 0

(12531 ,1653,S}?O)(3556,3420,617)(274-5,6264)(1)G,2506,3521 )(1322,2310)(11848,2005)(957,3919)(2;.62)(9785)(6881) 0 0 0

Coo. 59505 S 1{;.-'2*

c... 59505 S 891.

C= 59508 s 1654*

C= 59508 s 18111*

C= 59508 S 1168*

C= 59508 S 45*

C= 59508 5 901*

0- 59508 S 1764*

Coo 59508 S 11711""

C= 59508 S 180]2"

C= 59508 S 882*
C= 59508 S 901*

C= 59508 S 1654*

C= 59508 s 180:2*

e- 59506 s 1164"

C= 59508 S 166~

C= 595(i) s 891·

Coo 59508 s lTI4"

Ca 59505 S 1814*

Coo 59508 s 1168*

e- 59508 S 8820-

1644'" RF 18 (896,166)(152,225,389')(11£,12S,22)(104,70)(67,3)(64,164)(1.91,?>5)(164-)-(64,!l89)(425) 000

102* RF 36 (383,2J9,269){148,91)(61,208j(G1,91)(319,4)(148,4)(65)(35,56)(79/21)(285)(221) 000

1652* RF 18 (896,758)(149,191,418)(756,129,11){11G,42)(118,11,)(20S,42)(3,112)(163)(Slf,416)(4-22) 000

1492* RF 18 (748,501 ,565)(197,240,64){21'O,)89)(SO, 104,1';)(219,611)(7114,54)(158)(155, 1!J9){53B)(S}2) 000

153&' RF 18 (794,4g8,476)(22,454)(243,271)(53, lSG,34)(156, l);,j("r1,1" 103)(225,34)(1 ,608)(191 )(416) 0 °0

42* PJ'684 (16,14,15)(2,1,5)(4,l1)(11,7)(2,7)(2,7)(4,5)(2,16j(15)(111) 000

752* RF ':h (;;78,249,214)(133,91,2~)(98,201)(59,32)(27,103)(374,j')(120,1'7)(103)(27,271){250) 0 00

1542 P.F 18 (185,425,554)(2S'6,129)(24J,440)(6JI,156,76)(757,92){122,197)(20:;,~2}(1'::;4)(&),548)(459) 000

1532 I1F 18 (185,500,489){11,478)(234,271)(51,140,43)(l3D,190)(741,S9)(196,33)(16})(103,565)(462) 000·

1504 RF 18 (757,491,548)(2Cll5,240,Sl)(197,402)(51',118,3lc)(266,b)(205)(747,64)(H32)(53,554)(501) 0 °0

771" RF' Y, (397,211 ,274)(148,63)(111,220)(38, 78,32}( 1105, 103)(374,61 )(21,103)(82)( 4£,217)(231) 0 0 0

752" F.F 36 {378,249,214)(l33,91,25)($18,201 )(59,32)(27,103)(374,4)(120, 11)(103)(21,277)(250) 0 0 0

1652* RF 18 (t!96, 158)( 149, 191 ,418)(756, 129, 11 )(118,42)( 1H3, 115)(205,42)(3, 112)(163)(54,416)(422). 0 0 0

,,04 RF 18 (157,497,548)(206,240,51 )(191,402)(51,,118,)11)(266,8)(205 )(747,64)( 1B2}(53,554)(501) 0 0 0

1542 RF 18 (785,42S,554)(290, 129)(243,44-0)(64, 156, 76)(157,92)(122, 1?1)(206,4<")(164)(89,548)( 459) 0 0 °
1644:* RF 18 (896,766)(1S2,225,389)(748,126,22)(104,70)(67,3)(611,164)(191,33)(164)(64,489)(425) 000

162* RF 36 (383,2.59,269)(148,91 )(61 ,208)(61;91 )(379,4)(148,11)(65)(35,56)(79,21 )(265)(227) °0 0

1532 m'18 (785,500,489)(11,478)(2}4,277)(51,140,43)(150,190)(147,89)(196,33)(163)(10j,565)(462) 000

11t92"- Rf' 18 (148,501,565)(197,240,64)(240,)89)(50, 104,1,3)(219,64)(144,54)(158)(155, 149){538)(532) 0 0 0

1538* RF 18 (194,-498,416}(22,454)(243,2n)(S3, 156,34)(156, 15'5)(71111, 103)(225,34)(1 ,608)(191 )(416) 0 ° 0

171* Rf' 36 (391,211,214)(148,63)(117,220)(38,78,32)(46,103)(3711,61)(21,103){82}(J.6,217)(23\) 000



-54-

00 99072 S 1902Y* 14001 RF ,3 (7071,5000,6952)(2071,1481,14-48)(j3,91',504)(916,~98)(407,7049)(6930,1886,}26)(513,280)(1598)(1560)(5044)0 () 0

Coo 99072 s 3306* 2198* F:F 16 (1244,907,1155)(299,360,248)(360,1043)(38,200,61 )(954,328)( 173,243)(166,34)( 132, 75)(68;5)(626) 00 0

