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Abstract

Language extensions, such as embedded domain-specific languages, are often implemented by
assimilating (rewriting) the extended language constructs to the host language. The result can then be
compiled by a standard compiler. This approach is limited by the host language, which may not be
designed with code generation in mind. An example of this is Java, which provides insufficient
protection against name capture of host language identifiers, and does not provide the same low-level
primitives that exist in the underlying Java Virtual Machine. For example, it does not provide equivalents
for a jump or jump subroutine instruction, unbalanced synchronization, stack manipulation, or
specification of debugging information. Code generated from a language that does not match Java’s
structure can therefore require inefficient or laborious alternatives instead.

We propose a new open compiler model to provide generators direct access to the underlying compiled
code. With conventional open compilers, leveraging the bytecode-generating back-end is an intricate
process, requiring adaptations tangled throughout the system. The result is hard to develop, understand,
and maintain. By providing a mixed source language of Java and the underlying bytecode instruction
language, we can provide access to the back-end at the source-level. Compiled instructions can be used
in place of statements or expressions, which can aid language extensions but also applications of separate
compilation. For example, it can simplify aspect weavers by enabling direct composition of source code
aspects with compiled classes, or vice versa. As such, we also introduce a Java traits compiler that allows
operation on classes and traits in both source and compiled form.
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Chapter 1

Introduction

“Inside every large program is a small program struggling to get out”

– C. A. R. Hoare, Efficient Production of Large Programs (1970)

General-purpose programming languages offer numerous features that make them applicable to a broad
scope of application domains. However, as program complexity increases, such languages lack the high-
level formalisms required to adequately cope with this complexity. Through the introduction of language
extensions, it is possible to add to the expressiveness of a language. By targeting a specific problem
domain, language features can be introduced that allow for more concise, maintainable programs aimed
at such a domain. Language extensions allow for static verification of correctness, security, and style
constraints, specific for the associated domain. They also provide the opportunity for domain-specific
program optimizations.

Domain-Specific Languages (DSLs) are languages aimed entirely at a specific domain, offering spe-
cialized functionality and syntax. Using DSLs, larger, more complex applications within a domain are
easier to implement, and require less effort to develop and maintain. For example, DSLs exist for XML
and text processing, and offer a very concise, natural way to program for such a domain. However, as
DSLs lack the general capabilities of a general-purpose language (e.g., for creating a user interface), they
are rarely used by themselves. Therefore, DSLs are often implemented as a language extension, in the
form of an embedded DSL.

Key for implementing language extensions is the construction of compilers that generate code based on
high-level program definitions. Currently, developers infrequently construct language extensions and
DSLs, as building and maintaining such a compiler is onerous. If generative programming is to become
a staple ingredient of the software engineering process, the construction of such tools should be as
automated and easy as possible.

For implementing language extensions, it is clearly desirable to build upon the basis of an existing
compiler for the base language. Extensible compilers are designed with this purpose in mind, and provide
an extensible front-end: a parser and semantic analysis (type-checker) implementation that may be
extended and reused for language extensions [34,10,66,51,52]. The acquired type information may be
used in the extension, for error detection or to generate a properly-typed program, which is then further
compiled by the compiler back-end. Only few compilers offer an extensible back-end   [66,10,56], which
emits the input program to a low-level language such as assembly or Java bytecode. Compilers that offer
this functionality require adding a lot of additional code to different components of the compiler, to
support even small extensions using the back-end. Such additions tend to get tangled throughout the
various compilation stages, require profound knowledge of the compiler’s internal structure, and create
a large dependency on details of the base compiler’s implementation.
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Various languages and language extensions depend on implementation in a compiler back-end, as they
need to directly generate code in the low-level output language. This enables the use of primitives not
available in the base language, or is done for performance reasons [49,10]. Sometimes it is also applied
for the purpose of separate compilation. For example, an aspect-oriented programming language
allows separation of concerns by inserting separately defined code into existing classes [31,32,40].
Aspect weaving compilers manipulate the bytecode of existing, separately compiled classes to weave
in additional compiled code, therefore making use of an existing compiler back-end [32].

An alternative to integrating with an existing compiler is developing a preprocessor. This is the starting
point for many language extensions and DSLs. Preprocessors are stand-alone applications that rewrite
source code to a high-level target language, such as Java, and require further compilation with an
external compiler. This is a convenient, simple approach that takes advantage of the familiarity and high-
level abstractions of the target language, without requiring integration with the target compiler
[43,44,45,48]. Software composition systems are often implemented using this approach, as it requires
significantly less effort than integrating with and extending a compiler. For example, existing compilers
for the traits language extension operate as a preprocessor [6,23,24,26,37]. Unfortunately, they thereby
forfeit operation on compiled code.

Java is a popular platform for application development, as it is a mature, widely used and available,
cross-platform environment. Java programs can leverage the extensive Java standard library [33] as well
as an overwhelming number of third-party libraries. The Java language is a strongly typed, general-
purpose language. While it was not directly designed with the purpose of code generation in mind, it is
applied for the implementation of various DSLs and language extensions [31,36,48,49,10]. The
language’s philosophy does not always match with that of a given language extension, or even with the
notion of generating code in general. For example, Java allows identifiers of classes and methods to be
referenced by their simple name (e.g., the simple name List for the full class name java.util.List).
This can result in accidental name capture in generated code: A generated name may refer to a different
variable, field, or class than intended. In fact, as the Java syntax does not distinguish between package
identifiers and class identifiers, even using a fully qualified identifier does not rule out name capture.
For example, even the fully qualified identifier java.util.List is highly ambiguous: java could be a
package, a class, or even a local variable; likewise util could be an inner class or a field, etc. Naming
conventions may help the human reader (i.e., packages are normally in lowercase), and may prevent
name capture in most cases, but cannot be depended upon in a solid compiler. This could lead to
confusing error messages for the user of the generator, or even to a potential security issue.

Java compiles to bytecode, the instruction language for the Java Virtual Machine. It is more low-level
and more explicit than the Java language. As such, it does not suffer from ambiguity between class and
package names. It provides low-level primitives such as a jump or jump subroutine instruction,
unbalanced synchronization, and stack manipulation; features that are not available from the Java
language. While these constructs are generally not missed in ordinary application programming, for code
generation they can be very useful. They may make a close match with features in a specific source
language that needs to be compiled for the JVM, or can provide a performance gain over Java language
alternatives. Additionally, bytecode can contain debugging information, which cannot be directly
controlled from Java source code.

1.1  Contributions

We present the Dryad Compiler, a compiler for a language formed by mixing Java and bytecode. We
investigated how such a language can be leveraged for various generative programming tasks in the field
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of language extensions and separate compilation. The mixed language combines its two constituents to
the point where not only methods can be used interchangeably, but also Java statements and expressions
can be mixed with bytecode instructions. We maintain type-safety through direct type-checking of the
combined language, extending an existing Java type-checker. By imposing additional restrictions on the
effect on the stack that bytecode fragments may have, we allow natural composition of fragments of
code, ensure locality of errors, and maintain a high degree of language “sanity.”

We investigate the implications of the combined language on different applications of code generation,
building on our experience with the limitations imposed by code generation to mere Java. For developing
embedded DSLs or other extensions of the Java language, it is possible to assimilate the extension by
replacing the every extended construct with regular Java code. It is often necessary to assimilate a DSL
expression to an implementation using several Java statements. Java however does not allow statements
in place of an expression. The mixed Java/bytecode language makes it possible directly compile such
expressions in-place to an inline sequence of bytecode instructions. Additionally, as we can place Java
statements and expressions in place of such instructions, the DSL expression can be assimilated directly
in-place to Java statements (see Section 5.1). A common task in assimilating languages, and code
generation in general, is the use of intermediate local variables. The mixed language can be used to
implicitly type such variables, using bytecode to forgo explicit declaration of the variable on the Java
level. It also allows the use of (anonymous) stack allocation to prevent accidental name capture, while
providing a potential performance benefit (see Section 5.2).

We also evaluate how bytecode primitives such as a low-level jump instruction can be used in for
example parser generators. With only minimal changes to an existing parser generator back-end, the
introduction of the jump instruction improves the run-time performance of lexical analysis and simplifies
the generation of finite automata (see Section 5.3). Such primitives can also be used in the implementa-
tion of language features that extend the regular Java language, such as extended control flow
constructs. We applied this to yield continuations, a control flow construct for defining iterators (see
Section 5.4). Without the combination with bytecode in the output language, such tasks are considerably
more complicated. The ability to emit bytecode instructions within Java code can also be applied for
rapid prototyping of specialized compilers for a customized virtual machine with a custom instruction
set. This can be used to support recent proposals [21,13,14,63] for enhancements of the Java Virtual
Machine architecture (see Section 5.5).

As our compiler takes separate compilation of Java to a new extreme, it is a very suitable foundation for
the implementation of software composition language extensions and systems. The mixed language
unifies source code (Java) and compiled code (bytecode), and can therefore be used to compose
programs in either representation. This allows a traits compiler or aspect weaver to operate solely as a
compositional tool, rather than as a full-fledged compiler (see Section 6). For traits this painlessly
introduces the notion of separate compilation, which means we can type-check trait definitions before
composition, and enable distribution of traits in binary form in libraries. For aspects, this approach
significantly simplifies the implementation effort compared to that of existing aspect-weaving compilers
that support separate compilation by extending an existing Java compiler.

An important facility in generative programming in general, and software composition specifically, is
the ability to include debugging information in generated code. Such information can be used for
debuggers or run-time error messages, and implies awareness of the origin of generated code at all times.
We provide syntax and library mechanisms to maintain this information during a transformation. While
not a novel contribution by itself [50,65], it is prerequisite to high-fidelity separate compilation.
Together with the mixed target language it provides a complete, flexible platform for fine-grained
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separate compilation, enabling its wide use in various applications.

The Dryad Compiler allows language extensions to be implemented in loosely coupled, light-weight
fashion similar to common preprocessors. By outputting to the Java/bytecode language, applications can
benefit from use of both the front-end and back-end of the compiler. By providing facilities to maintain
source code information, this approach does not suffer from the reliability issues that are normally
associated with preprocessors (e.g., errors referring to line numbers of generated code rather than the
original source code). 

1.2  Outline

The remainder of this thesis is organized as follows. In Section 2 we provide essential background
information on the Java Platform, the virtual machine, bytecode, and briefly discuss the notion of rewrite
rules for program transformation. In Section 3 we introduce the mixed Java/bytecode language, and
discuss its design. Section 4 discusses essential techniques required for compiling this language and
enabling the proposed applications. In Section 5 we demonstrate how the language can be applied in
applications in the field of language extensions. In Section 6 we describe applications in separate
compilation and software composition, also applying some of the techniques of the preceding section.
In Section 7 we present the underlying compiler implementation, its design, and the tools used. Section 8
discusses related work. Finally, Section 9 presents our conclusion and points to directions for future
work.
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Chapter 2

Background and Preliminaries

2.1  The Java Platform

This section gives a basic introduction to the Java Virtual Machine architecture. For further information,
readers are directed to the Java Virtual Machine specification [1], the official defining document of the
Java Virtual Machine, as specified by Sun Microsystems.

At the heart of the Java Platform lies the Java Virtual Machine, or JVM. The virtual machine forms
an abstraction over the actual hardware and operating system used by a system. Rather than executing
natively compiled programs, it executes programs compiled for the virtual machine. Aimed at the virtual
machine, such programs are platform-independent, and can run on different hardware and operating
systems, as long as a virtual machine is available for it.

The virtual machine interacts with the specific operating system and provides an implementation of the
Java standard library. This library provides essential functionality for writing programs, such as
collections, I/O operations, networking, reflection, to name a few [33]. The JVM is essentially designed
to be similar to a traditional, non-virtual computing machine. It has a fixed set of virtual machine
instructions, and memory in the form of a stack and a heap. Notable differences to regular computing
machines are that it has no notion of registers, and that memory on the heap applies automatic garbage
collection to remove unused data. The basic components and behavior that every JVM implementation
must offer are thoroughly specified, but not so restrictively that it prevents the implementors from
making different choices for specific systems. This enables it to be implemented on a wide variety of
platforms, ranging from mainframes to pocket devices. For example, floating-point calculations were
loosened to allow slight differences in the results of calculations across different platforms (although
regions of code can force strict results using the strictfp modifier, at the cost of performance).

In the past decade, the Java Platform has proven itself useful for deploying cross-platform applications,
with support for thousands of high-quality libraries. At the end of 2006 there were over 21.000 open-
source Java projects on the popular SourceForge collaboration project , making it the language most used1

on the site. Providing features such as automatic garbage collection, execution safety, and dynamic
compilation, it makes it an excellent platform for developing new high-level languages [27,28]. In fact
over 200 languages have been created targeting the JVM, including Jython (a Python implementation)
[9], Kawa Scheme [10], Fortran [48,49], and Pizza [11].
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2.1.1  Classes and interfaces

Java is an imperative, object-oriented language. The Java Virtual Machine is designed according to the
same basic structure and type system, and as such is also fully object-oriented. Objects belong to a
particular class. Classes are essentially object-oriented modules that may define methods and fields (see
Figure 2.1). Java supports single inheritance for classes: Any class may inherit from (i.e., is a subtype
of) a single other class. When a class inherits from another class, all its members (i.e., methods and
fields) are also inherited: The subtype (or ‘subclass’) will have the same members as the inherited class,
and may extend these with its own set of members.

The root of the inheritance tree is the Object type: All objects are instances of this type. Java provides
native support for arrays, again instances of the Object type. Java requires explicit type specifications
for class fields and local variables. Using the subtyping relation, it is also possible to use a supertype
for such a reference:

  String s = "Text";

  Object o = s; // o now references the string (String is a subtype of Object)

In addition to class inheritance, Java also provides interface inheritance. Java interfaces are abstract
types that do not define an implementation, but only define method signatures that a class must
implement. Classes can be declared to implement one or more interfaces, if they provide an
implementation for the interface methods. Like supertypes, interfaces can be used to reference an object
of other types, as long as it implements the interface. This can be useful for accessing classes that are not
in the same inheritance chain (and may only have the Object supertype in common, which does not
define any type-specific methods). The Java standard library defines many such interfaces [33], to
accommodate for the fact that classes may only inherit from a single superclass. An example is the List
interface for lists of objects, which is implemented by different collection classes. It is also implemented
by various classes that do not inherit from the collection classes, such as classes for graphical controls
that inherit from other graphical controls.

2.1.2  Methods

In Java all methods are virtual by default. This means that when a class inherits from another class, it
may override the methods defined by its superclass. For example, the Object class defines a
toString() method that returns a string representation of an object. A list object inherits this method,
and may override it to return a comma-separated string representing all the contained objects. Inheritance
applied this way provides a way of code reuse and composition of class methods. In addition to virtual
methods, methods may be sealed to prevent them to be overridden (using the final attribute).

Regular methods are bound to an instance of an object, but it is also possible to declare a method static

class Foo {

  String field;

  void method() {

    field = "hello world";

    System.out.println(field);

  }

}

Figure 2.1  A basic Java “hello world” class, with a single method and field definition.
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to bind them to a class. Static methods cannot be overridden, and cannot refer to a specific class instance
(this in Java). Another special form of method is the constructor method, which initializes an instance
of a class. Every time a new object of a class is created, a constructor (if defined) is called, along with
any field initializers to initialize the class and its fields (see Figure 2.2).

Java uses access modifiers to protect class members from access by unauthorized, external classes. The
most common forms of these are public members that are publicly accessible to any outside class, and
private members that can only be accessed by the class that defines them. Unlike other types of
methods, private methods cannot be accessed by subclasses.

2.1.3  Primitive types

In addition to objects, Java also supports primitive types. These can be used to store a single integral or
floating-point value. Java supports a total of eight different primitive types: boolean, byte, short, int,
long, float, double, and char. These types have a preset range (e.g., a byte ranges from -128 to 127)
and space usage characteristics (e.g., an int occupies 4 bytes). Unlike objects, they are not referenced
to using an object reference (pointer), but are stored in place in an object or on the stack (see Section
2.1.8). This means that primitive types have a smaller memory footprint than objects, and do not require
garbage collection.

Since primitive values are not objects, they do not inherit from the Object type. Because they lack this
subtyping relation, they cannot be assigned to a variable or field of the Object type, nor can they be
stored in a collection of Objects. To overcome this limitation, Java introduced the notion of autoboxing
and -unboxing. Using auto-boxing, any primitive type can be implicitly converted to a corresponding
primitive wrapper type (or ‘boxed type’). A primitive wrapper type is an object with a single, primitive
field, and effectively encapsulates a primitive type in an object type. Examples of primitive wrapper
types include the Integer class to store an int and the Boolean class to store a boolean value (see
Figure 2.3).

2.1.4  Multi-threading

The Java Virtual Machine is designed specifically to support multi-threaded applications. The Java
memory model is strictly defined to properly allow memory access in multi-threaded applications,

class Foo {

  int i, j;

  int k = 2;

  public Foo() { // called if a new Foo object is created (using 'new Foo()')

    i = 1;

  }

}

Figure 2.2  A simple constructor method. Constructors use the same name as their defining class, and do not have a return type.
Creating a new instance of this class will initialize field i. Field k is also initialized, by means of a field initializer.

int i = 5;

Object o = i;            // auto-boxing to an object type

Integer wrapped = i + 2; // auto-boxing to an Integer

int j = wrapped;         // auto-unboxing of the primitive wrapper type

Figure 2.3  Using autoboxing and unboxing to implicitly convert between primitive and object types.
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without leading to undefined situations. To ensure safe access of shared memory, the Java language
provides synchronization constructs. Methods or blocks of code can be marked as synchronized to
indicate they should be treated as a critical section of code. Threads that execute this code will implicitly
acquire a monitor lock, ensuring only one thread can enter that section of code (for the given object
instance) at a time. After the section is exited, the virtual machine ensures that monitor lock is always
released, no matter the state of the execution. At that point another thread may enter the critical section.

Other than synchronization, the Java language offers little in the way of language support for handling
multi-threading. However, the Java standard library [33] includes support for creating new threads,
aborting threads, suspending threads, etc. While the virtual machine must support these library methods,
this means there are no special virtual machine instructions for dealing with threads other than
instructions for synchronization.

2.1.5  Basic control flow

As an imperative language, Java supports several control flow constructs, such as the if statement, the
while loop, and a C-style for-loop and switch statement. Java does not provide support a goto
statement, but does provide clauses for terminating a loop early (the break statement) or skipping the
rest of the loop body and forcing the next loop iteration (the continue statement):

  while (condition) {

    ...

    if (finished) break;        // exit the loop

    else if (restart) continue; // go to the beginning of the loop

    ...

  }

2.1.6  Exception handling

The Java language and the JVM provide direct support for exception handling. This mechanism handles
the occurrence of some condition that requires a change in the normal flow of execution. Such a
condition is called an exception, and is used for signaling errors or other exceptional circumstances. For
example, a method that reads a file may result in a FileNotFoundException, if the inputted file is not
found. Java supports throw statement to raise an exception. Exceptions can be dealt with using the
try/catch construct. If an exception occurs within the try clause, the catch clause will be executed to
handle it (see Figure 2.4). If there is no catch clause that can be activated to handle the exception, the
entire application will abort.

