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Solutions to the problems in this section can be sent

to the editor — preferably by e-mail. The most

elegant solutions will be published in a later issue.

Readers are invited to submit general mathematical

problems. Unless the problem is still open, a valid

solution should be included.

Editor:

R.J. Fokkink

Technische Universiteit Delft

Faculteit Wiskunde

P.O. Box 5031

2600 GA Delft

The Netherlands

r.j.fokkink@its.tudelft.nl

Problem 18 (Alex Heinis)

Let a, k be positive numbers. Count the number of maps f : N → N such that f k(n) =

n + a for all n ∈ N.

Problem 19 (R. Ceulemans, open problem)

A billiard table T has the shape of a regular pentagon, with sides of length of 1 meter.

You can put a billiard ball anywhere on the table and shoot it in any direction over a

distance of 10 meters. Give the maximal number of times the ball can hit a side.

Problem 20 (A.F. Tiggelaar)

Suppose that ABC and DEF are two triangles in R
3 and that V is the plane that contains

ABC. Suppose that AD, BE and CF are perpendicular to V and that AD = BC, BE = AC,

CF = AB. Construct the point in V that is equidistant to D, E and F.

Solutions to volume 1, number 4 (December 2000)

Problem 10

Let a, b, c be integers such that the symmetric matrix





0 a b

a 0 c

b c 0





has three integer eigenvalues. Prove, or give a counterexample to, the following state-

ment: either abc = 0 or (a2 − b2)(a2 − c2)(b2 − c2) = 0.

This open problem has been solved by Ronald van Luijk and by Raimundas Vidunas. The solution

will appear in one of the next issues of Nieuw Archief.

Problem 11

An abc-triple is a triple of pairwise coprime positive integers a, b, c with a + b = c for

which the product r of the distinct prime numbers dividing abc satisfies r < c. Prove that

there are infinitely many abc-triples.

Solution by Raimundas Vidunas. For each positive integer k, we have that 9k = 8N + 1

for some integer N. This gives an abc-triple 1, 8N, 9k since r ≤ 6N < 9k.

Problem 12

Prove that there are infinitely many abc-triples for which a is equal to a given positive

integer.

Solution by Hendrik Lenstra. Fix any a, and let p be an odd prime number not dividing a.

By the Chinese remainder theorem we can choose a primitive root g modulo p2 with

gcd(g, a) = 1. Let m be such that pm−1
> ag. Then g is a primitive root modulo pm, so

there exist infinitely many n with gn ≡ a mod pm and gn
> a. For any such n, we can

take b = gn − a, c = gn. These numbers are pairwise coprime, and since b is divisible

by pm we have r ≤ a · (b/pm−1) · g < b < c.

Problem 13

Let m be a positive integer. Prove that there is an abc-triple with the property that any

odd prime number dividing abc exceeds m.
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numbers that are at most m. Denote by ϕ the Euler-ϕ-function. All primes dividing

ϕ(k/2) are at most m, so they divide k. Hence gcd
(

(k + 1)2 ,ϕ(k/2)
)

= 1, so there

exists n with n · (k + 1)2 ≡ 1 mod ϕ(k/2). Put c = (k + 2)n·(k+1)2
, a = 1, b = c − 1.

Modulo the odd number k/2, we have c ≡ 2n·(k+1)2
= 21modϕ(k/2) ≡ 21 = 2, so b ≡ 1

and abc ≡ 2. Hence abc is not divisible by any odd prime that is at most m. The residue

class k + 2 mod (k + 1)3 belongs to the set of units modulo (k + 1)3 that are 1 mod k + 1.

That set is a group of order (k + 1)2, so (k + 2)(k+1)2 ≡ 1 mod (k + 1)3 and therefore

c ≡ 1 mod (k + 1)3 and b ≡ 0 mod (k + 1)3. Therefore r ≤
(

b/(k + 1)2
)

· (k + 2) < b < c.

Problem 14

Let n be a positive integer. Prove that there exist n different abc-triples with the same

value of c.