0- 99\JT2 s 4503* ;:i74&' Rr 12 (1882,1224,140:2)(658,380,186)(8,42.9,965)(194)(341,221)(120,556)(1866,605,69)(536)(120,1)61)(1261) 000

e- 99072 s ,8015* 15009 RF -' (7960,48c8,52li.7)(:2456,1913,439)(1448,h2}3)(26,1422}{543,1396)(6;J6,2303)(7049, 1607)(1450,1368)(82,5524)(541t2) 0 <J 0
e- 99072 s '9&'...6+ 6626* RF 6 (3764,2690,}4.%l)(1033,1041,616)(49<l,126)(364,3194){41,9/34,8)(984,65)(2862,943)(919)(1919,8)(1911) 000

c.. 99072 5 144* 6.52* RF 72 (j45,204.,194)(lO,184){103,111)(.59,56,O)(56,63)(286,82,17}(65,8)(57,7)(:254>(204) 000

c= 9m2 s 8542* 7970'- RF 6 (3048,2690,2Bo4)(358, '.505,913, 114)(799,21 19)(2082, 1324)(392, 1320){}17, 1320)(758,943)(.392,3047)(2840)(2655)

C= 99072 s 2264* 1864-* HF 24 (995,605,664)(330.216,59)(235,488)(13'3,78)(0;;0,253)(60,246,24)(222)(&)9,186)(29,712)(683) 000

C= 99072 S 22)2" 1896"" RF 24 (l~';:::~;~';~;:':;:;:;::;::;;;,;::,~;~~,~;::i~~:~::;:::i::;::;~:;:;;;:;:~':;';~:;'~:;;:;:;"::I;'(~j,'J"'I(34301G= 99072 S 19695* 13329 RP 3 (7 000

c. 99072 S 18847* 111177 RF ) (8008,5272,5567)(25D4,2li73,295 )(:2010,3'352)( 168, 1842)(31 ,2610)(2}2,2303)(61.o9,2071 )(9)6,4758)(4098,276}(3S22)

Coo 9')<J72 s 9166* 7546* R1' 6 (4152,2202,:>812)(J592,510)(1267,2155)()58,:;149,285)(664,888){3191:,i316)(725,88B)(664,2379/(1878,163)(111;;) 000

C= 99072 S 4508* .57i18*:RF 12 (1818,1224,1"'06)(662,3'30,1&')(196,427,%))(31'9,229)(120.536)(1f>qo,C)(6C3,67){5X,)(120,1379)(1259) 000

G= 99072 S 276~ '2742* RF 18 (1490,1272){245,333,694){l2'52,211,27)(184,Ul){184,237)(507,88)(:219,53)(166,124)(42,776)(734) 000

0- 99012 S 2264,* 1864* RF 24 (941,659,664)(222,246,186,5)(lB1,488)(60,307)(60,138,24)(330)(923;rB}(21oj(83,712)(529) 000

c.. 99072 S 17631* 15393 FF 3 (7865,4250,5516)(29Sl;, 1266)(2472,4310)(631,1597, 754)(7528,968){ 1}88, 18}'})(2024,543)[ 1481 ,450)( 1031 ,5567)(45):))

c.. 99072 S 8302* 8210" RF 6 (4470,)6:52)(758,113;,1941)(:5740,610,1:?'J)(I~90,3S8)(13,312,::oC)(102,299)(1005,197)(eOC}012,24:5'r)(2125) OO·J

C= 99072 S 2216" 1912* RF 24 0 0 0

C= 99072 S lm5* 15249 RF ;;

0> 99072 S 18127~ llj8g'( :P.F .3 (7465,5310,53,52)(1716,2082, 1512)(1470,;>2&»(~70,2,1'12)(439,911,y;6)(5l;5,2L:-75)(74)2,1f72)(1~8)(,531,5663JC::032) 0 OJ

Co 99072 S 17823" 15201 .RF .3 (7756,4l11-o,52471(22}2,2201,407)(1"794,;.S60)Ol,1898,2066)(664,1~?9)(7465,935)(2266,268)(199-S,lW)(6094)(4264)

0- 99072 S . 22)2" 1896* P.F 24 (967,601 ,(64)(268,::"1o,63)(207,520)(92" 168,2)(166,313)(~'?, 130){66,263)(202)(121, 7J2){591) 0 0 0



PROGRAMME I
begin integer N, x ;N: = 8;

begin integer number of choices;
Boolean selfdual;
integer array W[1 :2*(2*N--;--3+N)+1];
procedure wheel (B); value B;

integer B;
begin integer MDP, t, I;

MDP: = B --;-- 2 + 1; t: = l;
for I: = 1 step 1 until MDP-2 do

begin
W(t]: = W[t+3]: = I; W[t+1]: = MDP; W[t+2]: = 1+ 1; W(t+4]: = 0: t· = t + 5

end:
W[t]: = W[t+3]: = MDP-1; W[t+l]: = MDP; W[t+2]: = l; W[t+4]: = 0; t: = t + 5;
for I: = 1 step 1 until MDP- 1 do

begin
W[t]: = I; t: = t + 1

end;
Wrt]: = 1; W[t+l]: = W[t+2]: = 0

end wheel;
procedure WRITE (W, number of choices, selfdual); integer number of choices;