The try/finally construct is another way of managing exceptions. Regardless of whether an exception
occurs in the try clause, the finally clause is always executed when the block is exited. It is commonly
used to clean up resources, for example closing a file handle. After the finally block is executed, the
control flow continues at the point where it normally would; in case of an exception it continues at the
exception handler, if any is defined. Figure 2.5 demonstrates this pattern.

Because of the multi-threaded nature of Java, it also allows asynchronous exceptions. These exceptions
can be caused by another thread (using the deprecated, strongly recommended against Thread.stop()
method). Alternatively they can also be thrown by an internal error in the JVM. Regular, synchronous
exceptions occur at predictable places (i.e., when performing some operation that might result in an
exception). Asynchronous exceptions may occur at any point during the execution. Fortunately,
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asynchronous exceptions are very rare to nonexistent in most applications. However, they should never
be completely ignored when analyzing or writing Java code.

2.1.7  The Java class file format

Though the JVM is designed for use with the Java programming language, it does not assume that the
programs it executes were compiled from this language. As such, it can host other languages and
extensions of the Java language. The JVM processes classes in a particular binary format, the Java class
file format. Such a class file has the following components [1]:

P File format version. Version 50.0 for example means that Java 6 is required.

P The constant pool, a table contains the values for all constants. The constants can be used (and
shared) throughout the class by referencing their index in constant pool. It includes numeric and
string literal constants, as well as symbolic references (i.e., names of types or members).

P Type information and metadata for the class. This includes, among other things, the name and
package name uniquely identifying the class, the superclass, and all implemented interfaces.

P Type information and metadata for each class member (i.e., method or field). For methods this
includes a list of bytecode instructions; instructions for the virtual machine.

2.1.8  Bytecode instructions and the operand stack

Bytecode instructions are simple opcodes that are each represented as a single byte in a class file,

class ExceptionDemo {

  void main() {

    try {

      String file = readfile("does not exist.txt");    // try to read a file

      ...

    } catch (FileNotFoundException exc) {   // catch a FileNotFoundException

      exc.printStackTrace();                // print details if it doesn't exist

    }

  }

  // readFile normally returns a String, but might also throw an exception

  String readFile(String filename) throws FileNotFoundException {

    File file = new File(filename); // create a new file object for the filename

    

    if (!file.exists())

      throw new FileNotFoundException();

    ...

  }

}

Figure 2.4  Throwing and catching exceptions in Java.

FileReader reader;

try {

   reader = new FileReader("file.txt"); // open (abort if an exception occurs)

   ...

} finally {

   if (reader != null) reader.close(); // close (unless it was never assigned)

}

Figure 2.5  Using the try/finally construct to ensure a file is always closed, even if an exception occurs.
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followed by zero or more static arguments. All instructions take a fixed number of arguments (for
example, ldc, an instruction to load a constant, requires the index of a constant pool entry). In addition
to these arguments, the instructions can also process operands from the stack. The stack is essentially
a simple list of values: values that result from operations (e.g., loading a constant), and values used as
the input to other operations (e.g., adding two numbers). The instruction set includes support for
arithmetic operations, such as additions, subtractions, divisions, etc. More advanced mathematic
operations are supported by the library, through method calls. The operator instructions make intensive
use of the stack: Given one or two values, they will return a single resulting value on the stack. For long
expressions this can mean that a long stack of intermediate values is built up (see Figure 2.6).

Bytecode instructions are strongly typed. Many instructions encode the type they operate on in the
instruction mnemonic (name): For example, the instructions in Figure 2.6  operate on values of the int
type. As such, their instruction mnemonic (name) is prefixed by an ‘i’. Equivalent instructions for other
types, such as float or long start with an ‘f’ or ‘l’, respectively. Other instructions, such as invocation
instructions refer to the constant pool to specify their type information. Values on the stack are of course
determined at run-time, but their type must also be statically determined at compile-time, to ensure type
safety. Additionally, the stack for a given method has a predefined size; the stack cannot grow beyond
this point.

Stack operations    Because of the important role of the stack for bytecode, there are several instructions
to directly manipulate it. Various instructions exist for pushing a constant on the stack, for different sizes
and types of constants. For example, for pushing an integer value between 0 and 255, the bipush
instruction can be used, as it can be represented by a single byte. For a larger integer, the sipush
instruction may be used, and for a word-sized integer, the ldc instruction must be used. In the runtime
these values have the same representation on the stack, regardless of their size. In this representation
normal stack values require four bytes (one word), with the exception of double and long values that
require two words.  The reason that the JVM uses these specialized constant loading instructions is that2

binary class files can be slightly smaller with this representation: A small integer does not require four
bytes for its representation. Based on this principle, the JVM supports additional single-byte instructions
for certain special cases: Instructions iconst_1 up to iconst_5 for example push an integer from 1 up
to 5 on the stack. Since a bytecode instruction only occupies a single byte, there is only a limited number
of these instructions, but they do need to be considered for code generation or analysis.

For regular bytecode instructions the stack can be viewed simply as a series of values of given types. A
small set of special stack manipulation instructions exists that operate on the stack as raw values of a
given width, without regard to type. For example, the dup instruction duplicates a single word on the

Instruction Stack after execution

iconst_1 (load each constant on the stack)
iconst_2 
iconst_3 
imul     (multiply stack values 3 and 2)
iadd     (add stack values 6 and 1)

[ 1 ] 
[ 2, 1 ] 
[ 3, 2, 1 ] 
[ 6, 1 ] 
[ 7 ] 

Figure 2.6  Evaluation of the mathematic expression 1 + (2 * 3), using the stack and bytecode instructions for loading
constants, multiplication, and addition.
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stack, and the swap instruction swaps two words on the top of the stack. These operations may not be
used to break up two-word value types (which would not be a type-preserving operation). Attempting
to do so results in an error. Instead, there are variants of the instructions to deal with such types, such as
dup2 which duplicates a two-word value (or two single-word values).

Local variables    In addition to stack operands, Java also provides local variables to store runtime data.
Local variables in bytecode are the direct equivalent of local variables in Java source code. Local
variables are addressed by an offset, and exist separately from the operand stack. While the stack only
allows limited access to its top elements and through stack manipulation operations, local variables can
be directly accessed by their offset at all times. However, since nearly all instructions operate on the
stack rather than on local variables, they must be placed on the stack to be manipulated or accessed.
Using load and store instructions, they can be retrieved and pushed on top of the stack, or stored from
the stack into a variable (see Figure 2.7).

Fields    Similar to local variables, data in fields can be accessed using separate instructions: the
getfield and putfield instructions. These are explicitly typed and require the complete package and
class name of the retrieved field (this information is stored in the constant pool). Also unlike in the Java
language, bytecode distinguishes between static and instance fields, and provides separate getstatic
and putstatic instructions for static fields.

Method invocations    While the Java language provides only a single syntax for invoking a method,
in bytecode there are several instructions, depending on the sort of method: invokestatic for static
methods, invokeinterface for interface methods, invokespecial for constructors, and invokevirtual
for regular (virtual) methods. In Java source code it is optional to specify the complete package and class
name for a class if this can be inferred from the context (such as the imported classes for the current
source file). Bytecode, being more explicit, requires this to always be specified. A complete method
invocation requires the package, class, and method name, as well as the parameter types and return type
of a method.

Control flow    Bytecode uses four basic operations to handle control flow: The jump instruction (goto),
conditional jumps (similar to an if in Java), returning from the method, and exception handling. All the
various Java control flow constructs can be rewritten to use these simple primitives.

Synchronization    To provide for synchronization (see Section 2.1.4), the bytecode instruction set
includes the monitorenter and monitorexit instructions. The monitorenter instruction is used to
acquire a monitor lock for a critical section of code, while the monitorexit instruction is used to release
the lock. A lock is always established on a given object, such as the current object instance. As such, both
instructions require an object instance on the stack on which the lock is acquired.

Instruction Stack after execution

iconst_1 
dup       (duplicate value) 
istore 1  (store as local variable #1)
iload 1   (retrieve local variable #1) 
iadd 

[ 1 ] 
[ 1, 1 ] 
[ 1 ] 
[ 1, 1 ] 
[ 2 ] 

Figure 2.7  Using the dup, iload, and istore instructions.
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Figure 2.8 illustrates a complete bytecode method with some of the most commonly used instructions.
In section 3.3  we give a further overview of the instruction set, and how they are used in our combined
language. A complete overview of all instructions can be found in the Java Virtual Machine spe-
cification [1].

2.1.9  Debugging information

Class files as generated by the Java compiler can contain symbolic debug information. This information
contains the original source line numbers for each instruction and name of the source file. It can also
include the names of all local variables. This information is stored in the form of tables that reference
instruction locations or local variable indices, and accompany each method (see Figure 2.8). These tables
can be used by external debuggers to allow the programmer to step through the code and inspect local
variables. The information is also used in exception traces: For every exception thrown, a stack trace is
generated complete with the original source filenames and line numbers (see Figure 2.9). It is displayed
on screen when the exception is not caught, or can be used by the application.

2.1.10  Execution safety

Java’s security model is focused on protecting end users from possibly malicious or erroneous programs
that could be downloaded from across a network from untrusted sources. This allows Java program to
be hosted on a website and run inside a web browser. Java provides fine-grained security policies and
authentication of digitally signed code.

The Java security model is integrated into the lowest levels of the JVM. To enforce it, the JVM does not

int fac (int i) {

if (i == 0) {

return 1;

} else {

return i * fac(i-1);

}

}

int fac(int)

  Code:

   Stack=4  // maximum stack depth

   Locals=2 // number of local variables ('this' and i)

   0:   iload_1          // load i on stack

   1:   ifne 6           // if (i == 0)

   4:   ldc #1           // load constant #1

   5:   ireturn          // return stack value

                         // else

   6:   iload_1

   7:   aload_0          // load 'this'

   8:   iload_1

   9:   ldc #1

   10:  isub             // substract stack values

   11:  invokevirtual #2 // call Method fac:(I)I

   14:  imul             // multiply stack values

   15:  ireturn

  LineNumberTable:

   line 1: 0

   line 2: 4

   line 4: 6

Figure 2.8  A factorial function, represented as Java source code and as bytecode. The bytecode method specifies the type sig-
nature, the maximum stack depth and the number of local variables. It also includes a table with the bytecode instructions, and
an (optional) “ line number table” mapping lines from the source code to the bytecode positions. The invokevirtual
instruction makes a recursive method call, and is parameterized with constant pool entry #2.

Exception in thread "main"

  java.io.FileNotFoundException: bar.txt 

    at Foo.myMethod(Foo.mylang:10)

    at Foo.main(Foo.mylang:5)

Figure 2.9  An exception trace generated by a program compiled from a source file named “Foo.mylang”.
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allow any kind of direct access to memory of the underlying system. This prevents Java programs from
interfering with the native hardware and operating system. Pointer arithmetic is simply not supported;
all memory access is through type-safe references. Garbage collection is used to prevent memory leaks
and ensures that unused (or previously unused) memory is never referenced.

The JVM must ensure that all executed code is type-safe, that referenced members and variables are
valid and accessible, that objects are not accessed before initialization, and that all jumps are to valid
locations. If these conditions are not met, execution would leave the runtime in an undefined state. The
JVM includes a verifier that analyzes all code before execution to ensure the conditions are met, and that
security policy is adhered to [8,15]. It will use a static analysis to confirm that all instructions (and their
operands) are valid.

Java performs most safety checks statically at load-time, allowing it to safely omit most runtime checks.
Other checks, such as type casting checks and array bounds checks, must still be performed at runtime.

2.1.11  Dynamic class loading

The Java Virtual Machine is responsible for loading all required classes and interfaces from the class
files. This loading is deferred until they are required for execution or verification of classes. Delaying
this as long as possible allows reduced memory usage and improved system response time.

All references to other classes, methods or fields are located in the constant pool, and are represented by
an identifier in the form of a string. The JVM uses it to build an implementation-specific
runtime constant pool. When a method is first executed, any symbolic references used from instructions
are then replaced by direct references (such as a pointer or offset to the class, field, or method). Classes
will be loaded if they were not already at this point. If the referenced class is not valid or does not exist,
an error will be thrown, allowing the application to recover gracefully.

Since classes are loaded as separate modules after compile-time, they are effectively dynamically
linked. Dynamic linking means that classes may be updated or modified after compilation, perhaps
because they are distributed to an installation that has a different library version. Java uses load-time
verification to verify that any updated classes comply to the interface requirements established at
compile-time, and will throw an error if this is not the case. Other compilers often do linking compile-
time, where all modules are combined into a single file. This simpler model allows the compiler to make
more assumptions about the included modules at runtime, for example allowing optimizations such as
inlining. (Java does such optimizations at load-time; see Section 2.1.12.)

2.1.12  JIT verification and compilation

Just like loading classes, verification and compilation can also be done “just-in-time” (or simply “JIT”).
Modern JVM implementations include a JIT compiler that can compile methods into native machine
code. The JIT compiler can apply several optimizations, such as using static analysis to remove unneeded
array bounds checks, or inlining of invoked methods. This can significantly increase the performance
compared with plain interpretation of bytecode.

JIT compilation can also slightly increase the time required to load each method. To prevent this,
advanced JVM implementations use runtime profiling to determine what methods are used most often.
It can use this information to selectively compile methods that run many times during the lifetime of a
program, and for inlining frequently called methods.
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2.2  Program transformation with rewrite rules

For automatically rewriting or compiling a program, we make use of rewrite rules. Rewrite rules provide
a simple, almost mechanical formalism for describing such transformations. A basic rewrite rule consists
of a left-hand side (the source) and a right-hand side (the target):

  desugar-while: ƒ if (e) stm „ ÿ ƒ if (e) stm else ; „

In this rule we rewrite the one-armed if statement to a regular if with two arms. Essential in this rule,
and rewrite rules in general, is the notion of variables. The rewrite rule above applies to any if
statement for a given condition e and a statement stm. To denote that these are variables rather than static
clauses, variables will be printed using italics throughout this thesis.

The rewrite rule above is an example of desugaring: The one-armed if construct, which is essentially
syntactic sugar for the regular if, is hereby eliminated. Other examples of syntactic sugar are the while
construct that may be rewritten to a do-while construct, and operators such as +=, which adds and
assigns a value to a variable. By desugaring, other rewrite rules may focus on the resulting, simplified
language, and proceed to rewrite the different language constructs to bytecode instructions. This practice
is commonly applied in complex rewriting systems, to reduce the number of rewrite rules required for
the base language.

2.2.1  Rewriting using rules in Stratego

For our implementation we use the Stratego transformation language (see Section 7.1), and as such we
lend some of the basic syntax of rewrite rules from this language to illustrate selected concepts
throughout this thesis. We should note that while we use it in examples, our system does not actually
depend on the use of Stratego for the implement of the applications. They may be implemented
separately from the Java/bytecode compiler, using any language or system that can produce an input
for it.

Rewrite rules in Stratego may be written using concrete syntax, i.e., using the syntax of the language
that is being rewritten [4,55]. For this, quotation delimiters (ƒ, „) are used to distinguish concrete syntax
fragments. Alternatively, rewrite rules could rewrite the underlying data structures that represents the
parsed form of the language constructs.

An additional construct that Stratego adds to the basic rewrite rule is the where clause. It can be used to
specify any information needed in the right-hand side of the rule:

  evaluate-plus:

    ƒ e1 + e2 „ ÿ ƒ e3 „
    where e3 := <add-ints> (e1, e2)

This rule invokes the <add-ints> function which adds two integers from the left-hand side, and assigns
the resulting value to e3, which is used as the right-hand side. (Note that this is not how the operator is
implemented in Java; the rules in this section serve merely as an example.) The where clause can also
be used to specify a condition for a rule to succeed: If it fails, the rule will also fail and will not be
applied. This means that if the input to the rule above is a concatenation of two strings (also denoted by
a + in Java), the <add-ints> invocation will fail, and so therefore the rule will not apply.
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The concept of failure has a central place in Stratego, much like exceptions or return values in other
languages. As such it has different operators to deal with this condition. One such operator we use here
in concrete code examples is the not operator, which succeeds if a given function call fails. This allows
us to write a rule that depends on something to fail:

  desugar-plus:

    ƒ e1 + e2 „ ÿ ƒ new StringBuilder().append(e1).append(e2) „
    where not(<is-primitive> e1);

        not(<is-primitive> e2)

In this example, the where clause will only succeed if the two invocations of <is-primitive> fail. If
that is the case, the input will be rewritten to a string concatenation using the Java StringBuilder class.
In Java, the concatenation operator (+) can be applied to objects of any type. The append() method
accepts any object as its input, and uses the standard toString() method to get its string representation.
The Java concatenation operator may also be applied to an object and a primitive type:

  "String" + 5

This expression results in “String5”. To support the case of a single primitive type and an object type
we need to adapt our rewrite rule, using the choice operator (<+ ):

  desugar-plus:

    ƒ e1 + e2 „ ÿ ƒ new StringBuilder().append(e1).append(e2) „
    where not(<is-primitive> e1) <+ not(<is-primitive> e2)

The <+  operator works much like a standard ‘or’ operator: It first tries to evaluate its left-hand side, and
in case of failure it will evaluate the right-hand side. By applying this operator, our rule now succeeds
if either of the two conditions succeeds; the expression will be rewritten in case it has one or two non-
primitive type inputs.

This concludes our brief introduction to rewrite rules. In the remainder of this thesis we make use of such
rules to illustrate selected concepts, and use pseudocode in lieu of more advanced Stratego constructs
(or will explain the constructs as they are applied). For a complete reference of the Stratego language,
in particular about the topic of strategies (i.e., functions in Stratego) we refer the reader to the Stratego
documentation [55].
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Chapter 3

Language Design

“Anything can be made to work if you fiddle with it.  
If you fiddle with something long enough, you’ll break it.”

– Murphy’s technology laws

The mixed Java/bytecode language lies at the heart of our compiler design. In this chapter we discuss
the language design and the requirements that defined it. The language essentially consists of three
components: The regular Java language, a textual representation of the binary bytecode language, and
a small number of quotation constructs that aid in the integration of the two base languages. Given that
the standard Java language is well defined [2], we limit our discussion here to the bytecode representa-
tion (Section 3.2) and the integration of the two languages (Section 3.5).

3.1  Safety first

Java’s strongly typed language design allows for a great deal of compile-time checking, which makes
it harder for developers to shoot themselves in the foot. When extending Java, care must be taken to
preserve this property. When Java is combined with a low-level language such as bytecode, this does not
come naturally. Direct access to bytecode potentially opens the doors for stack overflows and
underflows, type errors, and other threats. Fortunately, the built-in verifier in the Java Virtual Machine
prevents such errors from resulting in system crashes and security problems, but they still lead to a
program that does not work. In addition to type-checking the mixed language to prevent such problems,
we impose certain restrictions on the effect on the stack that embedded bytecode may have, to avoid
stack mismatches, underflows, or overflows. This way errors can be intuitively prevented by
programmers, or are picked up at compile-time by the compiler at the fragment of code where these
constraints are violated. (The alternative, reporting the error at the location where the program actually
fails to type-check, makes it significantly harder to find the cause of such errors.) In other words, in our
design the language we try to provide the same safety (or “sanity”) as provided by the regular Java
language.