Solution by Hendrik Lenstra. Choose any h > 1 (for example, h = 2), and let P be any

set of n prime numbers not dividing h. Choose n0 such that for all n ≥ n0 and all p ∈ P

one has p2n−1
> h · (1 + hpn). Choose m such that hm ≡ 1 mod ∏p∈P pn0 . For each

p ∈ P, let np be the number of factors p in hm − 1; then we have np ≥ n0, and we can

write hm = 1 + kp · pnp where p does not divide kp. Choose l such that for all p ∈ P

one has hml ≡ 1 + h · pnp mod p2np ; this can be done, since by hml = (1 + kp · pnp )l ≡
1 + l · kp · pnp mod p2np it suffices to solve lp · kp ≡ h mod pnp and to choose l such that

for each p ∈ P one has l ≡ lp mod pnp . Now put c = hml and ap = 1 + h · pnp , for p ∈ P,

so that c ≡ ap mod p2np . We have ap ≡ 1 mod h, so gcd(ap , c) = 1 and ap 6= c. From

ap = 1 + h · pnp < h · (1 + h · pnp ) < p2np−1
< p2np

it follows that ap is the least number in its residue class mod p2np . Since c lies in the same

residue class, one has c > ap, so we can write ap + bp = c. The number bp is divisible

by p2np , so we have r ≤ ap · (bp/p2np−1) · h = bp · h · (1 + hpnp )/p2np−1
< bp < c.

Therefore ap, bp, c constitute an abc-triple, for each p ∈ P. Because p is the unique prime

number dividing (ap − 1)/h, no two of these triples coincide.

Solutions to some problems of yore

Below are the solutions to the problems 972–979, which belong to the Problem Section of

the fourth series of Nieuw Archief.

Problem 972 (H. Alzer)

For any pair x, y of distinct positive real numbers, we define

A(x, y) =
x + y

2
, G(x, y) =

√
xy , H(x, y) =

2

1/x + 1/y
.

Prove that if x, y ≥ e then

A(x, y)H(x,y)
<

(

G(x, y) + A(x, y)

2

)H(
√

x,
√

y)2

< G(x, y)G(x,y)

< H(
√

x,
√

y)G(x,y)+A(x,y)

< H(x, y)A(x,y)

and if x, y ≤ e then we have the reverse inequalities.

Solutions by G.W. Veltkamp and H.J. Seiffert. Below is the solution by H.J. Seiffert which

is remarkably short compared to the problem. Abbreviate G = G(x, y) and A = A(x, y).

Since G < A we have G2

A
<

2G2

G + A
< G <

G + A

2
< A.
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Apply f to the inequality and raise to the power G2, and observe that H = G2/A and

H(
√

x,
√

y)2 = 2G2/(G + A).

Problem 973 (W. Bencze)

Prove for n = 2, 3, . . . the inequalities

1

2
+

√

n − 1

2
<

√

√

√

√

n +

√

n − 1 +

√

n − 2 + . . . +

√

2 +
√

1 <
1

2
+

√

n +
1

4
.

Solutions by J.H. van Geldrop, W. van der Meiden, G.W. Veltkamp, C. Jonkers,

A.A. Jagers, H.J. Seiffert, R.H. Jeurissen. There was a misprint in the original problem

where the final quotient 1
4 was omitted. Some readers assumed the quotient to be 1

2
which enables a crisp solution. For n + 1

4 the problem is only slightly harder and es-

sentially all solutions are the same. Denote the inequality by 1
2 +

√

n − 1
2 < wn <

1
2 +

√

n + 1
4 . Apply induction. Clearly the inequality holds for n = 2. Assume it holds

for n − 1. Squaring the inequality gives the equivalent form

1

4
+

√

n − 1

2
< an−1 <

1

2
+

√

n +
1

4
,

which follows from the induction hypothesis and the inequality

− 1

4
+

√

n − 1

2
≤ 1

2
+

√

n − 3

2
.

Problem 974 (M.L.J. Hautus)

Let f : R → R be a C1-function satisfying | f ′(x)/ f (x)| → ∞ as x → ∞. Show that

for every n ∈ N and every n-tuple of distinct pairs (ai , bi) with ai > 0 and bi ∈ R, the

functions g1 , . . . , gn defined by gi(x) = f (aix + bi) are linearly independent.

Solution by A.A. Jagers. By the condition on f the zeroes of f ′ are bounded away from

∞ and hence so are all zeroes of f by a mean value theorem. Four possible cases arise,

for x large enough. We only consider the case f , f ′ > 0, the other cases being similar, and

use induction on n. Suppose that λ1g1 + . . . λngn = 0. Then for x large enough

λn = −λ1g1(x)/gn(x) − . . . − λn−1gn−1(x)/gn(x)

and for i < n we have that gi(x)/gn(x) → 0 as x → ∞. Indeed, for x large enough there

exists an intermediate ξ ∈ R with aix + bi < ξ < anx + bn such that

log{ f (anx + bn)/ f (ai + bix)} = log f (anx + bn) − log f (ai + bix) = f ′(ξ)/ f (ξ)

for x → ∞ by the condition on f . It follows that λn = 0.