Boolean selfdual;
integer array W;

begin integer i; write (0); write (W[l]);
for i: = 2 step I until i do

begin

Ul
Ul



write (W[i]); if W[i-l] = 0 /\ W[iJ = 0
then go to end

end;
end: write (number of choices);

if selfdual
then write (l)
else write (0)

end WRITE;
write (N); wheel (N); number of choices: = 2; selfdual : = true ;WRITE (W, number of choices, selfdual); write (-1);
go to finish;
start: begin integer K, M, B, H, end of file, identificationnumber, storage;

integer array branch 1, branch 2, branchdual 1, branchdua1 2 [l:N+lj, W[1:2*(2*N--:-3+N)+lj,
Vel :2*(2*N--:-3 +N)+5];

proc~dure READ (W, number of choices, selfdual, end of file); integer number of choices, end 1)[ file;
Boolean selfdual:
integer array W;

begin integer i, j;
W[l]: = read;
for i: = 1 step 2 until i do

begin
W[i+l]: = read; W[i+2]: = read; if W[i+l] = 0 /\ Wfi+2] = 0

then go to end
end;

end: number of choices: = read;
j: = read; ifj = 0

then selfdual: = false



else selfdual: = true;
end of file: = read

end READ;
procedure form branches (V, branch 1, branch 2, branchdual 1, branchdual 2, K, M);

integer K, M;
integer array branch 1, branch 2, branchdual 1, branchdual 2, V;
begin integer m, t, tt, i;

t: = m: = 1; tt: = 0;
begin:

for i: = 1 step 1 until tt do
begin

if V[t+l] = branch 1 [i] /\ V[t] = branch2li]
then

begin
branchdual 2[i]: = m; go to next

end
end i;

tt: = tt + 1; branch 1[tf]: = V[f]; branch 2[tt]: = V[f+ 1]; branchdua1 1[tt]: = m;
next: t: = t + 1; if V[t+1] = 0

then
begin

if V[t+2] = 0
then go to end;
m: = m + 1; t: = t + 2

end;
go to begin;



end: B: = It; M: = m; K: = B + 2 - M
end form branches;

procedure dualize (branch I, branch 2, branchduall, branchdual 2, K, V);
integer K;
integer array branch 1, branch 2, branchdual I, branchdual 2, V;
begin integer i,j, I, h, t, search, remember;

integer array vector I, vector 2[1 :B];
t: = 0; i: = 1;

start: I: = I;
for j: = 1 step 1 until B do

begin
if branch 1[j] = i
then

begin
vector 2[1]: = branchduall [j];
vector 1[I]: = branchdual 2[j]; I: = 1+ 1

end;
if branch 2[j] = i
then

begin
vector 1[I]: = branchdual 1[j];
vector 2[1]: = branchdual 2(j]; I: = 1+ I

end
end;

t: = t + 1; V(t]: = vector 1[I]; search: = remember: = vector 2[1];
begin :for h: = 1 step I until 1- 1 do

Vl
00



begin
if vector 1[h] = search
then

begin
t: = t + 1; V[t]: = search; search: = vector 2[h];
if search = remember
then go to continue;
go to begin

end
end;

continue:
t: = t + 1; V[t]: = 0; i: = i + 1; ifi = K + 1

then go to end;
go to start;

end: t; = t + 1; V[t]: = 0
end dualize;

procedure identification (V, identificationnumber); integer identificationnumber;
integer array V;

begin integer i, j, workstorage, maxweight original, maxweight dual, remember maxweight dual, remember max
weight original, n original, n dual, I;

Boolean dual with fromdual, fromdual, nogain;
integer array weight original, location original [1:K+1], inverse location [1 :K}, weight dual, location dual

[1:M+I];
procedure identify (K, weight original, weight dual, location, max weight, n, branch 1, branch 2, branchdual

1, branchdual 2);
integer K, n, maxweight;

lh
\0

I



integer array weight original, weight dual, location, branch 1, branch 2, branchdual 1, branch
dual 2;

begin integer z, weightstorage, t, i, k, q, s, I, min;
Boolean ready;
integer array new location, score [1 :K];
nogain: = false;

start: z: = 1; weightstorage: = 1; t: = 1;
for i: = 1 step 1 until K do score [i]: = 0;
if fromdual
then for i: = 1 step 1 until B do

begin
score [branch 1 [i]]: = score [branch 1 [ill + weight dual [branchdual 2 [iJ];
score [branch 2 [i]]: = score [branch 2 [iJ] + weight dual [branchdual 1 [i]];
fromdual: = false

end
else for i: = 1 step 1 until B do

begin
score [branch 1 [iJ]: = score [branch 1 [ill + weight original [branch 2 [i]];
score [branch 2 [i]]: = score [branch 2 [ill + weight original [branch 1 [ill

end;
label 1:

for i: = z step 1 until K do
begin

if weight original [location [ill =1= weight original [location [i + 1]]
then go to continue

end;

g;
I



continue:
if i > z
then

begin
for k: = z step 1 until i do weight original [location [k]]: = 0;
label 2:
min: = M*2tK; ready: = true;
for I: = z step 1 until i do

begin
if score [location [l]] < min /\ weight original [location [i]] = 0
then

begin
min: = score [location [i]]; ready: = false

end
end;

if ready
then go to continue i;
weightstorage: = 2*weightstorage;
for n: = z step 1 until i do

begin
if score [location [n]] = min
then

begin
weight original [location [n]]: = weightstorage;
new location [t]: = location [n]; t: = t + 1

end



end n;

n: = i; go to label 2
end of then i > z

else
begin

weightstorage: = 2*weightstorage;
weight original [location [i]]: = weightstorage;
new location [t]: =location [i]; t: = t + I

end else;
continue i:

z:=i+l;ifz-;;;'K
then go to label I;

if weightstorage *- 2 t K
then if weightstorage = maxweight

then
begin

nogain : = true; go to finish
end

else
begin

for s: = I step I until K do location [s]: = new location [s];
maxweight: = weightstorage; go to start

end else;
for s: = I step I until K do location [s]: = new location [s];

finish:
end identify;