3.2  Bytecode representation

The Java class file format was originally designed to be compact enough to allow it to be transferred over
the Internet in the mid-1990s. As such, it is a compact binary format that is not easily edited by human
beings. Many textual representations of bytecode exist to aid in this. For example, Sun provides the
javap disassembler tool, which uses a language that is very close to the binary representation (see
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Figure 2.8 on page 21). Other representations, most notably Jasmin  and its derivatives, provide a3

somewhat more abstract representation. Jasmin provides assembler-like syntax that uses the canonical
instruction names from the Java Virtual Machine specification. Unlike the javap representation, it
provides symbolic labels to serve as targets for branch instructions and exception clauses. The underlying
binary format uses relative and absolute offsets instead, which must be updated with any changes in a
program. Jasmin also abstracts from the constant pool (see Section 2.1.7), allowing every constant to be
placed inline instead of as a constant pool reference. With this abstraction, constants can be easily added
and can be directly modified in-place, without corrupting other references to the same constant.

Jasmin provides a solid basis, but in this project we have additional requirements for the bytecode
representation. We need it to allow tight integration of bytecode with Java source code, and it must allow
painless composition of fragments of code. We use the fundamental principles from Jasmin together with
some adjustments (see Figure 3.1):

P Similar to labels for jump locations, we use names for local variables. Normally, these are
represented by an offset. These can be automatically generated instead, and the compiler can
reserve a proper 1 or 2-byte slot for each variable. Using names allows variables to be shared
between Java and bytecode. As long as variable names are unique or scoped (see Section 36),
this can also help ensure that variables do not clash when two methods or fragments of code are
combined. The number of used local variables and maximum height of the operand stack can
be inferred automatically, therefore we eliminate the need to specify them manually. (Specifying
this would be harder for combined Java and bytecode, but is rather straightforward for the
compiler once the method is compiled to pure bytecode.)

P Exception handler locations (try/catch blocks in Java) are specified in the method header in
Jasmin. Inlining these can help code generators since they can directly emit exception handlers
inline rather than generating a separate table. (Note that this representation means that exception
blocks are always properly nested, which is also demanded by the JVM specification.) This also
helps with composing or manipulating bytecode fragments, as it eliminates the need to update
the exception handler tables.

P Instead of specifying debug symbols in a separate table, we include references to the original
code inline. Again, this helps method composition and manipulation. We also apply this
information to generate compile-time error messages that trace back to the original source code
(see Section 4.2).

void say(java.lang.String text) [

  catch (handler: Exception) [

    getstatic java.lang.System.out : java.io.PrintStream;

    load text;

    invokevirtual java.io.PrintStream.println(java.lang.String : void);

    return;

  ]

  handler: // (handle exceptions at this label)

]

Figure 3.1  Example of a bytecode method that calls System.out.println() and handles any exception it may throw.



The baf representation level is an exception to this, and introduces very little abstractions other than names4

for local variables [35].

Actually, we omitted the jsr/ret (“jump-subroutine”) instructions, that were used for exception handling5

blocks in older versions of Java, but are currently deprecated. Equivalent programs without these instructions can
be produced by inlining code.
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3.3  Bytecode instructions and pseudo-instructions

The Java Virtual Machine knows over two hundred instructions. The instructions range from very low-
level operations, such as manipulation of the stack, to instructions with direct ties to the Java language,
such as loading a field or local variable, to high-level operations that offer support for synchronization.
Many of these instructions are highly specialized for specific uses (see Section 2.1.8). For example, there
are eight different instructions for loading a value from an array, depending on its type. For code
generation this means that a slightly different sequence of instruction may need to be generated for the
same source code fragment, depending on the context. We introduce a set of generalized pseudo-
instructions as alternatives to some of the more specialized instructions.

The use of pseudo-instructions is common practice in compilers to delay the instruction selection process
to a later phase of the compilation. Sometimes they are used as an intermediate representation to support
emitting to multiple instruction sets for different processors in the back-end. Other times they are applied
purely to encapsulate the instruction selection process. For Java compilers, it is not a very common
practice to do this, but one existing system for bytecode abstraction is Soot [35]. Soot defines multiple
levels of abstractions over bytecode, for the purpose of analysis and optimization. The abstractions
introduced in Soot are at a relatively high level, and are designed to avoid having to deal with bytecode
as stack machine code . In our approach we stay very close to the original set: Every regular bytecode4

instruction can be mapped directly to an alternative in the reduced instruction set. Moreover, we maintain
compatibility with the standard instruction set , although in this thesis and the provided syntax definition5

we focus on the reduced set. In the remainder of this subsection we will discuss the various categories
of bytecode instructions (see Figure 3.3), their uses, and abstractions we introduced.

3.3.1  Local variables

Local variables are loaded and stored using a two-byte operation: one byte for the instruction (e.g., iload
to load an integer), and one byte for the index of the local variable. To safe space, the JVM also provides
some instructions for specific indices, only requiring a single byte of space, such as iload_1. In our
approach we introduce two overloaded pseudo-instructions: load and store that take a named local
variable as their argument. The instruction specialization, implemented in the compiler, will then make
sure that the more space-efficient variants are used when possible. (See also the implementation
discussion about overloaded instructions in Section 7.5.)

3.3.2  Arrays

While arrays are regular objects in Java, several bytecode instructions are provided to access and create
arrays, rather than using method calls. Like for local variables, there are specialized load and store
instructions available for arrays. We introduced overloaded aload and an astore instructions as
alternatives to the regular <t>aload and <t>astore instructions.
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General p ::= cd
T ::= C | void | int | long | double | float | boolean | char | short | byte

Java cd ::= class C extends C { fd md cd } Class declaration
md ::= C ( T x ) { super ( e ); s } | T m ( T x ) { s } Method/constructor declaration
fd ::= T f; Field declaration
s ::= { s } Statement block

   | e; Expression statement (eliminates result)
   | C x = e; Local declaration
   | if (e) s else s | while (e) s | for (e; e; e) s Control flow
   | throw e; Throw exception
   | return e; Return
   | try { s } catch (C x) { s } Exception catch block
   | l : Label

e ::= x = e | x Local variable access
   | e.f = e | e.f Field access
   | ( T ) e Cast
   | e.m ( e ) Method invocation
   | new C ( e ) Object creation
Bytecode cd ::= classfile C extends C fields f methods md Class declaration

md ::= C ( T x : T ) [ I ] | <init> ( T x : C ) [ I ] Method/constructor declaration
fd ::= f : T Field declaration
I ::= catch ( l : C ) [ I ] Exception catch block

   | (see Figure 3.3) Bytecode instruction
Mixing s ::= [ I ] Bytecode statement

e ::= [ I ] Bytecode expression
I ::= stm: s | expr: e Java as instruction

Tracing s ::= new code ( o ) [ s ] Trace [generated/new code] back to (old code)
e ::= new code ( o ) [ e ] (see Section 4.2)
I ::= new code ( o ) [ I ]
o ::= s | e | I Source code; may contain position annotations

Figure 3.2  Syntax for mixed Java/bytecode programs (some advanced Java constructs are not included here). 

M ath operators
add

div

mul

neg

rem

sub

shl

shr

ushr

xor

and

or    

inc

dec

    

Comparison
operators
lt

gt

eq

le

ge

ne

Stack operations
ldc    c

ldc2_w c

new    C

pop

dup

dup_x1

pop2    

dup_x2

dup2

dup2_x1

dup2_x2

swap

Primitive conversions/
trunctations
x2i

x2l

x2d

x2f

i2b

i2s

i2c

Arrays
aload

astore

arraylength

newarray       T

multianewarray T n

Local variables
load  x

store x

Fields
getstatic C.f : T

putstatic C.f : T

getfield  C.f : T

putfield  C.f : T

M ethod invocation
invokespecial   C.m(T : T)

invokevirtual   C.m(T : T)

invokestatic    C.m(T : T)

invokeinterface C.m(T : T)

Control flow
ifeq l

ifne l    

goto l

l:

athrow

return

xreturn

tableswitch

  n to n

  l

  default: l

lookupswitch

  n : l

  default: l

M iscellaneous
checkcast  C

instanceof C

monitorenter

monitorexit

nop

breakpoint

Figure 3.3  The reduced bytecode instruction set, with a total of 67 instructions. (Note that terminating semicolons are optional
in this syntax definition, unlike for Java statements.)
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3.3.3  Accessing fields

Instructions for accessing fields are getfield, putfield, getstatic, and putstatic. These respectively
push a field value on the stack, assign the value on the stack to a field, or perform these operations for
static fields. While it is possible to infer the signature of a field, and determine whether or not it is static,
we feel that specifying this adds to the expressivity and explicitness of bytecode. The field accessing
instructions take the complete declaring class name and package of a field as their argument. In case of
instance fields they also require an object instance on the stack:

  load this

  getfield mypackage.MyClass.fieldName : String

This operation loads the current class instance (local variable this) and retrieves the value of the
fieldName field.

3.3.4  Method invocation

As with fields, bytecode method invocations require a complete method signature, class name, and
package specification (see Section 2.1.8). In our syntax definition we do not diverge from this. For
example, the println() method of the PrintStream class in package java.io can be invoked using:

  invokevirtual java.io.PrintStream.println(java.lang.String : void)

Bytecode allows to distinguish between package names, names inner classes, and field names. To instead
invoke the println() method as defined by a third-party PrintStream class, defined as an inner class
of class io, which in turn is defined as an inner class of class java, the invocation would be:

  invokevirtual java$io$PrintStream.println(java.lang.String : void)

In this invocation the $ signs are part of the name of the actual class file (which does not belong to a
package). In regular Java it is not possible to distinguish between names of such inner classes or classes
in packages (or even fields), and this information must be inferred from the context. In bytecode this
ambiguity is eliminated through the use of a different syntax for inner classes, and a separate instruction
for handling fields. This can be applied to advantage in code generators to eliminate any risk of name
capture.

3.3.5  Stack operations

Stack operations include instructions for loading constants, such as ldc for loading a one-word constant,
or bipush for a single-byte constant (see also Section 2.1.8). In total there are 20 different instructions
for loading constants that can be used depending on the value and type of the constant. In our approach
we defer this specialization to the assembler, and only require the use of the ldc and ldc2_w instructions.
These are used respectively for one-word and two-word types, allowing us to distinguish between single-
word int and float values and double-word long and double values (which share the same syntax).
In regular bytecode, the two instructions require the use of the constant pool, which may be more costly
in terms of space usage (and execution time, in case of a bytecode interpreter). However, since we can
specialize the instructions in a later compilation stage, we need not be concerned with this overhead
when these instructions are emitted.
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Stack operations distinguish between one-word and two-word types, as they operate on the raw words
rather than on values of a given type (see Section 2.1.8). This means that a bytecode generator needs to
be aware not only of the current values on the stack, but also of their width on the stack. To fully
appreciate the importance of stack instructions and the fact that they operate on words rather than values,
let us look at an example of static field assignment (see Figure 3.4). A Java field assignment is compiled
to a sequence of bytecode instructions. This sequence must maintain the value of the assignment on the
stack, as Java allows nested assignments (e.g., variable = field = "value"). Since the assignment
of the field takes the value off the stack, the value must be duplicated using the dup instruction. However,
in case the field is of a two-word type, the dup instruction – operating on words – is not allowed and will
result in an error. In our approach we do allow the dup instruction to be used in such cases, and rewrite
the it to a two-word dup2 instruction during the specialization process. Similarly, we allow the use of the
pop and dup_x1 instructions on two-word types, where they would fail before. For the other (more rarely
used) stack operations we do not introduce such semantics as they operate on two-word types, and
thereby also work on single-word types (albeit with different semantics).

3.3.6  Arithmetic operators

The arithmetic operators in regular bytecode are specialized to operate on a specific type (see
Section 2.1.8). We introduce overloaded instructions as a more convenient alternative (see Figure 3.3).
To support the common operation of incrementing and decrementing values, we also introduce the inc
and dec pseudo-instructions.

3.3.7  Primitive conversions and truncations

Since Java supports various primitive types, it also supports operations to convert between these types:
l2i converts a long to an int, i2l converts an int to a long, etc. We introduce overloaded conversion
instructions that convert any inputted primitive value to a target type (e.g., x2i converts any primitive
to an integer). In addition to conversions, Java supports truncation of an int to a byte, short, or char.
These instructions – respectively i2b, i2s, and i2c – truncate an integer to the range of the specified
type.

3.3.8  Control flow

Java control flow builds on very basic primitives such as jumps and conditional jumps (see also Section
2.1.8). Conditional jumps are essentially the bytecode equivalent of the Java if statement. Java supports
a plethora of conditional jump instructions, specialized for various comparison operators and types: For
example, the if_icmpgt instruction can be used to jump if the second int value on the stack is greater
than the first value (see Figure 3.5).Other conditional jump operations include if_fcmpgt for float
values, if_icmpeq for ‘equals’, etc. To simplify the bytecode interface, we introduced several overloaded
comparison operators that can be used as an alternative. Combined with the existing ifeq (“if true

Instruction Stack after execution

ldc "value"

dup

putstatic MyClass.staticField : java.lang.String

[ "value" ]

[ "value",  "value" ]

[ "value" ]

Figure 3.4  Assignment of a field, while maintaining the assigned value on the stack. The dup instruction duplicates the
topmost stack value.
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jump”) and ifne (“if false jump”) instructions, these can replace the standard conditional jump
instructions. For example, the overloaded gt comparison instruction can be used to replace the highly
specialized if_icmpgt instruction (see Figure 3.6). Although this representation means that we now
require one more instruction in the intermediate representation, it also means that we only need a handful
of different instructions to express all combinations of primitive types and comparison operators.

We distinguish between a return instruction that returns a value (ireturn, lreturn, etc.) and a return
instruction that returns no value (return). An additional pseudo-instruction, xreturn, can be used to
return a value of any type.

3.4  Rewriting using the reduced instruction set

Using the reduced instruction set means that code generation becomes less complicated, as it relieves the
code generator from specializing the emitted instructions. For example, rewriting the minus operator to
bytecode can be expressed as a single, type-agnostic rewrite rule:

  emit-minus: ƒ e1 - e2 „ ÿ ƒ <emit-java> e1; <emit-java> e2; sub „

This rule emits a subtraction operation on any two expressions e1 and e2. For the right-hand side of the
rule, the <emit-java> function is called to emit instructions for the two sub-expressions. The resulting
bytecode will push these two values on the stack, which are then consumed by the overloaded sub
pseudo-instruction.

To generate regular, type-specialized bytecode, the given emit-minus rule would not suffice. Instead,
it would need to check the operand types to select the properly typed instruction variant. Using
overloaded instructions, we can express the minus operator and twenty other Java operators using single-
line rewrite rules instead. While the instruction selection logic must still be implemented in the compiler
(as discussed in Section 7.5.2), this technique allows us to encapsulate this aspect. This simplifies the
compiler implementation, and relieves external code generator applications from this task.

Multiple type-specific instructions are often required for code generation tasks that require more
complicated bytecode patterns, such as iteration, creating a new array instance, or modifying a field.
Such patterns often use local variables (load/store) or stack operations to maintain state. For example,

iconst_1

iconst_2

if_icmpgt else // jump to label “else” if 1 > 2

  ...

else:

  ...

Figure 3.5  A simple “if” statement expressed as regular bytecode.

iconst_1

iconst_2

gt

ifeq else // jump to label “else” if 1 > 2

  ...

else:

  ...

Figure 3.6  A simple “if” statement expressed using the reduced instruction set.



In our actual implementation, we abstract over store and load operations for these entities, but this6

illustrates the number of different bytecode sequences may have to be generated for a similar-looking expression.
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the Java increment operator makes use of such operations (see Figure 3.7). To implement this operator
in bytecode, a local variable needs to be loaded, incremented, and stored. As an increment expression
may appear as a subexpression, it must additionally maintain (i.e., duplicate) the value on the stack. In
regular Java bytecode, these four operations require type-specific instructions, and must carefully be
selected depending on the type of the variable in question. Using the reduced instruction set however,
the operations can be performed in a type-agnostic fashion. This results in the same generated bytecode,
regardless of whether the variable is of type int or long. Therefore, this operation, too, can be compiled
using a single rewrite rule:

  emit-increment: ƒ x++ „ ÿ ƒ load x; dup; inc; store x „

Additional rules are still required for the related pre-increment operation (i.e., ++x), pre-decrement
operation, and post-decrement operation. Furthermore, such rules are not just required for local variables,
but also for arrays, static fields, and instance fields . Using the regular bytecode instruction set, this6

would lead to 60 rewrite rules that all generate a subtly different sequence of instructions. Implementing
this would be very tedious and error-prone. An abstraction could be sought over such rules, to limit the
amount of coding work, but would still require intensive unit testing for the different cases. The reduced
instruction set on the other hand already defines a well-encapsulated abstraction for this, and is available
for direct use in code generation within the compiler and for external preprocessor applications.

3.5  Integrating Java and bytecode

Bytecode has many of the same object-oriented units of code as Java: classes, methods, and fields. In the
combined language, we want these to be interchangeable: Allow bytecode classes with Java methods,
Java classes with bytecode fields, etc. These units of code are straightforward to integrate in the syntax,
and they can simply be handled and compiled separately by the compiler.

Mixing the two languages beyond the method level is less obvious, and required us to make some design
choices. In Java, a method body is a treelike structure of statements that may contain leafs of expression
trees. Bytecode method bodies can be described as a flat list of instructions (that may include nested
exception handling sections). Perhaps the most simple form of mixing at this level would be to allow
bytecode fragments in place of statements, and vice versa. This – amongst other things – allows separate
compilation of a DSL statement (directly to bytecode), or basic insertion of source code into compiled

Java expression Regular bytecode Reduced instruction set

intVar++ iload_1; dup; iconst_1; add;

istore_1

or, more specifically:
iload_1; iinc 1 1

load intVar; dup; inc;

store intVar

longVar++ lload_2; dup2; lconst_1; ladd;

lstore_2 

load longVar; dup; inc;

store longVar

Figure 3.7  Instructions generated for seemingly similar Java expressions. This example assumes that there are two variables
declared: longVar of type long and intVar of type int.
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methods. For other purposes, such as handling DSL expressions, it can be advantageous to extend
support for mixing to the expression level. This is the approach we take here.

An overview of the complete syntax of the mixed language can be found in Figure 3.2. Essential are the
definitions that allow class members, defined in either base language, to be included in classes of either
language. At a lower level, statement- and expression-level mixing is achieved using square brackets
([,]) to inline bytecode in a Java method body. The stm: and expr: constructs embed Java fragments
inside bytecode (see Figure 3.8). As will become evident in Section 3.5.2, this allows natural
interoperability between constructs of the two base languages, adding to the use of local variables.

3.5.1  Stack-neutrality of Java statements

While Java expressions make intensive use of the stack (see Section 2.1.8), piling up intermediate values
and popping off input values, this is not the case for statements. Java statements are compiled to a
stack-neutral bytecode sequence: The stack after the execution of a Java statement is the same as it was
before its completion. This ensures that all Java statements can be safely placed in a loop construct,
without the risk of a stack overflow or underflow. Even more so, the JVM actually requires that methods
have a fixed maximum stack depth, disallowing any loops with increasing stack depths.