Problem 975

No response.

Problem 976 (C. Notari)

Find all pairs (n, m) of positive integers such that n2 + n + 1 = m3.

Solutions by A.A. Jagers and H.J. Seiffert. Both remark that the solution is classical,

(n, m) = (18, 7), and refer to (L.J. Mordell, Diophantine Equations, (1969), p. 208-209).

Jagers even includes a relatively recent paper on this problem (N. Tzanakis, The Diophan-

tine equation x3 − 3xy2 − y3 = 1 and related equations, J. Number Theory 18, 192-205 (1984))
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ρ = − 1
2 + 1

2 i
√

3.

Problem 977 (J. Ponstein)

For a given k ∈ N we define the sequence a(m) by a(1) = k and

a(m) = km − ∑
1≤i<m, i|m

a(i).

Show that m divides a(m) for all m ∈ N.

Solutions by R.H. Jeurissen, A.A. Jagers, H.J. Seiffert. All solutions depend on Möbius

inversion, which gives that a(m) = ∑i|m kiµ(m/i) where µ denotes the Möbius function.

Seiffert now concludes by invoking Gauss’ generalization of the Fermat Little Theorem:

∑i|m kiµ(m/i) ≡ 0 mod m and the desired result follows.

Problem 978 (F. Rothe)

On a square lattice we consider lattice triangles, i.e, triangles with all three vertices lattice

points. There exist lattice triangles with i = 1, 2, 3, 4 or 9 lattice points in their interior.

For i = 1, 2, 4, 9 the centre of gravity can be a lattice point. Show that for i = 3 the centre

of gravity cannot be a lattice point.

Solution by C.B.J. Jonkers, which is surprisingly short compared to the original four page

proof by Rothe. Denote the integer lattice by R and denote the middle of lattice points P

and Q by m(PQ). We start with two observations. First that for every set of five points

Pi ∈ R there is at least one pair such that m(PiPj) ∈ R. Second that if ABC is a lattice

triangle with m(AB) and m(AC) in R, then so is m(BC).

Consider a triangle ABC with three interior points in R. Suppose that Z ∈ R is the center

of gravity of ABC. Observe that if m(AB) ∈ R then m(CZ) ∈ R. There are two cases.

CASE 1. Suppose that m(AZ), m(BZ), m(CZ) are not in R. Then m(AB) cannot be a

lattice point, since this would imply that m(CZ) ∈ R. Let P be a second interior point of

ABC. By our first observation, one of the middles of A, B, C, Z, P is in R. There are four

possibilities m(AP), m(BP), m(CP) or m(PZ), which are all interior points. The first three

possibilities are equivalent and to fix ideas assume that Q = m(PA) ∈ R. Apply the first

observation to B, C, P, Q, Z to find a fourth interior point, contradicting that the triangle

only has three interior points. If Q = m(PZ) then apply the argument to A, B, C, P, Q.

CASE 2. Suppose that P = m(AZ) ∈ R. This is equivalent to m(BC) ∈ R and our second

observation implies that m(AB), m(AC) are not in R. Equivalently, m(BZ) and m(CZ)

are not in R. There has to be a third interior point Q. One of the middles of A, B, C, P, Q

is in R. Verify that this has to be an interior point, which contradicts that there are only

three interior points.

Problem 979 (F.W. Steutel)

Prove that the function g(x) =
∫

∞

0 e−t2
cos(tx + ct2) dt is nonnegative for all c ∈ R if and

only if c = 0.

Solutions by K.W. Lau, A.A. Jagers, G.W. Veltkamp. Solution by A.A. Jagers. Let ϕ =

arg(1 + ic) or, equivalently, c = tanϕ with − π
2 < ϕ <

π
2 . If c = 0 then ϕ = 0 and

g(x) = g(−x) = 1
2

√
π > 0. If c 6= 0 then ϕ 6= 0 and

(g(x) + g(−x))/2 = Re

(

∫

∞

0
e−x2/(4−ic) cos(tx)dt

)

=

√
π

2
Re

(

e−x2/(4−4ic)
√

1 − ic

)

=
1

2

√
π cosϕe−(x cosϕ)2/4 cos

(ϕ

2
− sin 2ϕ

8
x2
)

,

which is not nonnegative for all x ∈ R, but changes sign infinitely often.