0"1
IV

I



number of choices: = 0;
for i: = I step I until K do

begin
weight original [i]: = 2; location original [i]: = i

end;
location original [K+I]: = K + I ; weight original [K+I]: = 0; fromdual: = false;
maxweight original: = 2;
identify (K, weight original, weight dual, location original, maxweight original, n original, branch I, branch 2,

branchdual I, branchdual 2);
remember maxweight original: = maxweight original;
ifinogain
then go to form identificationnumber;
for i: = I step I until M do

begin
weight dual [i]: = 2; location dual [i]: = i

end;
location dual [M+I]: = M+I; weight dual [M+I]: = 0; fromdual: = false; maxweight dual: = 2;
dual with fromdual: =~ false;
identify (M, weight dual, weight original, location dual, maxweight dual, n dual, branchdual I, branchdual 2,

branch I, branch 2);
remember maxweight dual: = maxweight dual;

two: fromdual: = true;
three: identify (K, weight original, weight dual, location original, maxweight original, n original, branch I, branch 2,

branchduall, branchduaI2);
ifinogain
then go to form identificationnumber;



if maxweight original = remember maxweight original
then

begin
if dual with fromdual
then

begin
five: weight original [location [n original]]: =

weight original [location [n original]] + 1; dual with fromdual: = false;
number of choices: = number of choices + 1; go to three

end;
go to four

end;
remember maxweight original: = maxweight original;

four: fromdual: = true;
identify (M, weight dual, weight original, location dual, maxweight dual, n dual, branchdual 1, branchdual 2,

branch 1, branch 2);
dual with fromdual: = true;
if nogain
then go to two;
if maxweight dual = remember maxweight dual
then go to five;
remember maxweight dual: = maxweight dual; go to two;

form identificationnumber:
for i: = 1 step 1 until K do inverse location [location original [i]]: = i;
identificationnumber: = 0;
for 1: = 1 step 1 until B do

~

I



begin
i: = K + I-inverse location [branch 1 [I]];j: = K + I-inverse location [branch 2 [I]];
ifi >j
then

begin
workstorage: = i; i: = j;j: = workstorage

end;
identificationnumber: = identificationnumber +2t «Kt2+K+i*(i-2*K+I)-2*j)--:-2)

end
end identification;
procedure form TNSTAR;
begin integer array U [1 :2*(2*N--:-3+N)+5];

procedure new net test (V, storage); integer storage;
integer array V;

begin integer p;
own integer array id number [1 :4t(B-9)]
for p: = 1 step 1 until H do

begin
if storage = id number [p]
then go to end

end;
H: = H + 1; id number [H]: = storage; WRITE (V, number of choices, selfdual);

end:
end new net test;
form branches (V, branch 1, branch 2, branchdual 1, branchdual 2, K, M);
ifK=M



then
begin

identification (V, identificationnumber);
storage: = identificationnumber;
dualize (branch I, branch 2, branchduall, branchdual2, K, U);
form branches (U, branch I, branch 2, branchdual 1, branchdual 2, K, M);
identification (U, identificationnumber);
if identificationnumber < storage
then

begin
selfdual: = false; new net test (U, identificationnumber)

end
else

begin
if identificationnumber > storage
then

begin
selfdual: = false; new net test (V, storage)

end
else

begin
selfdual: = true; new net test (V, storage)

end
end

end
else

I
0'1
0'1



begin
ifK>M
then

begin
dualize (branch 1, branch 2, branchdua11, branchdua12, K, U);
form branches (U, branch 1, branch 2, branchdua11, branchdua12, K, M);
identification (U, identificationnumber);
se1fdua1: = false;
new net test (U, identificationnumber)

end
else

begin
identification (V, identificationnumber); se1fdua1: = false; new net test (V, identificationnumber)

end
end

end form TNSTAR;
procedure generate nets (W); integer array W;
begin Boolean dualized;

dualized: = false; go to con 2;
con 1: if dualized Vse1fdua1

then go to finished;
form branches (W, branch 1, branch 2, branchdua11, branchdua1 2, K, M);
dualize (branch 1, branch 2, branchdua11, branchdua12, K, W);
dualized: = true;

con 2: begin integer i, ii, m, S, t, MM, p, q, a, b, I;
integer array sum [1 :N], multiplicity [1 :N];

0\
-.l

I



m: = t: = sum [1]: = i: = 1;
label: if W[t+2] = 0

then
begin

t: = t + 3; i: = i + 1; sum [i]: = t; multiplicity [i-I]: =m; m: = 1;
if W[t] = 0
then go to follow

end;
t: = t + 1; m: = m + 1; go to label;

follow:
MM: = i-I;
for ii: = 1 step 1 until MM do

begin
if multiplicity [ii] > 3
then

begin
q: = sum [ii] - 1;
for a: = 1 step 1 until sum [ii]-l do V[a]: = W[a];
for b: = sum [ii+1] step 1 until sum [MM+1] do V[b+4]: = W[b];
for s: = 1 step 1 until multiplicity [ii] - 2 do

begin
for I: = s + 2 step I until if s = I then multiplicity [ii] - I

else multiplicity [ii] do
begin

p:=q+l;
for m: = s step 1 until 1do

I



begin
V[p]: = W[m+q];p: = p + I

end;
V[p]:= W[s+q];p:=p+l; V[p]:=O;p:=p+l;
for m: = 1step I until multiplicity [ii] do

begin
V[p]: = W[m+q];p: = p + I

end;
for m: = I step I until s do

begin
V[p]: = W[m+q];p: = p+l

end;
V[p]: = W[l+q]; V[p+l]: = 0;
form TNSTAR;

end 1
end s

end if
end ii

end block con 2;
go to con I;

finished:
end generate nets;