For compound statements (e.g., for, while), stack-neutrality extends to the contained statements: The
input stack of all nested statements must be the same as the stack outside the containing statement. This
restriction goes hand in hand with the JVM restriction that at any point in a method, the types of the
values on the stack must be known in advance (a requirement for static verification; see Section 7.5). For
control flow this means that jumps to a location are only allowed if all incoming edges of the control
flow graph have the same input stack. For statements and nested statements this is always true based on
the property of stack-neutrality: A jump from one statement to another is therefore always allowed.
Jumping into or out of expressions is not, unless the stack is explicitly made the same.

3.5.2  Interoperability between Java and bytecode fragments

The semantics of bytecode fragments inside Java, or vice versa, can be surprisingly simple and natural.
To understand this, we will draw a comparison between the embedded code fragments and composition
of regular Java statements and expressions. In regular Java, the stack only plays a role for the compiler,
to combine expressions. In the bytecode language, this role is much greater and more direct, which would
seem to cause a discrepancy. In the combined language, we will see that this role is also expanded, to
allow interoperability between the two base languages.

class Foo {

  // A bytecode method with embedded Java

  add1(int i, int j : int) [

    stm: return i + j;

  ]

  // A Java method with embedded bytecode

  void add2(int i, int j) {

    [ load i; load j; add; xreturn ]

  }

}

Figure 3.8  Example of embedded bytecode and embedded Java: Two equivalent methods that add two integers, defined using
different syntax forms.
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Java expressions use the stack to interoperate: The stack is used for the input of operands, and to store
the results of the expression (see Section 2.1.8). All Java expressions return a single value on the stack
(with the exception of invocations of methods with a void return type). This means that it is possible to
use a bytecode sequence that pushes a single value on the stack in place of a Java expression. We call
this a bytecode expression (see Figure 3.9).

We also introduce the notion of bytecode statements; bytecode fragments that can be used in place of
Java statements. For these, we pose requirement of stack-neutrality, which also exists for regular Java
statements (see Section 3.5.1). Although this restricts certain otherwise valid programs from being
compiled, we feel that the potential problems eliminated by this constraint outweigh this concern (see
Figure 3.10). Requiring stack-neutrality of bytecode statements eliminates potential problems with
statements that mutate values on the stack, and cause errors in other places in the method. It does not
pose any substantial restriction when compiling to bytecode: Statements can still make use of the stack
for intermediate values, as long as they restore the stack after completion.

Java can also be embedded in bytecode. Here the stack again has an essential role. In our syntax
definition we distinguish between embedded statements and expressions, as Java statements have no
(lasting) effect on the stack, while expressions push a value onto it (Figure 3.9 shows a Java expression
in bytecode). Besides readability, this distinction allows the use promoted expressions as both
expressions and statements. Promoted expressions are expressions that may exist both in expression or
statement form, such as method calls or assignments (see Figure 3.2). In statement form, these have no
stack effect, while in expression form they may leave a return type on the stack.

In conclusion, using the syntactic and semantic constraints posed on embedded Java and bytecode, we
believe that the result is a safe, yet powerful combination of the two base languages. The stack plays an
important role in the interoperability of the two, as well as in the type safety of embeddings.

3.5.3  Shared local variables

Both Java and bytecode support the notion of local variables. As such, they can be used to share data
between fragments of the two languages, adding to the interoperability available by use of the stack. We
defined local variables to be referenced by name in the bytecode syntax, as is already the case in standard

// A bytecode expression in Java:

int i = [ ldc 1 ];

// A Java expression in bytecode:

[ expr: i + 1;

  store j;

]

Figure 3.9  A bytecode expression in Java, and vice versa.

while (x > 2) {

  [ ldc 1 ];

  if (x < 5) [ pop ];

  else return;

}

while (x > 2) { // <- stack mismatch at this point

  [ ldc 1 ];

  if (x < 5) [ pop ];

  else continue;

}

Figure 3.10  Using bytecode in place of statements: The program on the left could be compiled into a legal bytecode sequence,
while on the right a program that is illegal since it increases the stack depth  each loop iteration (and thus will not pass the Java
verifier). Evidently, statements that modify the stack can lead to non-local errors that cannot be spotted at first sight. Because
of this, we disallow such statements, and consider both these programs illegal.
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Java (see Section 3.3.1). This allows us to enable sharing of local variables, simply by referencing the
same name from within a bytecode and a Java fragment.

Scoping rules apply to local variables in Java. Using different scopes, distinct variables can be declared
using the same name, possibly with different types. This means that the Java scoping rules are essential
for proper sharing of local variables between Java and embedded bytecode. Therefore, we also apply the
Java scoping rules to variables declared in bytecode (see Figure 3.11).

In standard bytecode, there is no notion of variable scoping (that is, they may be used anywhere within
a single method). For embedded bytecode, we define that no scope is introduced, other than by the
standard Java scoping constructs. Similarly, no scope is introduced by embedded Java, unless a block
construct is explicitly used for scoping (see Figure 3.12). 

3.5.4  Extended control flow mechanisms

In Section 3.3.8 we discussed that the bytecode control flow primitives, which cannot be mapped one-to-
one to the control flow statements in the Java language. As such, they provide additional expressiveness
to the language, allowing forms of control flow not allowed in mere Java code.

The most basic form of control flow in bytecode is the goto instruction, which can jump to any point in
a method. The JVM specification requires that the types on the stack are the same for every entry point
to a bytecode instruction. Jumps to a point in the program with a different stack height are simply not
allowed. While this can pose some limitations on jumps to individual instructions – which have to be
dealt by giving a proper verifier error message – this is not the case for jumps to Java statements. This
is because Java statements are stack-neutral (see Section 3.5.1): The stack is the same at the beginning
of each statement, including statements inside compound statements. Java already allows the placement
of labels in front any statement (normally for use by break and continue). This means that we can also
use these for jumps from inline bytecode to any Java statement (see Figure 3.13).

Java labels    As demonstrated, the bytecode control flow instructions integrate well with the regular
Java statements. This is in part because the regular Java language already provides support for labels,
to support the labeled break and continue statements. These statements allow, under certain conditions,
jumps to labeled locations. We extended the syntax definition to allow labels after a statement, rather

void foo() {

  { // a Java block construct introduces a new local variable scope

    [ ldc 1; store var ];

  }

  // variable is now out of scope

  int var = 2; // defines a new variable

}

Figure 3.11  Local variables shared between in Java and bytecode. In this example, the Java scoping mechanism ensures there
are two distinct variables declared: one scoped inside the block construct, and one defined after the block.

void foo() {

[ stm: int var = 1; ]

   

   var++; // variable is still in scope

}

Figure 3.12  Embeddings do not create a scope by themselves.
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than only at the beginning of a statement. One minor issue with this language feature was the fact that
Java allows duplicate labels to be defined, and only requires them to be unique with respect to nested
statements. In other words, the following is legal in a standard Java method:

  label1: int i = 1;

  label1: i++;

As we extend the semantics of labels to allow jumps, we however require labels to be unique across the
entire method. The fact that Java does not demand this can be considered an extremely esoteric language
feature, which is rarely used in normal Java programs (we certainly have never encountered such a
program). As such, we feel that the restriction to allow only unique labels in the Java/bytecode language
is a necessary step that does not form a impediment for regular applications.

Try/finally and jumps    Another issue we ran into with the mixed language is the semantics of control
flow instructions used within the Java try/finally statement. The try/finally statement (see Section
2.1.6) ensures that the finally block of code is always is executed when the try block is exited. This
can be because the try block is completed, or because an exception occurred. For the mixed language,
this means that similar semantics must also be applied for the goto instruction and other control flow
instructions. For both types of jump instructions, this can be effectively done by first jumping to the
finally block, before the jump is made to actual the target destination (see Figure 3.14) . For7

conditional control flow instructions, such as ifeq, this means that the jump is only “redirected” if the
jump is actually made, otherwise the control continues normally.

Synchronized and jumps    The Java synchronized block (see Section 2.1.4, 2.1.8) shares some of the
semantics of the try/finally block. It always closes a monitor if a block is exited in any fashion. As
such, the statement also shares its issue with bytecode control flow instructions. However, using the
Java/bytecode language, we can define the synchronized statement using the following rewrite rule:

  desugar-synchronized:

    ƒ synchronized (e) bstm „ ÿ

    ƒ try { 

      Object locked = e;

      [ expr: locked; monitorenter ];

      bstm

   }

void findValue(int[][] matrix, int value) {

  for (int i = 0; i < matrix.length; i++) {

     for (int j = 0; j < matrix[i].length; j++) {

       if (matrix[i][j] == value) {

         System.out.println("Found it!");

         [ goto done ]

       }

     }

  }

  done:

}

Figure 3.13  Using an embedded goto instruction in Java. (Here, the goto is used as an alternative to standard Java break
statement, but as demonstrated in Section 5.3 and 5.4, it also has more sensible applications.)
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   finally {

      [ expr: locked; monitorexit ];

   }

    „

In this rule, the monitorenter and monitorexit instructions are used to respectively acquire and release
the lock. Java’s try/finally construct, which has no direct equivalent in bytecode, is used to ensure
that it is always released. Essentially, this rule lifts the synchronized statement to a form of syntactic
sugar. As syntactic sugar, it can make use of the implementation of the try/finally statement, sketched
out above, which eliminates any issues with bytecode control flow inside the statement. (It should be
noted that the given rewrite rule declares a variable locked, which may conflict with other variables in
the generated code; in Section 5.2 we discuss how this issue can be handled.)

try {

  foo();

  ...

  [ goto end ];

} finally {

  bar();

}

end:

catch finally: * [ // if any exception occurs, goto finally

  invokestatic MyClass.foo();

  ...

  goto end_redirect; 

]

end_redirect: // redirected jump to first execute "finally"

  invokestatic MyClass.bar();

  goto end;

finally:

  invokestatic MyClass.bar();

end:

Figure 3.14  Compilation of a mixed program with a try/finally statement and an embedded goto instruction (left) to
pure bytecode (right).
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Chapter 4

Compiler Implementation Requirements

A regular Java compiler operates by rewriting Java source code to bytecode. Not all compilers for the
JVM actually write the result directly to the binary class file format; sometimes an intermediate
representation is used, such as the format provided by Jasmin or Soot [35]. The final stage of the
compilation – writing this representation to the binary class format – is then carried out by a bytecode
assembler. A good bytecode assembler provides access to the complete feature set of the class file
format, and may provide class verification to aid bytecode engineering. The compiler for the mixed
Java/bytecode language essentially unifies a regular Java compiler with such a bytecode assembler: It
rewrites all Java code to bytecode, and acts as an assembler for both the resulting and inputted bytecode.
In the remainder of this chapter we will discuss the requirements this poses on the compiler architecture.
Furthermore, we will discuss the required techniques posed by the desire to allow separate compilation
and composition of programs. In Section 7 we will discuss the actual design and implementation that
follow from these techniques and requirements.

4.1  Bytecode verification

All bytecode compiled or written for the JVM has to pass the verifier (see Section 2.1.10). Implementors
have to consider the security-related constraints the JVM poses on the generated code, as well as general
type safety and stack consistency. The verifier included in the JVM will ensure that type errors and stack
inconsistencies are detected before a program is executed. However, this is only intended as a means of
providing security and reliability for the end-user, and not so much to help find programming errors.
Many JVM implementations also allow the user to switch off the verifier, in exchange for a small
performance boost. The JVM verifier only verifies a method “just-in-time” (i.e., when it is first
executed), and may not verify methods that are never executed. Furthermore, the error messages
produced by the JIT verifier are not very user-friendly, as they typically lack context information
necessary to clearly identify the problem. For example, a typical verifier error message is “Expecting to
find integer on stack.” This message does not include the offending instruction, or its exact location in
the program. Additionally, the produced message may differ across JVM implementations. All this
makes the built-in JVM verifier not directly useable for writing or modifying programs in bytecode (i.e.,
bytecode engineering).

4.1.1  External verifiers

In addition to the JIT verifier that exists in the JVM, stand-alone verifiers also exist, which are more
useful for bytecode engineering. A notable verifier in this category is JustIce [16], a verifier included
in BCEL, an open-source project sponsored by the Apache Foundation. This verifier can report verbose
error messages, as well as warning messages. As such, including it in a compilation chain can help
prevent errors, and provides feedback to the programmer.
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4.1.2  Compiler-integrated verifier

A verifier may also be coupled with a Java compiler. The advantage of this integration can be that the
verifier has more context information at its disposal. For this project, a tightly integrated verifier enables
us to extract typing information from fragments of bytecode. These fragments make use of context
information of the surrounding code: Defined fields, methods, local variables, etc. Type-checking
bytecode fragments is essential for the stack type restrictions we placed on embedded bytecode (see
Section 3.5.2). Furthermore, this type information is essential for the code generation process, supporting
for example method overloading resolution.

The context provided for the verifier can also be in the form of information about the original,
uncompiled code. Any generated error messages generated can then refer back to the original code, as
well as the generated bytecode. Because of the large focus on bytecode in our project, there are two roles
for the verifier. One is to aid in error detection in bytecode in the source files. The other is to detect errors
in the generated bytecode. The latter is especially useful in the development of the standard Java code
generation component of the compiler. The additional context information also allows static analyses to
be performed at the bytecode level on entities that normally only exist at compile-time, such as the read-
only (final) local variables or anonymous classes.

An integrated verifier can also be more easily adapted to process a modified form of bytecode. For the
purpose of generating and composing code, we introduced a set of pseudo-instructions (see Section 3.3).
These abstractions are compiled to regular bytecode in the final phase of the compiler. The integrated
verifier either can run before this transformation, or it can be used as a part of it. We have chosen for the
latter approach; using the verifier to provide typing information for the compiler. More details on the
principles and actual implementation of this inferencing process can be found in Section 7.5.

4.2  Integration of debugging information

A Java compiler may include debugging information about source files in compiled classes. This
information is used, among other things, to allow debuggers to step through the source code and to
provide tracing information for runtime exceptions (see Section 2.1.9). Since debugging information is
optional, many third-party compilers do not generate it. For a preprocessor, which generates Java code
and uses a separate compiler to compile the result (see Figure 4.1 ), including the correct line numbers
is generally not possible. Instead, debugging information is included for the generated code. As a single
line of code in the original source file can expand to a large number of generated lines of code, the
position information of the generated code is of little value to the end-user of a language extension.
Accordingly, any compile-time errors will refer to the generated code (see Figure 4.2), as will any run-

Foo.mylang:

1 public class Foo {

2   void bar(BarList list) {

3     foreach (Bar b in list) {

4       b.print();

5     }

6   }

7 }

Foo.java:

1 public class Foo {

2   void bar(BarList list) {

3     Iterator it = list.iterator();

4     while (it.hasNext()) {

5       Bar b = it.next();

6       b.print();

7     }

8   }

9 }

Figure 4.1  A preprocessor rewrites a foreach (left) statement to regular Java code (right). (Note that Java 5  actually intro-
duced similar syntactic sugar in the form of the enhanced for loop; see Section 5.4.)
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time errors. One workaround that is sometimes applied by Java preprocessors is distributing whitespace
so that the intermediate code uses the same line numbers. This is however limited to in-place code
generation and can only preserves line numbers (not column numbers). When more than a few lines of
code needs to be generated however, this approach also becomes less manageable and harder to debug.

Other third-party compilers, such as Kawa [10], compile directly to bytecode and directly generate
proper debugging information. Our mixed language compiler needs to allow various separate
compilation scenarios, perhaps forming the back-end of a preprocessor. Therefore, rather than extracting
the debugging information from the source file, we allow the inclusion of explicit source information
as annotations in the language. This source tracing information can be automatically generated and
maintained throughout the compilation process [50]. This makes it is possible to generate debugging
information that refers to the original source code rather than to the intermediate source code. For third-
party compilers this simplifies the process of including debugging information, as they are no longer
required to directly generate Java bytecode with debug symbol tables.

Compilers operate by rewriting source code to compiled code in multiple steps. Every source construct
undergoes several analysis and transformation steps, such as desugaring, before it is finally translated
to compiled code. During every such translation step a reference to the original source code location must
be maintained with the translation result. For preprocessors this information must be maintained as
metadata accompanying the generated code. This information can be maintained in separate tables,
mapping line numbers from the source to the generated code. However, as with exception handler tables
(see Section 3.2), it is more convenient to place this information inline. This enables quick manipulation
of  the source code, without having to maintain and update separate tables. Like for exception handlers
in bytecode, we introduce a new language construct to specify this information (see Figure 4.3).

In conclusion, we require the compiler to maintain source code information during the complete
compilation chain. This allows for generation of debugging information, and as we have seen in Section
4.1.2, this context information can be used by the verifier and code generator to generate detailed error
messages. These can be provided with the original source file, line, and column number, and can include
the offending source and generated code. These features are essential for high-fidelity compilation.

Foo.java:5: cannot find symbol: method next()

Figure 4.2  A compile-time error from the Java compiler, directed to the generated code. This may confuse the end-user, as
the original user code did not include a call to next() on line 5.

class Merged {

  trace (void method1 ... @ File1.java:10:2) [

    void method1() {

      ...

    }

  ]

  trace (void method2 ... @ File2.java:6:2) [

    void method2() {

      ...

    }

  ]

}

Figure 4.3  Explicit source location information included within a Java file. This Java file is generated from two input files,
which is explicitly noted in the trace tags. This information is usually included at all levels of the program (i.e., at every class,
method, statement, and expression).
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Chapter 5

Application in Developing New Languages

In this chapter, we will show how the mixed Java/bytecode language can help implement various
language features and applications. The language can be used to provide certain features only available
in bytecode, without introducing the complexity of full-fledged bytecode compilation. This can be of
benefit for the complexity of the code generator or the performance of the generated code. We will also
introduce patterns that rely on the interaction between the two base languages, to help accomplish
common tasks in developing new languages or language extensions.

5.1  Language embedding

5.1.1  Motivation

Domain-Specific Languages (DSLs) offer specialized functionality and syntax for a specific domain.
They provide a more natural way of programming for such a domain, and tend to be less verbose than
general-purpose languages. This leads to an improvement in maintainability, reliability and developer
productivity. Furthermore, a good code compiler can apply domain-specific optimizations to the code
to achieve improvements in performance and resource utilization [61,69]. However, DSLs lack the
general capabilities of general-purpose language. A language for text-processing and manipulation may
lack the capability to create a graphical user interface, for example. For this reason, they are rarely used
by themselves, but instead in combination with other languages.

A technique to combine the expressiveness and the general capabilities of different languages is through
embedding a language: A DSL may be introduced as a language construct within a general-purpose
language. In addition to extending the language syntax, its semantics will also have to be adapted to
support the new constructs. Embedded DSL constructs need to be assimilated to be integrated into the
host language: They must be rewritten to language constructs in that language, such as library calls or
perhaps an outright translation. Since the DSL expressions were not directly written in terms of the
general-purpose language, it is possible to perform optimizations or verifications at this stage. Standard
libraries for queries on XML, for example, can only validate and interpret API calls at run-time, rather
than at compile-time.