H: = 0; write (N+I);
next net:

READ (W, number of choices, selfdual, end of file);
generate nets (W);



if end of file ~ 0
then

go to next net;
N: = N + 1; if N - 2*(N-:-2) = 0

then
begin

wheel (N); selfdual: = true; number ofchoices: = 2; WRITE (W, number of choices, se1fdua1)
end;

write (-1);
end;

finish: stop; N: = read; x: = read; go to start;
end

PROGRAMME II
begin integer B, x;
next B:

B: = read; x: = read;
start: begin integer end of file, number of choices;

integer array V[l :2*(B+2*B-:-3)+1];
procedure READ (W, number of choices, end of file); integer end of file, number of choices;

integer array W;
begin integer i, j;

W[l]: = read;

I
Cl
I



for i: = 1 step 2 until i do
begin

W[i+l]: = read; W[i+2]: = read; if W[i+l] = 0/\ W[i+2] = 0
then go to end

end;
end: number of choices: = read; j: = read; end of file: == read
end READ;
READ (V, number of choices, end of file);
begin integer K, M, complexity, hcf;

integer array branch 1, branch 2, branchduall, branchduaI2[1: B], INC [1 :2*B--:-3-1, 1:4*B--:-3-2],
ZINV [1 :2*B--:-3, 1:2*B--:-3];

procedure form branches (V, branch 1, branch 2, branchdual 1, branchdual2, K, M);
integer K, M;
integer array branch 1, branch 2, branchdual 1, branchdua1 2, V;

begin integer m, t, tt, i;

t: = m: = 1; tt: = 0;
begin: for i: = 1 step 1 until tt do

begin
if V[t+ 1] = branch 1[i] /\ V[t] = branch 2[i]
then

begin
branchdua1 2[i]: = m; go to next

end
end i;

tt: = tt + 1; branch 1[tt]: = V[t]; branch 2[tt]: = V[t+1]; branchdua1 1[tt]: = m;
next: t:=t+1;ifV[t+l]=0



then
begin

if V[t+2] = 0
then go to end;
m:=m+l;t:=t+2

end;
go to begin;

end: B: = tt; M: = m; K: = B + 2 - M
end form branches;
procedure dualize (branch 1, branch 2, branchdua11, branchdua12, K, V);

integer K; .
integer array branch 1, branch 2, branchdua11, branchdua1 2, V;

begin integer i, j, 1, h, t, search, remember;
integer array vector 1, vector 2 [1 :B];
t: = 0; i: = 1;

start: 1: = 1;
for j: = 1 step 1 until B do

begin
if branch 1[j] = i
then

begin
vector 2[1] : = branchdua1 1[j];
vector 1[1]: = branchdua1 2[j]; 1: = 1+ 1

end;
if branch 2[j] = i
then

;j

I



begin
vector 1[l]: = branchdua1 1[j];
vector 2[1]: = branchdua12[j]; 1: = 1+ 1

end
end;

t: = t + 1; V[t]: = vector 1[1]; search: = remember: = vector 2[1];
begin: for h: = 1 step 1 until 1- 1 do

begin
if vector 1[h] = search
then

begin
t: = t + 1; V[t]: = search; search: = vector 2[h];
if search = remember
then go to continue;
go to begin

end
end;

continue: t: = t + 1; V[t]: = 0; i: = i + 1; if i = K + 1
then go to end;
go to start;

end: t:=t+1; V[t]:=O
end dualize;
procedure HCF(x,y); integer x,y;
begin integer RN1, RN2;

RN1: = x; hcf: = y;
algorithm:

I
-...lw



RN2: = RN1 - hch(RN1 ~ hcf);
if RN2 -=I- 0
then

begin
RN1: = hcf; hcf: = RN2;
go to algorithm

end;
hcf: = abs(hcf)

end RCF;
form branches (V, branch 1, branch 2, branchdua11, branchdua12, K, M);
ifK<M
then

begin
dualize (branch 1, branch 2, branchdual1, branchdual 2, K, V);
form branches (V, branch 1, branch 2, branchdual1, branchdua12, K, M)

end;
comment initialize matrix INC;
begin integer i,};

for i: = 1 step 1 until M-1 do
begin

forj: = i + 1 step 1 until M + i- 2 do INC [i,}]: = 0
end

end initialize matrix;
comment form upper triangle;
begin integer i:

for i: = 1 step 1 until B do

I
i
I



begin
if branehdual 2[i] *- M
then

begin
INC [branehdual 1[i], branehdual 2[i]]:= -1 ;
INC [branehdual 2[i], branehdual 2[i]]: = INC [branehdual 2[i], branehdual 2[ill + 1

end;
INC [branehdual 1[i], branehdual 1[i]]: = INC [branehdual 1[i], branehdual 1[ill + 1

end
end form upper triangle;
comment initialize inverse of INC;
begin integer i;

for i: = 1 step 1 until M-I do INC [i, M + i- 1]: = 1
end initialize inverse of INC;
comment Gaussian elimination;
begin integer i,j, k, [,f, g, h;

for i: c= I step 1 until M - 2 do
for j: = i + I step 1 until M - 1 do

begin
if INC [i,j] *- 0
then

begin
RCF (INC [i,j]*INC [j,j + M - I], INC [i, i]*INC [i, i + M/- 1]);
f: = INC [i,j]*INC [j,j + M - I] --;- hef;
g: = INC [i, i]*INC [i, i + M - I] --;- hef;
INC [j,j + M - 1]: = g*INC [j,j + M- 1];



for k: = j step 1 until i + M - 1 do INC [j, k]: = g*INC fj, k] - !*INC [i, k];
RCF (INC [j,j], INC [j,j + M - 1]);
for h: = j + 1 step 1 until i + M - 1 do

begin

ifINC [j, h] *0
then

begin
RCF(hcf,INC[j,h]);
if hcf= 1
then go to continue

end
end;

for 1:= j step 1 until i + M - 1 do
begin

if INC [j, 1] * 0
then INC [j, 1]: = INC [j, 1] -;- hcf

end;
INC [j,j + M - 1]: = INC [j,j + M - 1] -;- hcf;

continue:
end then

endj
end Gaussian elimination;
comment calculation of the complexity;
begin integer N, D, i;

N: = INC[l,l]; D: = INC [I,M];
for i: = 2 step 1 until M - 1 do



begin
RCF (N*INC [i, i], DdNC [i, i + M - 1]);
N: = INC [i, i]*N --:- hcf;
D: = INC [i, i + M - l]*D --:- hcf

end;
complexity: = N

end calculation of the complexity;
comment backsubstitution;
begin integer i,}, k, I, m,j, g;

for i: = 1 step 1 until M - 1 do
begin

if INC [M - i, M - i] = complexity
then go to for};
RCF(INC [M - i, M - i], complexity);
f: = complexity --:- hcf;
g: = INC [M - i, M - i] --:- hcf;
for k: = M step 1 until 2*M - i - 1 do INC [M - i, k]: = INC [M - i, k]*! --:- g;

for}:
for}: = i + 1 step 1 until M - 1 do

begin
if INC [M - }, M - i] =F- 0
then

begin
RCF (INC [M -), M - i], complexity);
j: = INC [M - }, M - i] --:- hcf;
g: = complexity --:- hcf;



for I: = M step 1 until 2*M-I-j do INC[M-j, I] :=g* INC[M-j, 1]-1* INC[M-i,/];
ifg=F 1
then for m: = M - j step 1 until M -1- i do INC [M - j, m]: = g*INC [M - j, m];

end then
endj

end i
end backsubstitution;
comment put final touch to the inverse of INC;
begin integer i, j;

for i: = 1 step 1 until M - 1 do
begin

for j: = 1 step 1 until i do ZINV [i,j]: = INC [i, M - 1 +j]
end lower triangle ZINV;

for i: = 1 step 1 until M - 1 do
for j: = i + 1 step 1 until M - 1 do ZINV [i,j]: = ZINV [j, i];

for i: = 1 step 1 until M do
begin

ZINV [i, M]: = 0; ZINV [M, i]: = 0
end

end final touch of the inverse of INC;
begin integer r, zero currents, RF, vertical, horizontal, b;

Boolean original, second time, imperfection, trivial imperfection;
integer array current, positive original, positive dual, negative original, negative dual [I :B], from original,

from dual [1 :2*B], Bouwkamp code [1 :2*B-l], address original [O:K+l], address dual
[O:M+l];

I
-.:J
00



procedure left cyclic ordening adjacent vertices (branch 1, branch 2, branchduall, branchdual2, positive,
negative, address, from, K);
integer K;
integer array branch 1, branch 2, branchdual 1, branchdual 2, positive, negative, address,

from;
begin integer h, i,j, k, remember, meshsearch;

k: = 1; i: = 1; address [0]: = 0; address [1]: = 1;
search first branch:

for j: = 1 step 1 until B do
begin

if branch 1 [j] = i
then

begin
remember: = meshsearch: = branchduall[j]; from [k]: =j; positive [j]: = k;
go to go on searching

end;
if branch 2 [j] = i
then

begin
remember: = meshsearch: = branchduaI2[j]; from [k]: = j; negative [j]: = k;
go to go on searching

end
endj;

go on searching:
k:=k+l;
for h: = 1 step 1 until B do



begin
if branch 1[h] = i /\ branchdual 2[h] = meshsearch
then

begin
if branchduall [h] = remember
then go to continue;
from [k]: = h; positive [h]: = k; meshsearch: = branchduall[h];
go to go on searching

end;
if branch 2[h] = i /\ branchdual I [h] = meshsearch
then

begin
if branchdual 2[h] = remember
then go to continue;
from [k]: = h; negative [h]: = k; meshsearch: = branchduaI2[h];
go to go on searching

end
end h;

continue:
i: = i + 1; address [i]: = k; if i =I- K + I

then go to search first branch
end left cyclic ordening adjacent vertices;
procedure form code (branch 1, branch 2, positive, negative, address, from);

integer array branch 1, branch 2, positive, negative, address, from;
begin integer next first, former first, next second, former second, place, increment, signum, first vertex;

integer array reduced ordered current [I :2*B];