5.1.2  Applications

Embedded domain-specific languages can come in various forms, such as embedded database queries,
or direct support for regular expressions (Figure 5.1). This can mean advantages in terms of performance
and reliability, as compile-time optimizations and verifications specific for the DSL can be performed.
MetaBorg [4,47] is an approach that provides generic facilities and techniques for embedding languages.
It uses a modular syntax definition formalism (SDF [67]) to provide grammars extensions, and
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methodologies for extending the type checker of the host language. Recent applications of MetaBorg
included JavaSwul for assimilating a user-interface language into Java, which provided a concise new
way to access the user-interface API. Another recent application was JavaRegex, which integrated
regular expression into Java, with support for compile-time verification. MetaBorg is aimed at
assimilating the embedded domain code to existing API calls and other constructs in the host language,
while leaving the host language undisturbed. This transformation allows programs to be compiled by an
existing compiler for the host language.

5.1.3  Challenges

One immediate complication that often arises with language embedding and assimilation, is the fact that
DSL expressions often need to be translated to multiple statements in the host language. For example,
given a regular expression (see Figure 5.1), the assimilation could produce several specialized
statements, intermediate variables, and method calls. The originating regular expression itself however
is placed in a Java expression, which cannot contain any statements. In other words, the expression
cannot be simply replaced in-place in the generated code.

In many imperative languages, including Java, statements are more expressive than expressions. Among
other things, they allow variable declarations and can use various control flow constructs. Statements
may embed other statements or expressions, while expressions can only contain other expressions. Still,
language embedding at the expression-level is often required, to return a value from the embedded
language context. An expression can directly return the result of a database query or regular expression,
for example, which would be tedious to do at the statement level.

One technique to overcome the problem of expression-level embedded language constructs is
Statement-lifting. This is a transformation that moves the translated form of an expression to the
statement level. Sometimes this process is performed in a separate transformation step, rather than on-
the-fly, to avoid complication of the assimilation process. MetaBorg provides a systematic approach for
this technique in the form of eblocks [47], a technique that allows a programmer to use an intermediate
language formalism to include statements in expressions. An eblock is a language construct that can be
used in place of an expression, and takes the following form:

  {| statements | expression |}

From this expression, the statements component allows statements to be used in place of the expression.
The resulting value of the eblock expression is the value in the expression component. To transform this
to regular Java, the embedded statements are simply lifted to the statement-level, before the statement
in which the eblock occurs. We applied this technique to assimilate the C# as type-casting operator into
Java (see Figure 5.2). This operator can be rewritten to a single statement and an expression. While in

String getShortDomain(String url) {

  return url ~= /

    ^(http|ftp):\/\/ # ignore protocol (e.g., http://)

    [\w\.]*          # ignore subdomains (e.g., www. or www.forum.)

    \.\w+\.\w+       # match second-level domain name

  /w;

}

Figure 5.1  An embedded regular expression in a Java method. It is implemented in a fraction of the Java code that would be
required for this, and may have better performance characteristics than a hand-coded alternative with (expensive) string
operations in Java.
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principle this process of statement-lifting is a simple transformation, it requires consideration of all
statements and expressions the eblock could be embedded in. They may appear as subexpressions, but
also as the condition of a loop construct or if statement, as the argument of a throw or return statement,
etc.

Even when considering all the places that an expression may appear in, simply moving the statements
for an assimilated expression to the statement level still has its limitations. Another complication is that
by moving the translated code, the execution order changes. Because of side-effects that the code may
exhibit, this can lead to undesirable results. For example, the lifting pattern from Figure 5.2 cannot be
safely applied inside a looping statement, as illustrated in Figure 5.3. Another language construct that
this technique is not be applicable is inside short-circuiting operators: Operators such as the Java ‘and’
(&&) and ‘or’ (||) operator will only evaluate their contained expressions if they require its value. A
further (non-trivial) transformation is required to prevent the lifted statement from being evaluated in
these cases. In other words, not only does proper statement-lifting require syntactic knowledge of the
complete language, it also requires profound knowledge about its semantics.

// 1. 'As' operator

String s = e as String;

// 2. 'As' operator rewritten inline using eblock

String s =

{| Object temp = e;

   String lifted = temp instanceof String ? (String) temp : null;

 | lifted

 |}

// 3. 'As' operator rewritten to pure Java

//    (using statement-lifting to rewrite it to separate statements)

Object temp = e;

String lifted = temp instanceof String ? (String) temp : null;

String s = lifted;

Figure 5.2  Rewriting the as operator to pure Java using statement-lifting. The as operator [42] performs a checked cast
operation on an expression e. If e does not have the expected type, it returns null . When expressed in pure Java, a temporary
variable is declared to store expression e, ensuring it is only evaluated once.

// 1. 'As' operator in for loop

for (String s = start; s != null; s = next() as String) {

  ...

}

// 2. 'As' operator rewritten to pure Java

//    (using simple statement-lifting, the resulting program may be incorrect)

Object temp = next();

String lifted = temp instanceof String ? (String) temp : null;

for (String s = start; s != null; s = lifted) {

  ...

}

Figure 5.3  Statement-lifting can be problematic, as the unlifted expression is semantically in a different context. In this
example the as operator cannot be directly moved out of the loop, without changing the meaning of the program. 
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5.1.4  Implementation

In bytecode, there is no statement level or expression level. This distinction only exists in Java source
code, and is simply a consequence of the Java syntax. By embedding bytecode in Java source code, we
can effectively eliminate this limitation without further effort. Bytecode expressions can make variable
declarations and other features available that are normally unavailable to expressions. Based on this, we
can directly compile the operator to bytecode inline, using embedded bytecode (see Figure 5.4). The
Java/bytecode compiler does not change the execution order, but will simply type-check the expression
and integrate the bytecode with the surrounding code at compilation time (see Section 3.5.2).

Building on the principle of embedded bytecode, we can go one step further and also apply embedding
of Java source code in bytecode: We can place Java statements and expressions inside a bytecode block.
This means we can inline Java statements in bytecode expressions, effectively allowing statements in
place of expressions. Using this pattern, we can successfully achieve the effect as we were trying to
accomplish with eblocks (see Figure 5.5). This pattern avoids the problems of statement-lifting, as it can
be applied in place of any expression, and does not require changes in the execution order. The compiler
will simply compile the code in-place to bytecode, without any re-ordering. Furthermore, the syntax is
arguably as convenient in use as the eblock syntax, even though it only makes use of the standard
embedding constructs we defined in Section 3.5. The implementation follows naturally from the mixed
language concept, and does not require specific handling for special cases as required with statement-
lifting.

There are a number of special forms of the eblock construct. For example, the post-eblock can be used
in cases where it is desirable to evaluate the expression before, rather after than the statement. Another
form first evaluates a statement, then an expression, and then another statement. With the bytecode-
embedding syntax, these forms can be expressed using the same basic embedding syntax. The only
restriction is that such a bytecode expression must push only a single value on the stack (which can be
in the form of a single expression). This is enforced by the type-checker, rather than by the syntax
definition. Statements on the other hand, have no effect on the stack (see Section 3.5.2), which means
a bytecode expression may include as many statements as desired, and in any order.

String s = [

  expr: e;

  dup;

  instanceof java.lang.String;  // determine if 'e' is a subtype of String

  ifeq else;

    checkcast java.lang.String; // if it is, cast to String

    goto end;  

  else:

    pop;                        // otherwise, replace it by null

    ldc null;

  end:

];

Figure 5.4  Inline compilation of the as operator to a bytecode expression.

String s = [

  stm:  Object temp = e;

  expr: temp instanceof String ? (String) temp : null;  

];

Figure 5.5   The as operator, expressed as Java embedded at the bytecode-level. The inner Java expression determines the
value (and type) pushed on the stack, which in turn is the value assigned to string s.
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In conclusion, we can assimilate the as operator using a single rewrite rule. The mixed language concept
ensures proper integration in the surrounding code, without changing the execution order:

  assimilate-operator:

    ƒ e as t „ ÿ

    ƒ [ stm: Object temp = e;

      expr: temp instanceof t ? (t) temp : null;

      ]

    „

5.2  Local variables in generated code

5.2.1  Motivation

A classic issue in code generation is the use of local variables. Even for assimilating small fragments of
embedded code, the use of intermediate local variables may be a necessity. Java is a statically typed
language that does not support name shadowing (i.e., declaring a new variable with a name that is
already used in an outer scope). Generated local variables must therefore be provided with a unique name
(or at least a name that does not shadow other variables), and must be explicitly typed.

5.2.2  Applications

As our next running example, we will take a stab at another operator from the C# language, which shows
similarities with the as operator in Section 5.1 . The null coalescing operator, or simply the coalescing
operator, is specifically designed to handle conversions of nullable types [42]. Nullable types are types
that may be assigned the null value, and are often used in databases. In Java, all object types are
nullable, but the numeric, primitive types are not. Therefore, types provided by Java as equivalents to
those in the database world may not always be nullable. Java however does provide primitive wrapper
types that may be used as an object reference (i.e., nullable) representation of the primitive types (see
Section 2.1.3). Due to performance constraints however, and the fact that most library functions use
primitive types rather than their wrappers, having to convert them to their primitive equivalent is usually
unavoidable. This conversion is facilitated by Java’s support for auto-boxing and -unboxing (see Section
2.1.3). This makes it possible to directly and implicitly convert from a primitive wrapper type to a regular
primitive type:

  Integer i = new Integer(3);

  int j = i;

Unfortunately, a limitation of auto-boxing is that if the converted wrapper type is null, there is no
corresponding primitive value. Since there is no general, safe default value that could be used instead,
and because this is an exceptional case, a runtime exception will be thrown if this happens:

  Integer i = null;

  int j = i; // throws an exception! 

This is where the coalescing operator comes in. This operator, denoted as ??, provides a clean solution
for this, by specifying a default value in case the input is null:

  int j = i ?? 0; // will result in 0, instead of an exception
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Like the as operator we have shown earlier, the coalescence operator is embedded as an expression
within the host language (i.e., Java), and also embeds host language expressions within it. This is a
common pattern in language embeddings and extensions.

5.2.3  Challenges

A somewhat naive implementation of the coalescing operator may look something like this:

  assimilate-operator1: ƒ e1 ?? e2 „ ÿ ƒ e1 != null ? e1 : e2 „

However, care should be taken to not make assumptions about the embedded expressions e1 and e2.
They may be of various different natures: Each expression may be a regular Java variable, a method call,
embedded bytecode, or perhaps expressions in the form of another language extension. Foremostly, we
must consider that they may exhibit side-effects. If the operator is applied to an expression with any form
of side-effects, perhaps reading a string from a file or printing something to the screen, it must be
evaluated only once. In the rewrite rule above, expression e1 could be evaluated twice.

Using a temporary variable, we can ensure that the expression is evaluated only once. We can do this by
assigning expression e1 to a variable (expression e2 on the other hand is only evaluated when used). By
applying the pattern from Section 5.1, we can place a local variable declaration inside a bytecode
expression:

  assimilate-operator2:

    ƒ e1 ?? e2 „ ÿ

    ƒ [ stm:  Object $temp = e1;

      expr: e1 != null ? $temp : e2;

      ]

    „

Unfortunately, this does not yet solve the issue of giving a unique name and type to the temporary
variable. Clearly, we cannot safely assume that the operator will only be applied of expressions of type
Object. Nor can we simply assume that the name $temp will never be used elsewhere in the host
program. The latter is an issue we conveniently ignored in the previous section, but it is of vital
importance in a production environment. Some code generators attempt to create a unique name for fresh
variables using dollar signs in this fashion, which is a valid, but rarely used character for Java identifiers.
Of course, no guarantee can be made that the program that hosts a language extension does not also make
use of such names.

In mature program transformation systems, such as Stratego/XT [3,4,47], various solutions exist for the
general issue of naming and typing generated local variables. Stratego can automatically generate a name
that is globally unique in the environment (see Figure 5.6). By use of a type-checker, extended for the
adapted language, it is possible to retrieve the type of expression e1. Unfortunately such solutions require
knowledge of the context of the assimilation (expression types, locals in scope), which may not always
be available. Furthermore, not all code generators make use of such systems, and a type-checker may
not always be readily available for a language. Here, we investigate an alternative method that does not
require such information and technology.
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5.2.4  Implementation

Whereas variables in Java have to be explicitly declared with a complete type and name, variables in
bytecode are implicitly typed. Recall that bytecode instructions for handling local variables are only
explicitly typed for the primitive types, but not for object types (Section 3.3.1). Furthermore, the load
and store pseudo-instructions can be used for both primitive types and object types. We can use this to
our advantage for implicitly typing a variable. Building upon the pattern from Figure 5.6, we can rewrite
the variable declaration to bytecode (see Figure 5.7). This pattern eliminates the need to define or extend
a type-checker for the language extension. In a complete compilation chain, this desugaring can be
applied before type-checking. It results in an expression with an associated local variable that can be
type-checked after it is generated, by the standard Java/bytecode type-checker (discussed in Section 7).

Introducing the var operator    As the use of bytecode increases, so does the generally perceived
complexity of the rewrite rule. Instead of directly using the store instruction, it is also possible to define
a rule for introducing syntactic sugar for the implicitly typed variable declaration:

  desugar-var: ƒ var x = e; „ ÿ ƒ [ expr: e; store x ] „

The var operator is a useful tool for both generative as well as general-purpose programming. A similar
feature is currently being proposed for both the C# and C++ languages, and is already supported by the
Scala language. Such statically typed languages greatly benefit from this operator, as they often require
the use of explicitly typed local variables, even if the type is already clear from the context (see Figure
5.8). In such cases the explicit type specification does not help maintainability, but instead clutters the
source code.

assimilate-operator3:

  ƒ e1 ?? e2 „ ÿ
  ƒ [ stm:  t x = e1;

    expr: e1 != null ? x : e2

    ]

  „
  where x := <new>;       // built-in function to give a globally unique name

        t := <type-of> e1 // use a type-checker to determine the type of e1

Figure 5.6  Using a Stratego built-in function to name a fresh variable, and an external type-checker to type it.

assimilate-operator-using-implicit-type:

  ƒ e1 ?? e2 „ ÿ
  ƒ [ expr: e1;

    store x;

    expr: e1 != null ? x : e2

    ]

  „
  where x := <new>

Figure 5.7  Using the overloaded store instruction to store the temporary variable.

var s = "String";      // assign a string

var ints = new int[5]; // assign an array

int i = s; // results in a compile-time error: "Incompatible types"

Figure 5.8  Example uses of the var operator.
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By applying the var desugaring after the regular assimilation rules, we can use it in the rewrite rule for
the coalescing operator. Using the var operator, our rewrite rule finally becomes:

  assimilate-operator-using-var:

    ƒ e1 ?? e2 „ ÿ ƒ [ stm: var x = e; expr: x != null ? x : e2 ] „
    where x := <new>

5.2.5  Alternative implementation: a context-free solution

A further step can be taken to eliminate the need to generate a name for the temporary variable, in our
case generated by the use of the <new> function. This approach can be taken in an implementation that
does not make use of a code generation platform that provides such a function, or if little is known about
the environment in which the operator occurs. Instead of a local variable, we can also use an unnamed
stack value (see Figure 5.9).

Admittingly, this solution is no longer as intuitive as the previous solution, and it is conceptually harder
to understand due to the use of the stack. However, the advantage of this approach is also obvious: It no
longer depends on some library or algorithm to provide a unique, new variable name. And perhaps more
importantly, this is a truly context-free solution: This rewrite can be applied to any code fragment,
without the need to know its environment. Any ‘dumb’ rewriting system or code munger, even if it is
based on simply replacing strings, can safely perform this transformation.

For compound statements (statements that contain other statements), this may not be the preferred
approach. Generally, care should be taken to not violate the stack-neutrality property of such statements
(Section 3.5.2). For this, the stack height must be the same at the beginning of a statement as at the
ending of a statement, and must remain the same height for any statement that is nested within it. If this
is not the case, jumps into and out of the code are limited to locations with the same stack height. In
short, it is not recommended to use the stack to store intermediate values of compound statements. Of
course, depending on the source language, and how it applies control flow, stack-neutrality may not be
an issue.

For expressions, as we have seen here, or for statements that do not contain other statements, the stack
is a viable alternative to local variables. It eliminates the need for an explicitly named variable, and the
use of the store and (implicit) load operation used earlier. As such, this approach results in a slightly
smaller and – depending on the JVM implementation – often faster-running instruction sequence [35].

assimilate-operator-using-the-stack:

  ƒ e1 ?? e2 „ ÿ
  ƒ [ expr: e1;                                  // push onto the stack

    stm:  if ([dup] == null) [ pop; expr: e2 ] // replace with e2 if necessary

    ]

  „

Figure 5.9  Using the stack instead of a temporary variable. In this implementation, the expression is pushed on the stack,
duplicated (dup) and compared to null, and replaced with e2 as necessary.
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5.3  Finite state automata

5.3.1  Motivation

A finite automaton or finite state machine is a way to model behavior composed of a finite number of
states and transitions between those states. One of the states is the starting state. Each state defines
transitions to other states, based on the next input. A transition has two components: a condition and an
action. If the condition is met, the automaton will perform the action and will enter the next state. This
cycle repeats until an ending state is reached.

Java does not provide explicit support for finite automata. Instead, they are often built using general-
purpose language constructs. For example, one may use the if statement or the switch statement for
evaluating conditions and determining the next state. Using a loop construct, or by applying recursion,
this process can be repeated until an ending state has been reached (see Figure 5.10).

5.3.2  Applications

Parsers determine the grammatical structure of a sequence of tokens with respect to a given grammar.
They are applied in compilers as the first step of reading and analyzing source code. Sometimes parsers
are hand-coded in a general-purpose programming language. This can be a tedious task, especially when
keeping an eye on performance. Such parsers are also hard to understand and maintain. For these reasons,
parsers are often created using external tools. This way the programmer can use a high-level syntax
definition language to define the grammar. A general parser library or program can then be used to
process this grammar and create a finite automaton-like data structure, in the form of tables or graphs.
A static parsing algorithm can use this data structure to parse any given grammar.

Performance of static, table-based parsing algorithms is often far worse than that of hand-coded parsers,
because of their interpretive overhead [36]. This means they are not always a viable alternative for a
hand-coded parser. For this reason, parsers are often generated using a parser generator, which
generates a parser dedicated for a single grammar. A parser generator processes a grammar definition
and generates code to perform the actual parsing. This is often done on the basis of a finite state

void stateA() {

  ... // process and store current state

  switch (readInputChar()) {

    case 'a': stateA(); break;

    case 'b': stateB(); break;

  }

}

void stateB() {

  ...

  switch (readInputChar()) {

    case 'a': stateA(); break;

    case 'c': stateC(); break;

  }

}

...

Figure 5.10  A simple, hand-coded finite state machine. It uses a switch statement to determine the next state based on
inputted characters, and applies recursion for transitioning to the next state.
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automaton. It will create a static structure of reading the next token or character, and define how this
influences the current state. For example, when reading a language that supports strings of characters
between double quotes, the parser will enter a state indicating an opening quote is encountered. Once
a closing quote is encountered, it will exit this state, and transition to another state.