00o

I



procedure reduce address (u, t);
integer u, t;

begin
place: = if u < address [t]

then adress [t+ I] - I
else if u = address [t+l]

then address [t]
else u

end reduce address, where u is to be reduced and t the vertex;
begin integer i;

for i: = I step I until B do
begin

reduced ordered current [positive [i]]: = current [i] --c- RF;
reduced ordered current [negative [i]]: = -current [i] --c- RF

end i

end;
if second time
then go to first and third way of forming code;
reduce address (positive [r]+I, branch l[r]);
next first: = abs (reduced ordered current [place]);
reduce address (positive [r]-1, branch I [r]);
former first: = abs (reduced ordered current [place]);
reduce address (negative [r] +1, branch 2[r]);
next second: = abs (reduced ordered current [place]);
reduce address (negative [r]- I, branch 2[r]);
former second: = abs (reduced ordered current [place]);

00-



if next first > next second /\ next first > former first /\ next first > former second
then

begin
increment: = 1; go to first and third way of forming code

end;
if next second:::;: former first /\ next second > former second
then

begin
increment: = 1; go to second and fourth way of forming code

end;
increment: = -1 ;
if former first ~ former second
then go to first and third way of forming code
else go to second and fourth way of forming code;

first and third way of forming code:
first vertex: = branch 1[r] ;
if current [r] > 0
then signum: = -1
else signum: = 1;
go to start Bouwkamp code;

second and fourth way of forming code:
first vertex: = branch 2[r] ;
if current [r] > 0
then signum: = 1
else signum: = -1 ;

start Bouwkamp code:

00
tv

I



begin integer end, min, where, i, j, k, I, p, q, ii, count, S, v, t, number of squares;
integer array contour, vertex contour, save contour, save vertex contour, new squares,

vertices new squares [1 :B];
procedure fetch new squares (branch 1, branch 2, address, from);

integer array branch 1, branch 2, address, from;
comment ii has to be initialized, vertex t has to be given, b is a running variable;

begin integer I;
Boolean T, S;
I: = 0; T: = true; place: = address [t]; S: = true;

label: place: = place + increment;
reduce address (place, t)

if reduced ordered current [place] = 0
then go to label;
if sign (reduced ordered current [place)) = sign (if T then signum else -signum)
then

begin
if I (T 1\ (I S))
then go to label;

label 1:
Bouwkamp code [b]: = abs (reduced ordered current [place)); b: = b + 1;
new squares [ii]: = abs (reduced ordered current [place));
vertices new squares [ii]: = if branch 1 [from [place]] = t

then branch 2 [from [place]]
else branch 1 [from [place]] ;

ii: = ii + 1; go to label
end;



ifT/\S
then

begin
T: = false; go to label

end;
if,CT/\ (, S))
then

begin
T: = true; S: = false; go to label 1

end;
number of squares: = ii - 1

end fetch new squares;
Bouwkamp code [1]: = - 1; b: = 2; vertex contour [1]: =first vertex; end: = 1; contour [1] :=0;

back: min: = contour [1]; where: = 1;
for i: = 2 step 1 until end do

begin
if contour [i] < min
then

begin
min: = contour [i]; where: = i

end
end;

count: = 0;
for j: = where + 1 step 1 until end do

begin
if min i= contour [j]

00
.j>.

I



then go to next
else count: = count + 1

end;
next: ii: = 1;

for k: = 0 step 1 until count do
begin

t: = vertex contour [where + k];
fetch new squares (branch 1, branch 2, address, from)

end;
for i: = 1 step 1 until number of squares-l do

begin
if new squares [i] = new squares [i+1]
then

begin
trivial imperfection: = true; go to follow

end
end;

follow:
Bouwkamp code [b]: = - 1; b: = b + 1;
for I: = where + count + 1 step 1 until end do

begin
save contour [I]: = contour [I];
save vertex contour [I]: = vertex contour [I]

end;
for p: = where step 1 until where +number of squares - 1 do

begin

00
Vl

I



contour [p]: = new squares [p+1- where] + min;
vertex contour [p]: = vertices new squares [p +1- where]

end;
for q: = where + count + 1 step 1 until end do

begin
contour [number of squares- count +q- 1]: = save contour [q];
vertex contour [number of squares - count +q - 1]: = save vertex contour [q]

end;
if where> 1
then s: = where-1
elses:=1
for v: = s + 1 step 1 until end + number of squares - count - 1 do

begin
ifi(contour [s] = contour [v] /\ vertex contour [s] = vertex contour [v])
then

begin
s: = s + 1; contour [s]: = contour [v]; vertex contour [s]: = vertex contour [v]

end
end;

end: = s;
if end =1= 1
then go to back

end Bouwkamp code
end form code;
left cyclic ordening adjacent vertices (branch 1, branch 2, branchdual1, branchdual2, positive original, nega

tive original, address original, from original, K);

00
0\

I



left cyclic ordening adjacent vertices (branchduall, branchdual2, branch 1, branch 2, positive dual, negative
dual, address dual, from dual, M);

for r: = I step I until B do
begin integer s;

for s: = I step I until B do
current [s]: = ZINV [branchdual I [r], branchduall [s]]

-ZINV [branchduall[r], branchduaI2[s]]
- ZINV [branchdual 2[r], branchduall [s]]
+ ZINV [branchdual 2[r], branchdual 2[s]];

comment test imperfection;
imperfection: = false; second time: ~= false; trivial imperfection: = false;
begin integer i;

for i: = I step I until B- I do
for j: = i + 1 step 1 until B do

begin
if abs (current [iD = abs (current[j])
then

begin
imperfection: = true; go to count zero currents

end
end

end;
count zero currents:

zero currents: = 0;
begin integer k;

for k: = I step 1 until B do

00
-:l

I



begin
if current [k] = 0
then zero currents: = zero currents + 1

end
end;
RCF (current [1], complexity);
begin integer I;

for I: = 2 step 1 until B do RCF (current [I], hcf);
RF: = hcf

end;
if (complexity- current [r]) > current [r]
then

begin
vertical: = current [r] --:- RF;
current [r]: = current [r] - complexity;
horizontal: = - current [r] --:- RF;
original: = false; go to dual net

end
else

begin
original: = true;
vertical: = (complexity - current [r]) --:- RF;
horizontal: = current [r] --:- RF

end;
original net:

form code (branch 1, branch 2, positive original, negative original, address original, from original);

00
00



procedure left cyclic ordening adjacent vertices (branch 1, branch 2, branchduall, branchdual2, positive,
negative, address, from, K);
integer K;
integer array branch 1, branch 2, branchdual 1, branchdual 2, positive, negative, address,

from;
begin integer h, i,j, k, remember, meshsearch;

k: = 1; i: = 1; address [0]: = 0; address [1]: = 1;
search first branch:

for j: = 1 step 1 until B do
begin

if branch 1 [j] = i
then

begin
remember: = meshsearch: = branchduall[j]; from [k]: =j; positive [j]: = k;
go to go on searching

end;
if branch 2 [j] = i
then

begin
remember: = meshsearch: = branchduaI2[j]; from [k]: = j; negative [j]: = k;
go to go on searching

end
endj;

go on searching:
k:=k+l;
for h: = 1 step 1 until B do



begin
if current [k] = 0
then zero currents: = zero currents + 1

end
end;
RCF (current [1], complexity);
begin integer I;

for I: = 2 step 1 until B do RCF (current [I], hcf);
RF: = hcf

end;
if (complexity- current [r]) > current [r]
then

begin
vertical: = current [r] --:- RF;
current [r]: = current [r] - complexity;
horizontal: = - current [r] --:- RF;
original: = false; go to dual net

end
else

begin
original: = true;
vertical: = (complexity - current [r]) --:- RF;
horizontal: = current [r] --:- RF

end;
original net:

form code (branch 1, branch 2, positive original, negative original, address original, from original);

00
00



go to dummy point;
dual net:

form code (branchdual I, branchdual 2, positive dual, negative dual, address dual, from dual);
dummy point:

punch (complexity);
punch (horizontal); punch (vertical);
if imperfection
then punch (I)
else punch (0);
punch (RF);
begin integer i;

for i: = I step 1 until b - I do punch (Bouwkamp code [iD
end;
punch (number of choices); punch (zero currents);
if I imperfection
then go to next r
else if trivial imperfection

then go to next r
else if second time

then go to next r
else

begin
second time: = true; current [r]: = - current [r];
if original
then go to dual net
else go to original net

end;

00
\0

I



end
end

next r:
if trivial imperfection
then punch (1)
else punch (0)

end r;
end

end;
if end of file ~ 0
then go to start
else

begin
stop; go to next B

end
1.0o
I



-91-

Acknowledgement

I am indebted to P. Medema who wrote the first programmes concerning the
squaring problem for the LB.M. 650. Also his help in debugging the PASCAL
programmes and his assistance with the production runs are highly appreciated.
The many discussions we had and his valuable remarks were a great help.
Furthermore I want to acknowledge Mr van der Sloot and Mr van der Giezen
who spent several nights in taking care of part of the production runs on
PASCAL.
To H. C. J. A. Nunnink lowe an example of a net (with code 145104695
4037963032730289720159810182364100) where the dual net is necessary to
improve the maximum weight of the original net in the procedure indentification.
Finally I want to thank N.V. Centrex and N.V. Eindhovensche Drukkerij for
the care with which they have printed this thesis.



-92-

Curriculum vitae

Born in the Hague, 10 Dec. 1927. H.B.S.b, Sint Janscollege, the Hague, 1946;
Electrotechnisch ingenieur, Technological University, Delft, the Netherlands,
1950; Doctoraal examen, mathematics and physics, University of Amsterdam,
1955. Worked at the Mathematical Centre in Amsterdam in the computation
department under the direction of prof. dr ir A. van Wijngaarden from 1953
to 1956. Joined Philips Research Laboratories, Eindhoven, the Netherlands,
in 1956. Since 1960 at Philips Computing Centre.

Address of the author: Philips Computing Centre,

Eindhoven, The Netherlands.


	Voorblad

	Summary
	Chapter 1: Introduction

	Chapter 2: Problems of coding

	Chapter 3: Identification problem

	Chapter 4: Determination of network currents

	Chapter 5: Construction of Bouwkamp codes

	Chapter 6: Some re
sults
	Acknowledgement

	Curriculum vitae