5.3.3  Challenges

ANTLR [36] is a commonly used parser generator that can generate source code in various languages
from a grammar definition. Originally ANTLR only generated C or C++ code, but presently it can
generate C++, Java, C#, or Python code. Using code generation, it does not only have better
performance, but also is more flexible than a static, table-based approach [36]. The code ANTLR
generates code for automatons uses a switch statement to jump to the current state, rather than using
recursion for this purpose. This eliminates the overhead normally associated with method calls. It uses
a single block of code for each state, which may be entered from several other states, and has several exit
points to other states. Rather than directly jumping to another state, it will use a local variable to specify
the next state, and will re-enter the switch to jump to this state (see Figure 5.11).

The switch statement by itself is an indirect and highly dynamic way of jumping to the next target state,
which is not strictly necessary for this application. Not considering the jumps made to re-enter the
switch (these are of little impact and can mostly be optimized away), the switch statement itself is
compiled to several jump instructions for the CPU. Due to this indirection, it may not perform as well
as a direct jump using the goto statement that can be used in the C++ or C# back-ends of ANTLR. The
switch-based approach also requires several more bytecode instructions, decreasing the chance that the
method is inlined by the JIT compiler. The developers of ANTLR have been experimenting with directly
generating a complete bytecode program to avoid this overhead (“there is a goto bytecode of course”)
[38,39]. This would involve a complete rewrite of existing parts of ANTLR however, and may not be
as attractive as the current solution that uses a string templating engine to generate Java.

5.3.4  Implementation

Using the extended Java/bytecode language, most of the existing parser generation logic can be
maintained in the well-understood Java language. Such an implementation is already provided by the
current ANTLR implementation. With its separate back-end and templating engine, it provides a good
foundation for generating an adapted output language. By using the added functionality of the bytecode
language, the finite automaton’s control flow can be expressed in a more natural and better performing
fashion. The control flow statements offered by Java are simply not a very good match with the control
flow desired for the finite automaton. Therefore, before going into a specific solution for this case, let
us first discuss the general implications of the control flow constructs as they exist in both Java and
bytecode. 

Structured and unstructured control flow    Java provides many abstractions over bytecode, but by
design hides some underlying primitives, such as a goto statement (as it is considered “harmful” for most
applications [19]). Instead, Java provides several structured control flow statements, such as while,
switch, and a “for each” loop. These constructs enforce a treelike structure of blocks, which is arguably
easier to understand than a linear list of statements and jumps [19].

Java does not allow jumping to an arbitrary labeled location, but does provide the break statement for
skipping the rest of a loop, and the continue statement for forcing the next loop iteration (see Section
2.1.5). These constructs also accept a label to allow exiting or restarting an outer loop. The exact
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semantics of these statements depends on the context they occur in, because of differences in the various
loop constructs (that may or may not include a counting expression, and have a condition at the start or
at the end). Suffice it to say, Java has its share of goto alternatives.

The goto statement    Theoretically, with structured control flow statements as provided by Java, it is
possible to write every program that could also be written with the help of a goto  statement. Usually,
such a program is more readable than a “spaghetti”-like web of goto statements. (Which is exactly why
Java forbids the use of the goto statement.) Of course, this only applies to human programmers. For use
by the JIT or interpreter, all control flow statements are translated to simple branching instructions,
which include the dreaded goto (see Section 3.3.8). At this level, structured control flow would be a
convoluted and indirect representation that unnecessarily abstracts from the system’s operation.
Likewise, for generated code this structure is not advantageous either, as it unnecessarily restricts the
form of the generated program [48]. Generated code does not necessarily follow the same structure as
the original source code; different languages have different (high level) control flow constructs. This can
make code generation to a treelike structure of Java control flow statements a nuisance, compared to the
flat stream of bytes or statements that can be produced using a goto   statement.

void match() {

  final int INSIDE_QUOTE = 0;

  final int OUTSIDE_QUOTE = 1;

  p = 0; // input position 0

  int state = 0;       

  

  while (true) {

     c = nextToken();

      

    switch (state) {

      case OUTSIDE_QUOTE:

        switch (c) {

          case '"':

            state = INSIDE_QUOTE;

            consume();

            break;

          case EOF:

            return;

          default: // only accept quotes or EOF in this state

            error(c);

        }

        break;        

      case INSIDE_QUOTE:

        switch (c) {

          case '"':

            state = OUTSIDE_QUOTE;

            consume();

            break;

          case EOF:

            return;

          default: // accept any character between quotes

            consume();

            break;

        }

        break;

    }

  }

}

Figure 5.11  A basic finite state automaton, generated for a simple grammar that accepts any character within quoted strings
(e.g., "foo""bar" would be a valid input). Note how the outer switch statement is used to indirectly jump to the next state:
At the end of every state, the program loops back to this switch to locate and execute the next state.
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By using the goto instruction in embedded bytecode form (see Section 3.5.4), a considerably smaller
parser implementation can be produced (see Figure  5.12). Besides the length, the nesting depth and
general complexity of the generated program is reduced. (Some might argue against the readability of
this program, based on the long-standing dogma that the goto should never be allowed. We remind the
reader that Dijkstra [19] made a plea for structured programming in a time when it was still uncommon,
but not so much to entirely abolish the goto statement.) Generally, however, the readability of generated
code is of little concern. The real advantage of this approach comes in terms of simplicity and
performance, without having to resort to pure bytecode generation. The indirection of the state variable
and switch statement from Figure 5.11 are no longer an issue: At the end of each state, either the
automaton is exited, or a direct jump is made to the next state. The new program’s control flow structure
is simply a closer match to the finite automaton concept.

5.4  Iterators and yield continuations

5.4.1  Motivation

Java 5.0 introduced the enhanced for loop, a new language feature that allows programmers to iterate
over collections. This “for each”-like construct allows programmers to iterate over elements of a
collection using the following syntax:

  for (<loop variable> : <collection>) {

    <body>

  }

The enhanced for loop can be used with any (collection) class that implements the Iterable interface.
This interface in turn requires the definition of a class that implements the Iterator interface, which

void match() {

  p = 0; // input position 0

OutsideQuote: // beginning state

  switch (nextToken()) {

    case '"':

      consume();

      [ goto InsideQuote ];

    case EOF:

      return;

    default: // only accept quotes or EOF in this state

      error(c);

  }

InsideQuote:

  switch (nextToken()) {

    case '"':

      consume();

      [ goto OutsideQuote ];

    case EOF:

      return;

    default: // accept any character between quotes

      consume();

      [ goto InsideQuote ];

  }

}

Figure 5.12  A basic finite state automaton parser, based on Figure 5.11, using the goto instruction.
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public static Iterable<String> splitSpaces(String input) {

  String[] parts = input.split(" ");

  for (String part : parts) {

    yield return part;

  }

}

Figure 5.14  An iterator definition that divides a splits a given string using the space character, and returns all tokens. The
syntax used here adds an additional return keyword to the yield statement, indicating that it returns a value. This also
ensures that the language can be parsed without making yield a reserved keyword, maintaining backwards compatibility with
identifiers named ‘yield’.

for (String s : splitSpaces("foo bar") {

  System.out.println(s);

}

Iterator it = splitSpaces("foo bar");

while (it.hasNext()) {

  String s = it.next();

  System.out.println(s);

} 

Figure 5.13  The enhanced for loop, in its regular form (left) and in its desugared form (right).

defines methods to allow traversal over the specific data structure [2,33]. The enhanced for loop is
simply a form of syntactic sugar that abstracts over this API (see Figure 5.13). 

Currently, Java provides support for iterating over arrays and most collection classes in the Java standard
library. The loop construct is a standard way of iterating over any of these types. Sometimes iterators are
also used for non-collection types. For example, one may use an iterator for reading lines from a file, or
to construct an object for each string read from a file, or as a way to express infinite lists. Classes can
also define multiple iterators, for example to allow in-order and post-order traversal over a tree, or
reverse iteration over a list. (Currently, Java only defines basic iterators for most standard collection
types, but more advanced iterators are provided by third-party libraries.)

Before Java introduced the iterator-based loop, they were introduced in other languages, such as
Sather [30] and Python. These languages make heavy use of iterators, and provide an additional language
feature to define and generate iterators: yield continuations (sometimes simply called “generators”).
With this feature, it is no longer necessary to define a separate iterator class with all methods required
to implement the Iterator interface. Programmers can simply define the complete iterator in a single
method. At any point of this method, the yield statement can be used to return an element of the iterator
(see Figure 5.14). It will then “yield” the control back to the client of the iterator. If the client enters the
next iteration, the iteration method will continue execution at the last point of exit, from where it may
yield more values, or exit the iteration. Thus, semantically an iterator operates as a coroutine. 

5.4.2  Challenges

Various implementation options of yield continuations exist. One of them is low-level virtual machine
support for continuations. The JVM could store the current context (such as the stack and all local
variables), jump back to the calling method and restore this information when entering the iteration.
Implementing this is rather complicated however, especially in face of the strict security demands on the
JVM. 

An alternative solution is to treat the language extension as a form of syntactic sugar, and rewrite it to
the normal Java language. Many Java features are essentially syntactic sugar; examples include inner
classes, operators like += and many control flow statements. This is an approach we took in an earlier
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project [62]. To accomplish this, the method needs to be rewritten to a form that allows it to be entered
and continued at every point where a yield statement occurs. At such a point it may then return the next
value of the iterator, and allow it to be continued later to retrieve the next value. One way to implement
this is to use a switch or if statement to jump to the position of the code where it was last exited. For
the example in Figure 5.14 this would mean that the for loop in the example input would need to be
decomposed into separate statements, in order to allow continuation at any point halfway the loop. It is
possible to use the switch statement (or multiple if statements) to simulate the looping behavior of the
for statement, while still allowing it to be entered at multiple points. This way the control flow semantics
of both the yield continuation and that the existing control flow statements would be maintained.
Essentially this transformation means a reimplemention of all normal control flow statements in Java,
only to support the new yield control flow construct.

The Yielder library [58] takes another approach and uses a dummy yield() method invocation rather
than an actual yield statement defined in the language. The resulting code can be compiled by a regular
Java compiler. Using bytecode-level modifications, the dummy invocations are then replaced with an
actual implementation. This is an intricate process that requires the use of a bytecode manipulation
library to generate a new class definition, with a manipulated control flow for the iterator method in
question. Since the Java compiler is oblivious about the special semantics of the dummy invocations, it
is unable to do proper control flow analysis during the compilation, which may lead to unexpected
results. Furthermore, some Java compilers generate code that breaks the stack-neutrality property we
established for statements (see Section 3.5.1). They may allocate intermediate values on the stack, which
changes the stack height at the start of different statements. Sometimes this is applied as an optimization,
after the code generation process is completed [35]. As the stack height must be the same at two points
in a method to allow jumps, this means that the bytecode control flow can no longer be directly
manipulated without risking a stack mismatch.

5.4.3  Implementation

We implement the yield statement using by rewriting the method to a small Java/bytecode class that
implements the iteration interface. Rather than completely rewriting the source program’s control flow
statements, we will make minimal changes to the program by maintaining its structure. We begin our
transformation by rewriting every yield statement to an entry and exit point of the method:

  assimilate-yield: ƒ yield return e; „ ÿ ƒ state = nextState  ; return e; label: „
  where nextState := <next-state>;      // determine and increment the state count

      label     := <next-state-label> // new label for this state

The yield statement makes place for a regular return statement that returns the yielded value. To allow
the method to be resumed at this point as the iteration continues, a label is generated in combination with
a new state constant.

Using a small jump table at the beginning of the method, this state constant is applied to jump to the
corresponding label. Of course, since the method is exited every time a value is returned, all local
variables must be stored in persistent fields. In a further rewriting step, all local variables are replaced
by fields. Finally, to implement the complete iterator interface, static boilerplate code is added, forming
a complete class (see Figure 5.15).

The amount of boilerplate code required to implement the standard methods of the iterator interface
illustrates the amount of code normally required to implement an iterator by hand. Our approach



Application in Developing New Languages 59

implements the interface using a central prepareNext() method that prepares the next element of the
iterator, rather than directly implementing the next() method. We use this to implement both the next()
and hasNext() methods, where we cannot make assumptions on the order they are called.

It is not possible to statically determine if the iterator will return a value or not, given a state (i.e., point
in the iterator method). This can only be determined at runtime: Instead of yielding a new value, the
method may throw an exception, or perhaps the method is simply exited. We accommodate for this fact
by allowing the prepareNext() method to indicate whether or not a value is returned, using the
valueReady field. This method is invoked by the hasNext() method, which is used to determine whether
the iteration will continue (see Figure 5.13).

The resulting program makes use of the standard control flow statements, in combined action with
unstructured control flow to continue at multiple entry points, in the form of the goto instruction. The
embedded goto instruction is essential in a straightforward transformation of the yield statement. It
allows us to maintain most of the form of the original iterator method. In our original implementa-
tion [62], written before the present study started, this was a different story entirely. It required quite a
radical rewriting that had a detrimental effect on the source program’s performance. Figure 5.16 shows
a reduction of over a third in the size for the language extension implementation, where we can use

class Split implements Iterator<String> {

 int state;

 Integer value;

 boolean valueReady;

 String[]         m_parts;              

 String           m_part;               

 Iterable<String> m_numbers = numbers;  

 public String next() { 

   prepareNext();  

   if (!valueReady) throw new

       NoSuchElementException();

  

   valueReady = false;

   return value;

 }

 public boolean hasNext() { 

   if (!valueReady) prepareNext();

   return valueReady;

 }

}

 private void prepareNext() {   

  if (valueReady || state == 2) return;

  if (state == 1) [ goto afterYield ];

  

  m_parts = input.split(" ");         

  for (int part : m_parts) {          

     m_part = part; // make persistent

     state = 1; // remember state

     valueReady = true;

     value = m_part; // yield value   

     return;                          

afterYield:

   }                                  

   state = 2;

 }

 public void remove() { // N/A

   throw new

     UnsupportedOperationException();

 }

}

Figure 5.15  Implementation of the iterator class from Figure 5.14 in plain Java (using an embedded goto instruction). Lines
of code in direct correspondence with the original program are shaded.

Program Total LOC LOC without boilerplate code*

Using switch and loop 260 225

Using jump instructions [pct. of original] 164 [63%] 130 [58%]

* = i.e., excluding the static generated code as illustrated by the non-shaded lines in Figure 5.15.
Figure 5.16  Comparison of the lines of code (LOC) used for the different implementations of the yield continuation trans-
formations, excluding any comments. Both were written using the same coding conventions and libraries, although the newer
version includes 8 lines of extra calls to allow for source code tracing (Section 4.2).
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embedded bytecode. The main reason for this is that we now only rewrite the yield statements to jumps,
as opposed to rewriting the standard control flow statements in the iterator method to match the new
control flow. It should be noted that not all of Java’s control flow statements (about 15 in total) were
supported in the original rewriting, as it proved quite tedious to do so. This of course is supported
naturally with the new version, using embedded bytecode. Another difference is that the new version
benefits from the compiler’s ability to generate debugging information and location information for
compile-time errors (see Section 4.2).

5.4.4  Alternative techniques

In addition to the goto instruction we applied in embedded code, Java includes several conditional jump
instructions. For example, the bytecode equivalent of the if statement is the ifeq instruction. Switch
statements are compiled to either the tableswitch or lookupswitch instruction. These instructions,
while not offering a concept unknown to the Java language, allow further digression from the standard,
structured style of control flow. The C++ language formed the inspiration of a great part of the Java
language, and besides the goto statement, also offers an unstructured switch statement. While it is an
esoteric feature, it is claimed to be of benefit in specific situations [53,54], such as in highly optimized
sections of code.

Dewhurst [53] uses the unstructured switch statement to implement a post-order tree traversal.
Traversals of this kind are often implemented using recursion and nested function calls, or using a data
structure to simulate this. Another approach sometimes taken is to add pointers with the ‘next’ node to
the tree data structure, to allow quick traversal on the basis of these pointers. Sometimes the traversal
is not encapsulated, but implemented in-place in the traversing method. These approaches have their
associated costs in either runtime or complexity. Dewhurst’s approach is more in the line of a coroutine:
The iteration occurs in a method separate from the action of the traversal. The next() method (see
Figure 5.17) determines the next node of the traversal, while the caller uses this data to perform the

bool Postorder::next() { 

  switch (pc) { // jump to the previous position of the while loop

     case START:

        while (true)

           if (!lchild()) {

              pc = LEAF;

              return true; // process leaf, return here later

     case LEAF:

              while (true)

                 if (sibling())

                    break;

                 else

                    if (parent()) {

                       pc = INNER;

                       return true;

     case INNER:       ; // process inner node, return here later

                    } else {

                       pc = DONE;

     case DONE:        return false; // traversal finished

                    }

        }

  }

}

Figure 5.17  C++ definition of a method that prepares the next item for a post-order traversal of a tree (adapted from Dewhurst
[53]). This algorithm should be read as an ordinary while loop that traverses the three (ignoring the switch). The
unstructured switch is a separate construct that is superimposed over this traversal to achieve coroutine semantics.
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action. Using the unstructured switch, the loop that traverses over the tree can be continued at the last
point it exited.

The next() method, as defined in Figure 5.17, is certainly an efficient and well-encapsulated way to
do a post-order traversal. It is also, to say the least, quite hard to read by most standards. This may
introduce a maintenance problem. Dewhurst [54] argues that this implementation is the most clear and
straightforward way of implementing the traversal, even if it is complicated by the introduction of the
switch statement to achieve coroutine semantics. He further argues that the assumed maintenance
problem for this function is small when put into perspective to other approaches; it only requires changes
when the next() method of the post-order traversal needs to be modified. Users of the Postorder
traversal never need to see the definition, but will benefit from the simple interface.

We will definitely do not argue that a statement similar to the unstructured switch has a place in a
language like Java, but it clearly can have its purpose in specific situations. In the domain of generative
programming, constructs such as the unstructured switch can be used without trading simplicity for
performance or risking a maintenance nightmare. With the proper abstractions, no human would need
to see the generated, unstructured code. (That is, no human except those who have to maintain an
optimizing code generator. Fortunately for us, we are usually happy to invest in extra performance, and
some even see the extra complexity as an added incentive.)

The same effect as with the C++ unstructured switch statement can be achieved with embedded
bytecode, using the tableswitch instruction (or lookupswitch, its more flexible but worse-performing
cousin). Figure 5.18 sketches how the traversal can be implemented using this instruction, with separate
labels for the different cases. With the separation of case values and labels, this syntax may be somewhat
less convenient than the regular switch statement, but again, with the application of generated code in
mind, this should not be of consequence to the end user.

5.4.5  Optimization

We can use the tableswitch instruction instead of the goto instruction to implement the jump table of
the yield continuation, as demonstrated in Figure 5.18. While a good JIT optimizer could theoretically
optimize the rare pattern of the if and goto-based jump table at load-time, in practice they often do not,
and depend on the compiler to do this. Furthermore, using the tableswitch instruction results in a
smaller number of total instructions in the method, which may make the iterator method a candidate for
inlining by the JVM.

boolean next() {

  [ getfield Postorder.pc : int;

    tableswitch

       0 to 2 start leaf inner // switch targets

       default: done

  ];

  

  start:

    while (true) {

      ...

  leaf:

      ...

    }

}

Figure 5.18  Simulating an unstructured switch using embedded bytecode.
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Still, a high-level language construct such as the yield statement may hide its underlying performance
costs to the end user. When you realize the classes, fields and methods generated, you may think twice
about using it for performance-critical sections of code. A tree traversal based on recursive use of
iterators may be impracticable for this reason, as a new iterator is created for each level of recursion (see
Figure 5.19). A non-recursive solution should be written instead. Of course, it completely undesirable
that programmers have to fall back to more complicated, harder to maintain, or badly encapsulated
solutions, just out of performance considerations. Therefore, it may be rewarding to implement inter-
procedural optimizations, inlining iterations where possible. Because of the presence of virtual methods
(see Section 2.1.2), dynamically loaded classes (see Section 2.1.11), and private fields that cannot be
accessed from a different class, this is not a generally feasible solution. Specific for recursive iterators,
however, it is possible to rewrite the iterator to a non-recursive variant. Jacobs et al. [67] propose a
method where they explicitly allocate the recursion stack, eliminating much of the overhead associated
with the recursion.

Another performance improvement may come from another direction: the virtual machine. There are
currently plans for using escape analysis to enable stack-based allocation of objects (i.e., using the stack
for data that can be proven not to be used elsewhere). This means future JVM versions may alleviate
most performance concerns regarding iterator object allocations.

5.5  Compiling for customized JVM implementations

5.5.1  Motivation

Java was first developed by Sun Microsystems, and as such Sun Java  is the reference implementation8

of the Java Platform. Implementing and maintaining a Java Virtual Machine is hard and time consuming,
and it is difficult to reach the level of maturity equivalent to that of the implementations by IBM  or even9

Sun. Still, alternative implementations exist, including many open-source alternatives that are only
partially compatible with Sun Java and the JVM specification. The proprietary nature of Sun Java
prevented many Linux distributions from including it by default, which in turn has had a detrimental
impact on Java adoption.

In November 2006, Sun announced that their JVM implementation, compiler and class library would be
made available as open-source software under the GNU General Public License [12]. An open-source
JVM can form a stable basis for implementing new features and new languages. Although such additions
can stand in the way with interoperability, this is less of a problem than with a completely custom-built

public static Iterable<TreeNode> traverse(TreeNode root) {

  for (TreeNode child : root.children()) {

    for (TreeNode node : traverse(child)) {

       yield return node;

    }

  }

}

Figure 5.19  Recursive iterators suffer from quadratic time behavior, as they copy the stream of values yielded through the
recursive invocation.
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virtual machine. Specifically for the purpose of experimental implementations, IBM also provides the
open-source Jikes RVM (Research Virtual Machine). This JVM implementation is written in Java, and
is self-hosted on Linux/IA-32 and PowerPC operating systems [25]. Much research is being conducted
in the area of adapting Java-like virtual machines; there have been over 150 publications using Jikes
RVM alone .10

5.5.2  Applications

There have been several proposals for extending the JVM and similar virtual machines. We will shortly
discuss some of these here, to illustrate the different possible directions that can be taken in enhancing
the JVM.

Functional languages often rely on recursion rather than loops, and could benefit from a tail call
instruction or optimization. Without such a construct, each recursive call to a method increases the call
stack, even if this is not strictly necessary for the application. This leads to increased memory usage (and
possibly stack overflows) and lower performance. Clements and Felleisen [21] show how this could be
implemented in a virtual machine such as the JVM.

For dynamic languages, such as Python or Ruby, method calls are resolved at runtime. Since the Java
bytecode instructions for calling a method require a statically determined method signature (see Section
2.1.8), a considerable work-around is required to emulate this behavior using JVM. This requires
additional code generation, and the use of reflection. Because of this (and in part because of how Python
deals with primitive types) Jython is about 1-10 times slower than equivalent Java code [9]. With virtual
machine support for a dynamic invocation instruction, this could be significantly improved. A native
implementation can use more efficient data structures and caching. It may also apply existing optimiza-
tions, such as speculative method inlining, which already exist for virtual method invocations. In fact,
present drafts of the proposal  to add such an instruction, build on the existing, explicitly typed11

invokevirtual instruction. The proposed instruction includes a speculative signature specification (see
Figure 5.20), which allows for speculative optimization or selection of a specific overload. Finally, in
addition to performance benefits, a well-defined ‘invokedynamic’ instruction could help future
interoperability between languages when one or more are dynamic.

Java has a limited number of primitive types. The performance problems associated with the use of
complex numbers, for example, have been well documented. As Java does not have native support for
such types, they are often represented as objects, which means they can be two orders of magnitude
slower than equivalent Fortran code [64]. Even with the aid of escape analysis in current and upcoming
JIT compilers, this overhead can never be completely avoided. One technique suggested for helping in
the performance is the introduction of complex numbers as a natively supported Java virtual machine

invokevirtual java.lang.System.out.println(String : void)

invokedynamic java.lang.System.out.println(String : void)

Figure 5.20  The proposed invokedynamic  instruction has the same form as the existing invokevirtual instruction. The
difference is, that if the input parameters or method signature do not exactly match the instruction, the invokedynamic
instruction allows runtime handlers to perform the necessary conversions.
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type [63]. This would require the introduction of new instructions to support the added primitive type
(or support for custom primitive types). Alternatively, Java could be extended with support for multiple
return values for methods, allowing the multiple components of complex or custom types to be returned
as stack-allocated primitives. Of course, this would require the introduction of invocation instructions
with support for tuples or named ‘out’ parameters.

Another feature that has received some attention in recent publications is the addition of first-class JVM
support for transactional memory [13,14]. This could constitute a safe new synchronization alternative
in a future JVM implementation. Like for dynamic invocation, current implementations rely on reflection
and/or (runtime) code generation and have a significant performance overhead. Often these cannot
prevent unsynchronized access to objects as the client can bypass the synchronisation indirection. With
full JVM support for this feature, a standardized, high-performance, and safe interface could be provided
instead.

5.5.3  Challenges

Introducing new virtual machine features in the form of instructions means that it is necessary to create
a specialized compiler that can handle these new features. Building and maintaining a complete compiler
can be a daunting undertaking. A less-time consuming way can be to adapt an existing compiler. It can
provide a good foundation for the implementation, as well as an existing language to build on. Open
compilers, such as OpenJava [52], Polyglot [34], JastAdd [66], Kawa [10], or the Eclipse Compiler for
Java [56] can help in this task as they are specifically designed with customization in mind. However,
not all ‘open compilers’ are created equally: Few offer the possibility to customize the bytecode back-
end. OpenJava and PolyGlot, for example, offer an extensive interface for extending the language at the
compiler front-end, but only allow it to generate regular Java source code. This intermediate source is
then compiled by a separate back-end, in the form of a regular, external Java compiler.

Open compilers that implement a complete transformation from source code to bytecode, do this in
multiple stages. Generally, these include reading and parsing the file, semantic analysis, and bytecode
generation. Some compilers include one or more additional stages, perhaps desugaring the code before
code generation, or using an intermediate form before emitting the bytecode instructions. Many
compilers also include a separate stage for optimizing the generated (byte)code, relieving the code
generation stage from having to emit well-tuned code. By separating the different stages, this model
helps the understandability and maintainability of the compiler. It also offers more flexibility, enabling
the development of a different back-end for a different platform.

In a multi-stage compiler, extensions in the form of syntactic sugar are easily added: Such extensions
can be rewritten to the base language in one of the early stages of the compilation chain. Features that
are more than mere sugar, and interact with the back-end, require modification in multiple stages of the
compiler: from parsing, to analysis, right to the point where the resulting class is emitted. Third-party
developers need to make a large investment to understand and be able to modify the internal workings
of the different stages and compiler components, even if it only concerns a relatively small extension.
Especially for compilers implemented in a general-purpose language, such as Java, rather than a
specialized transformation language, this can be a tedious task [51].

5.5.4  Implementation

In order to generate specific new instructions or class file attributes, we can benefit from using
Java/bytecode as an intermediate language. Rather than requiring full integration of new language
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"ladd" ÿ Instruction {cons("LADD")} LADD;

op(\[Long,Long] ÷ Long\ |2)

Figure 5.21  Required syntax definition (left) and verifier definition (right) for the basic ladd instruction (addition of 2 longs
on the stack).

features by extending the various stages of an existing compiler, it allows such extended instructions to
be directly emitted in the initial stages of the compilation. This way, the language extension can be
encapsulated into a separate compilation stage, where emitting specific bytecode instructions is as trivial
as desugaring code to the source language.

Of course, to support new bytecode instructions, we need to extend the Java/bytecode language and
ensure that the compiler back-end can handle these. As our implementation is based on a high-level
program transformation environment, rather than a general-purpose language, it is sufficiently flexible
to allow quick adaptation of the instruction set. Extending the instruction set in the compiler requires
changes in two places: In the syntax definition, and in the integrated bytecode verifier (see Section 4.1.2).
The syntax definition enables instructions to be read by the parser, and is defined using the modular
syntax definition formalism SDF2 [67]. The verifier definition ensures that the code is understood by
the semantic analysis of the source code, and that it can be verified when the program is generated to
pure bytecode (see Section 7.5). For most instructions, the required definitions are very small and require
only a few lines of code (see Figure 5.21). For other, more complicated instructions, this may of course
be longer. One example is the invokedynamic instruction, which takes a specified number of arguments
from the stack, rather than a static number like the addition operator does. In the current compiler
implementation, the regular invocation instruction also required the most implementation effort due to
this property. The syntax definition for this instruction is as follows:

  "invokedynamic" MethodRef ÿ Instruction {cons("INVOKEDYNAMIC")}

In this definition, we can conveniently reuse the MethodRef argument syntax as used for the regular
invocation instructions. Of course, the real effort in implementing this instruction lies in the verifier
definition. For this, we need to define a rule that returns the resulting stack, given a tuple of the input
stack and the invocation instruction (see Figure 5.22). Specific for invokedynamic, we need not be
concerned with the exact types of the values on the stack, but we do need to confirm that the right
amount of arguments is available. Using the list operations in the where clause of the rule, this is in fact
handled implicitly – if the number of required arguments cannot be dropped from the stack, these
operations fail. As a result, the rewrite rule will then fail to apply (for more about the notion of failure
in rewrite rules, see Section 2.2.1). However, rather than handling failure implicitly, we instead want to
report an error message in case this happens. We can do this by extending the rule to call the bc-error
function in case it fails (see Figure 5.23). This function reports the error, and uses the implicitly provided
location information (see Section 4.2) to report the offending source code and location that it originated
from.

In the changes we have made to support the invokedynamic instruction, we have taken advantage of the
fact that the integrated verifier is written in a specialized, high-level language. For actually emitting the
instruction from a source language construct, any external solution may be used as desired: An external
preprocessor may act as a front-end for the language extension. To complete the compilation of the class
file, the compiler also needs to write the instructions to the binary class form. This requires additional
changes to the back-end, which is currently less accommodating for this purpose. We currently use the
Dryad toolset for this (see Section 7.1), which applies the BCEL library (implemented in Java) to emit
instructions. To adapt this library to output the instructions is a somewhat more involved process, and
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is out of the context of this thesis. It could be considered future work to alleviate this limitation, as the
only further information really required for the back-end is the binary byte representation of the
instruction.

In conclusion, we have shown that the Java/bytecode language offers direct access to the bytecode back-
end, while this is not the case with other approaches.12We have also shown how the compiler may be
extended to support new instructions. As such, using a preprocessor compilation model becomes a viable
approach to rapidly implement a compiler for a specific instruction set or JVM implementation.

bc-invoke-effect:

  (stack, ƒ invokedynamic class.method (params : ret) „ ) ÿ stack2

  where args := <length> params;       // count the number of parameters

        stack1 := <drop(|args)> stack; // drop the arguments from the stack

        stack2 := [ Any | stack1 ]     // place return type 'Any' on stack

Figure 5.22  The bc-invoke-effect ru le is evaluated to determine the stack effect of an invocation instruction. Here, it
is defined to evaluate the effect of the invokedynamic instruction. Using Stratego list manipulation operators and the
standard drop function , the stack is manipulated to remove all input arguments, and to return a value of type ‘Any’.12

      <+ bc-error(|"Oops! Insufficient arguments.",

                 ƒ invokedynamic class.method (params : ret) „)

Figure 5.23  Produce an error message in  case there are insufficient arguments on the stack, by extending the where clause
of the verifier rule in Figure 5.22. The choice operator (<+ ; see Section 2.2.1 ) ensures that the bc-error function  is called12

in case the rule fails.
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Chapter 6

Application in Composition and Separate Compilation

The Java/bytecode language can be used to modify compiled class files and combine them with other
classes, or smaller units of code. Inserting code into a method or class can be performed by simply
placing a fragment of code – Java or bytecode – into the source or class. This opens the doors for
implementing software composition systems that apply separate compilation, without the need for
integrating them into an existing compiler. This makes the Java/bytecode compiler a vehicle for
implementing various forms of composition. This section lists a number of these, and shows how the
mixed language compiler can help implement them.

Central to the techniques described in this chapter is the notion of separate compilation. Units of code
(usually classes) can be individually compiled and distributed in a modular, binary form. Separate
compilation allows the reuse of such units in new applications; for example, the Java standard library
is distributed in binary (class file) form. Compiling such modules, rather than distributing them in source
form, has various advantages. For one, it eliminates the need reveal the source code. This may be of
benefit for developers that put license restrictions on the source code, and may not want others to view
it. Compiled code also ensures verification: As the code has already undergone complete compilation,
any compile-time errors are prevented. Another advantage can be in terms of performance: Compiling
an application that makes use of a separately compiled library, does not require further compilation of
that library. Separate compilation in Java is normally restricted to units of code in the form of classes.
As we will see in the remainder of this chapter, it is also possible to separately compile smaller units of
code. Using the Java/bytecode language, a separately compiled method or even expression is feasible,
and may be combined with a source code program.

6.1  Partial and open classes

6.1.1  Motivation

Some programming languages (such as Ruby and C# [42]) allow classes to be split across multiple
source files. Each partial class can define a non-overlapping set of methods and fields that will be joined
into a single class (see Figure 6.1). This can be used for separation of concerns: splitting large classes
into smaller units that can be edited separately, such as a GUI part and an event-handling part, or a public
and a private interface. An advantage of partial classes over using inheritance for such applications is
that methods in partial classes can also access private methods (see Section 2.1.2) defined in other parts
of the class.

Partial classes are combined before compilation, but it is also possible to apply this technique to add
members to classes that were already compiled. This variant is known as open classes, which is also
considered one of the fundamental elements of aspect-oriented programming [31]. Open classes are still
combined at compile-time (some implementations exist that do this at load-time), but this makes it
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possible to apply the technique to adapt already-compiled classes that may be included in libraries or
applications.

6.1.2  Applications

Partial classes are sometimes used as a way to modify generated code. DSL code generators, such as
visual GUI designers, often create very basic classes designed to be customized. By using a separate
partial class the generated code can be modified indirectly. This allows the code generator to safely
overwrite the generated code if the originating DSL source code is modified. This greatly simplifies the
generator’s job compared to parsing and editing the generated class, attempting to identify the old
generated code and any user code. Since the generated code is in a separate file, it also becomes less
tempting for programmers to reformat or “tweak” the generated code, possibly losing those changes
when the generator runs again. Alternatively, it is possible to use open classes to allow modification of
generated code. All generated classes can then be compiled, verified, and distributed in the language-
independent class file form.

Unit tests are small test classes that confirm every part or member of an application’s classes work as
specified. Writing unit tests can directly help find existing bugs, and maintaining a collection of unit tests
can help prevent regressive bugs from being introduced (i.e., it ensures that the developer is alerted if
something stops working that worked and was tested before). One complication with separate testing
classes is that they can only access public members of a class that is being tested. In many cases, it can
be beneficial to also test any non-public members. Sometimes the use of non-public class members is
even advocated against, simply because they are hard to test through conventional unit testing
techniques. One solution for this problem is to create unit tests in a partial class, which does allow access
to non-public class members (see Figure 6.1).

// In Calculator.java

partial class Calculator {

  public void add() { // the add button is pressed on the calculator

 setDisplay(...);

  }

}

// In Calculator_Gui.java

partial class Calculator {

  private void setDisplay(int number) { 

 ... // modify the calculator's displayed value

  }

}

// In Calculator_Test.java

partial class Calculator {

  public void testDisplay() {

    ... // test if the setDisplay() method works correctly 

  }

}

Figure 6.1  A partial class definition of a graphical calculator application. Note how the partial keyword is applied to all
participating class definitions, to explicitly denote that these classes are to be joined. (Aiding in the readability of the application
and preventing undesired merging of classes.)
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6.1.3  Challenges

Both partial and open classes are a relatively simple concept: Take all the class members defined for a
class in multiple files, and merge them together to form a new, single-file class. This is exactly the ap-
proach commonly taken for partial classes: They are combined by a preprocessor, before the actual com-
pilation starts. Open classes however, while conceptually similar, are merged during the compilation
process. Rather than first merging and then compiling the resulting class, members added to a class are
directly compiled into the target class. To reach this level of integration, this requires adaptation across
all stages of the compiler: It must support such classes in the initial semantic analysis (i.e., looking up
invoked class methods and type-checking), and all stages that make use of the information gathered in
that stage.

An alternative approach to implement open classes by conventional means, is to extract signature
information from all parts of a class, compiled or not. This can then be used to create dummy class
members, to allow separate parts of a class to be compiled by a regular Java compiler. This allows the
compiler to properly resolve any uses of members of the other parts of the class. Further manipulation
of the resulting class files, given the proper registration of all dummy members, could then result in a
complete, merged class. Of course, this is still more complicated and error-prone than the preprocessor
approach that can be taken for partial classes.

6.1.4  Implementation

The Java class structure – methods, fields, types, flags, etc. – can generally can be mapped one-to-one
to the bytecode class file structure. In the mixed Java/bytecode language we use this property to allow
classes to include members defined in either base language (see Section 3.5). This of course helps in the
definition of open classes. By thinking of the input classes and class files for this transformation as
instances of this single, combined grammar, there is no difference in the merge process required for
partial classes. It is sufficient to take all the class members, compiled or not, and combine them into a
single class (see Figure 6.2). After this preprocessing phase completes, the resulting class can then be
separately compiled by the Java/bytecode compiler. By applying the source tracing technique (see
Section 4.2), we still support compile-time errors and debugging information normally not available with
a preprocessor approach.

Unlike other class members, field initializers and constructors (see Section 2.1.2) cannot be mapped one-
to-one to the compiled class file structure, as they are joined together at compile-time (see Figure 6.3).
However, we implement support for these constructs using the same “compose and conquer” approach
as we do for open classes: Any Java-defined field initializers and instance initializers (a rarely used Java
construct, similar to constructors [2]) are simply separately compiled and inserted into the constructor.

class Calculator {

 // From Calculator.java

  public void add() { ... }

  

  // From Calculator_Gui.class

  private setDisplay(int number : void) [ ... ]

  // From Calculator_Test.java

  public void testDisplay() { ... }

}

Figure 6.2  Merged class from two Java files and one class file. The differences in syntax give away that setDisplay()
is in fact a compiled method.
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The constructor, if required, then undergoes further compilation. This means that given initializer
definitions in multiple parts of a class, they can be combined with any existing constructor that exists
in compiled parts of the class. In other words, they can be mapped to the merged class without any
complications.

In conclusion, we can support partial and open classes in exactly the same way through preprocessing
and separate compilation. The result is a class that can be compiled and verified using the mixed
language compiler. Any duplicate or illegally referenced members can be detected by the compiler’s
verifier, after composition. Given this single compilation model, one might do well to ascertain which
applications of partial classes could also be implemented using open classes. For example, the generated
GUI code in Figure 6.1, which is commonly combined using partial classes, could also benefit from a
open classes approach. It could be separately compiled to a class file, which could result in greater
reliability (as the GUI part is already compiled and verified) and a higher compilation performance.

6.2  Traits

6.2.1  Motivation

Like many other object-oriented programming languages, Java employs inheritance to create reusable
code. Java does not support multiple implementation inheritance, where classes can inherit from
multiple base classes. This decision was because of the increased complexity and ambiguity, as well as
versioning problems it can cause (often summarized as “the diamond problem”) [6]. Instead, Java
provides interfaces that cannot provide an implementation, but can only declare available method
signatures (see Section 2.1.1). This approach eliminates most of the problems that exist with multiple

class Foo {

  public Foo() { // constructor

i = 3;

  }

  int i = 1; // field initialization

  { // instance initializer (rarely used Java construct)

    if (i == 1) i = 2;

  }

}

Figure 6.3  A constructor and a field and instance initializer. They compile to a single constructor method, which will include
all initializers in order of appearance, and then the original constructor (i.e., it assigns 1, 2, and 3 to i).

public class Shape with TDrawing {

  ...

 

  Vertices getVertices() { ... }

}

public trait TDrawing {

  void draw() { ... }

     

  Vertices getVertices(); // required method

}

Figure 6.4  An example of a class (Shape) importing a trait (TDrawing). The trait provides a draw() method and in turn
requires a getVertices() definition. The with operator allows multiple traits to be combined in this fashion. Other
operators manipulate traits, such as the minus operator that subtracts the methods defined in a trait.
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inheritance, but also somewhat restricts the way code can be reused. Other approaches to facilitate code
reuse have been developed as alternatives, but have not (yet) made it into the Java language.

Traits are primitive units of reusable code that define a set of methods for use in regular classes (see
Figure 6.4). Like partial or open classes, they do not apply inheritance for composition, but are simply
integrated into normal classes. Traits however do not declare which classes they are used in. Instead,
classes can specify what traits they require (i.e., they use a “pull model”). This makes traits reusable for
any number of classes, and in principle allows the inclusion of traits in libraries. Using special operators,
traits can also be composed into new traits. For example, in addition to the with operator to add methods
(Figure 6.4), the minus operator subtracts methods defined in one trait from another trait (see Figure
6.5). Some trait implementations also include a rename operator to rename methods in a trait, which can
help in case multiple traits define the same method signature. This allows traits to explicitly handle the
diamond inheritance problem.

6.2.2  Existing implementations

Schärli et al. [6] originally designed and implemented traits for a SmallTalk dialect. Since then, the
concept has been ported to many languages, including Java, C# and Scala [24]. Since SmallTalk is a
dynamic language, the original implementation used dynamic typing of traits. A trait could call any
method in the client class, and in case of a nonexistent method, this resulted in a message-not-understood
runtime error. More recently traits were studied in statically typed languages, where such errors can be
detected and prevented at compile-time [23,24,26,37]. Several approaches to static typing have been
suggested, such as using type-checking client classes after inclusion only [24,26], explicitly specifying
method requirements to also type-check traits [23], or even inferring these requirements [37].

Unlike inheritance and mixins, traits are stateless (i.e., they cannot define fields), and do not define type
information such as an interface on client classes (since they are composed using operators other than
inheritance). There are numerous (prototypical) implementations and interpretations of “traits” for Java,
and some go beyond this definition. Smith and Drossopoulou [23] for example, allow traits to be
substituted at runtime. However, in the present study, we will follow the basic definition, as given in
Schärli et al. [6].

6.2.3  Challenges

Being able to type-check traits as separate entities makes it possible to apply separate compilation.
Although we have no intention for the JVM to load these classes – traits are merely compile-time
entities – it can be useful to compile traits to actual class files. Libraries of regular Java classes are
usually distributed in compiled form, supported by both compile-time verification and dynamic linking
in the JVM. Compiling traits to class files allows trait definitions to be included with related library
distributions. Although not dynamically linked, traits distributed this way can be used by the compiler
for reuse and inclusion in third-party classes. Compiled traits actually allow this to be done in a
language-independent fashion (assuming the compiler for a given language supports importing trait
definitions).

public trait Arithmetic with Math minus ExtendedMath {

  // import all methods from the 'Math' trait,

  // but exclude members defined in 'ExtendedMath'

}

Figure 6.5  Using operators to manipulate traits.



The complete program also includes a small syntax extension definition for the traits language. Excluding13

this, I/O code, imports, blank lines, and comments, it totals 57 lines of code.
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Since the regular Java language does not support traits, there is also no support for traits in the class file
format. One way to represent traits as class files is as a form of abstract classes: All required methods
can be represented as abstract methods. This representation can remain fully compatible with the
standard class file format, and allows verification of the trait class with any regular class checker. To
indicate that such a class file is a trait, and not a mere abstract class, the class file format allows it to be
marked using a custom attribute or annotation to indicate that the file in fact a trait. Additionally, since
trait classes only have a compile-time purpose, it may be desirable to prevent other classes from using
or extending the trait by marking it private and final.

6.2.4  Implementation

As illustrated in the previous sections, our compiler and language can help with the composition of
binary and source classes. For trait classes the principle is the same, which means there is little to no
extra implementation effort compared to combining traits at the source-level. All members of a class and
any imported traits can simply be combined into one big class file. The compilation process can then
continue to compile all source code to bytecode, and can finally confirm if the newly formed class is
legal (and has no missing or duplicate methods).

We built a Traits compiler for Java using the Java/bytecode compiler as a foundation. Totaling 121 lines
of code , it is much smaller than a typical traits compiler, or most language extension preprocessors for13

that matter. This is because it does not include any logic for compiling Java classes, it is purely restricted
to the composition of traits and classes. This is a three-stage process:

P The analysis stage, where all traits are read from their respective sources or class files (either
format is supported, the traits compiler only cares about the class and method signatures);

P the evaluation stage, where all trait imports (with and minus) are evaluated;

P and finally the rewriting stage that uses the gathered information to add or subtract methods from
classes and processed traits.

After composition, we rely on the Java/bytecode compiler for the actual compilation of the composed
classes; any compilation errors related to the general language are reported at that point. Any trait-
specific errors are detected in the trait compiler (i.e., missing trait declarations, missing ‘required
methods’, or circular trait imports). The remainder of the compilation process, including error reporting
(see Section 4.2), is handled by the general Java/bytecode compiler.

We implemented the traits compiler in the Stratego language [55]. Since we used some advanced
language constructs that are well outside of the context of this thesis, we present the traits compiler here
in pseudocode form (see Figure 6.6).

6.2.5  Future work

A possible future extension of the compilation of traits would be to merge the trait it at the time the class
is loaded, rather than at compile-time. Regular Java classes are dynamically linked after compile-time
(see Section 2.1.11). Dynamic linking, in general, has obvious advantages: It allows linking applications
with different or updated versions of a library. However, dynamic linking is far from a silver bullet for
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// MAIN

assimilate-java-traits = // invoke all stages

  for all traits:

    try classfile-to-trait; // (if applicable, convert compiled trait)

    register-trait

  for all inputs:

    try complete-trait or complete-class

// ANALYSIS

// If a trait was already compiled, restore its signature

classfile-to-trait:

  ƒ abstract class x { ~*methods } „ ÷
  ƒ          trait y { ~*methods } „
  where y := restore uncompiled name of trait x

register-trait:

  ƒ trait x ~*imports { ~*methods } „ ÷
  store all information from the inputted signature

GetTraitMethods:

  // (uses the register-trait information; in regular Stratego, this would be

  //  a runtime-defined or "dynamic" rule)

  x ÷ all-methods

  where if already being evaluated:

          all-methods = error(“circular reference”, x)

        otherwise:

          // Recursively include methods of imported traits

          all-methods = <evaluate-trait-exprs> imports

// EVALUATION OF TRAIT IMPORTS

evaluate-trait-exprs(classname, methods) =

  in case of a “with” import:

    GetTraitMethods;

    specialize: replace all class name references with current class name;

    union of all current methods and imported methods;

    evaluate remaining trait imports

   

  in case of a “minus” import:

    get-specialized-trait-methods(classname);

    substract all imported methods from the current methods;

    evaluate remaining trait imports

// REWRITE TRAITS AND CLASSES

complete-trait:

  ƒ          trait x ~*traits { ~*_ } „ ->
  ƒ abstract class y          { ~*methods } „
  where y       := give reserved name

        methods := GetTraitMethods;

        remove all implemented “required” methods

  

complete-class:

  ƒ class x ~*traits { ~*methods     } „ ->
  ƒ class x          { ~*all-methods } „
  where all-methods := <evaluate-trait-exprs> traits;

        for all “required” methods that are not implemented:

          error("Missing required method", method)

Figure 6.6  A pseudocode approximation of the traits compiler. Note how it uses class and method signatures for composition,
but includes no other logic about the structure or semantics of the language. Not included here are API invocations to process
the command-line arguments, load all inputs, and disassemble method signatures.
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dependency management, but it can be helpful if the modified library provides sufficient compatibility
with the expected version. When applied to the concept of traits, its advantages may not be so obvious.
Traits do not define a type or provide an interface in the way normal classes do: They only affect an
individual class. If the class is updated, it will be recompiled and linked again with the trait. In case the
trait is updated, only the members that already existed at the time the class was compiled may be
accessed. Finally, ‘dynamic linking’ for traits may be costly in terms of performance, as rewriting a class
to include traits is more computationally expensive than regular dynamic linking. Still, given the proper
runtime class loader modifications, it may be interesting to investigate the possibilities of dynamically
linked traits.

In conclusion, we have seen traits, a powerful mechanism for safely enabling code reuse. The
“pull model” of traits makes it an excellent candidate for separate compilation. As such, it enables the
distribution of traits in compiled form, within libraries. We are unaware of existing implementations that
provide this, as they combine traits at the source level. By taking advantage of the mixed language, it
requires little further effort to use the class file format, and thereby make use of separately compiled
traits.

6.3  Integration of crosscutting concerns

6.3.1  Motivation

Crosscutting concerns are aspects of a program that cannot be cleanly decomposed from the rest of an
application and its design, and are often scattered throughout it and tangled with other concerns. Regular,
object-oriented programming techniques can help in the reuse of code by providing classes that can be
extended and invoked where needed. For crosscutting concerns however, this at best results in
invocations of the class scattered and tangled throughout a program. A cleaner approach can be to
capture such concerns, and use automatic rewriting of the program to include them.

6.3.2  Applications

The textbook example of a crosscutting concern is a logging facility. Logging may be used to register
all database transactions for example. This means that anywhere where a database operation is
performed, the code must be adapted to invoke the logging module. One might argue that an object-
oriented solution exists for this specific problem, perhaps in the form of a decorator class (i.e., an
indirection between de application and the database interface). But what if the logging extends to other
areas? To aid debugging for example, it may be desirable to log all method invocations in the entire
application. This requires integration in all or most methods of a program; in such cases a more general
solution is desired.

Consider a more concrete example, in the form of a simple banking application where funds are
transferred from one account to the next (Figure 6.7). In a real-world banking application, it is not

void transfer(Account checking, Account savings, int amount) {

  if (from.getBalance() < amount) throw new InsufficientFundsException();

  checking.withdraw(amount);

  savings.deposit(amount);

}

Figure 6.7  A simple method for transferring funds from one bank account to the next.
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sufficient to simply withdraw the funds from one account and then deposit them in the next. For instance,
such an operation requires security checks to verify that the user is authorized to perform the transaction.
It also should perform the operation inside a database transaction, preventing data loss or conflicts with
other transactions. For diagnostics, it should also include logging. In short, in such a method the basic
functionality (sometimes called business logic) would become tangled with other aspects. This results
in the method losing its elegance (see Figure 6.8).

Defining crosscutting concerns as a separate concept, added to an application at compile-time, can aid
in the basic understandability of the application. (Although not everyone will be comfortable with
implicitly adding security concerns to an application; such separation should be used responsibly.) It can
also be used as a way to decide at compile-time or deployment-time whether or not to include a certain
feature. Some performance profilers and tracing tools, for example, require the insertion of deeply
integrated, performance-intensive code. By programmatically adding such code, it can be inserted as
desired, or left out in production builds.

6.3.3  A systematic approach: Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) attempts to aid programmers in separation of concerns. The
paradigm is not intended as a full-out replacement for existing separation of concerns mechanisms, such
as inheritance and aggregation in object-oriented programming. Instead the focus is to provide a
complementary mechanism to support systematic composition of concerns that cut across the existing
base separation and would otherwise be scattered across various modules [40]. While such concerns have
been dealt with for a long time, Kiczales et al. [31] introduced the first set of techniques to modularize
and manipulate these in a systematic fashion [40]. Kiczales et al. also developed the most popular AOP
language, AspectJ [32], an extension of Java. Numerous other implementations have been introduced
since then, including many for Java.

AOP allows the programmer to express crosscutting concerns explicitly in modules called aspects.
Aspects can contain inter-type declarations and advice. Inter-type declarations are a form of open
classes (see Section 6.1) and allow modifications of existing types. Advice allows behavioral changes
of existing classes, by joining code into specified points of a program. The programmer can define
pointcuts to indicate what methods or field accesses (‘join points’) should be affected by these changes.
Together they provide a systematic approach for integrating code into a range of methods (see Figure
6.9).

void transfer(Account checking, Account savings, int amount) {

  if (!getUser().allowWithdraw(checking)) throw new IllegalAccessException();

  if (from.getBalance() < amount) throw new InsufficientFundsException();

  Transaction transaction = TransactionManager.start();

  try {  

    checking.withdraw(amount);

    savings.deposit(amount);

    logOperation("transfer", checking, savings, ammount);

    transaction.commit();

  } catch (RuntimeException exc) {

    transaction.rollback();        // undo transaction if something goes wrong

    throw exc;

  }

}

Figure 6.8  A more complete funds transfer method, now including various (simplified versions of) crosscutting concerns.
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Aspect weaving is the process of integrating aspects with regular classes. While originally this was done
by combining aspects and classes at the source level, AspectJ was later adapted to do this at the class file
(bytecode) level. This meant that the aspect weaver no longer requires access to the source code of
targeted classes; they may be separately compiled and distributed in binary form.

6.3.4  Challenges

Developing AspectJ as a bytecode-level aspect weaver required significant engineering effort. To allow
bytecode-level operations, it was integrated in an open compiler (the Eclipse Compiler for Java [56]).
While this is a mature, open compiler that provided a solid basis for the Java language, integration of
aspects proved to be a daunting task, truly crosscutting into various levels and places of the compiler.
This led to a problem when the Java 5 language was first introduced, which included various new
language features, such as generics. These features were not supported in the forked aspect compiler.
Eventually, with the help of the Eclipse developers, the AspectJ implementation integrated these features,
and matured in terms of performance and correctness.

6.3.5  Implementation

In Section 6.1 we demonstrated how the Java/bytecode language can be used to insert complete class
members into existing classes through the open classes concept, which is similar to inter-type
declarations as they exist in AOP. In this section we focus on adapting method bodies. There are various
approaches to ‘weaving’ code into methods, some implemented in stand-alone applications such as the
aforementioned profiling and tracing tools. Here, however, we will focus here on the more systematic
approach as provided by aspects. 

Weaving aspects into source code    Consider again the aspect defined in Figure 6.9, which adds advice
to an invocation of the transfer() method. Weaving this aspect into a regular Java source class requires
finding where the transfer() method with the exact given type signature is called. This cannot be
directly extracted from the Java syntax (see Figure 6.10 ), and requires a semantic analysis of the
application. For this, a tool such as Polyglot [34], Dryad [7], or the Eclipse front-end [51] may be used,
allowing implementation of the aspect weaver separate from the compiler.

aspect Logging {

  pointcut transfer(amount):

    call(void Bank.transfer(Account, Account, int amount)) 

  after: transfer(int amount) {

    System.out.println("Transferred: " + amount);

  }

}

Figure 6.9  Pseudocode for a logging aspect. It defines a pointcut for calls to the Bank.transfer() method. Based on this
pointcut, advice is given to print a logging message, using the after clause to denote that this must happen after the transfer.

void caller() {

  ...

  bObject.transfer(checking, savings, inputAmount());

}

Figure 6.10  A fragment of a program that calls Bank.transfer(). To determine if the method called is in fact the method
we are looking for, a type checker must identify the type of bObject and the method arguments.
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After all join points have been located, it is a simple matter of inserting the aspect code according to the
given strategy. For the logging advice, it will be woven in after the method invocation. Since this
particular aspect makes use of the amount argument, a new temporary variable must be allocated to store
this argument. For this we make use of the bytecode expression pattern (see Section 5.1), allowing us
to directly replace the argument in question with an expression that stores the value in a local variable.
Alternatively, one of the more advanced patterns for handling temporary variables could also be applied
here (see Section 5.2). Figure 6.11 shows the method with the advice woven in. The classic source-level
weaving version of AspectJ was implemented according to a similar principle (although it must place
local variable declarations in a separate statement).

Weaving aspects into compiled code    We can also weave aspects into compiled classes, which is a
very similar process to weaving to a source class. Using the property of stack-neutrality of statements
(see Section 3.5.1), any statement or block can be safely inserted into bytecode. This means an aspect’s
advice can be directly inserted into a bytecode method body, without requiring beforehand compilation.
The process of locating join points, however, is different for compiled code: The code has already
undergone semantic analysis at compilation time and is explicitly typed, allowing it to be used as is to
find the matching join points (see Figure 6.12). At any join points found, the advice can be inserted in
its Java form. Our logging advice however makes use of the amount argument of the method call, which
means we first have to assign a local variable to the value of this argument. The bytecode method
invocation loads all its arguments (and the invoked object) of the stack. Therefore we must capture any
arguments we need before the invocation. We use a series of store and load instructions to consume
and restore the stack arguments using local variables (see Figure 6.13). The argument variables can then
be directly used from the aspect inserted in Java form.

Aspects in compiled form    Until now we have discussed weaving aspects in source form. Another
feasible approach is to use a compiled form of aspects, allowing aspects to be separately compiled to
class files. This allows aspects to be compiled and verified before they are woven into the code, which
could result in increased reliability and (‘weave-time’) performance.

The binary representation of aspects, even more so than for traits (Section 6.2), requires the inclusion
of meta data in such a class file. While regular bytecode can be used to represent the inserted code of an
aspect, this metadata is used to describe the pointcuts and advice strategy information. In source code
this information is included in the form of the aspect language (see Figure 6.9 ). In a binary class this

void caller() {

  ...

  bObject.transfer(checking, savings, [ stm:  int amount = inputAmount();

                                        expr: amount ]);

  

  // Inserted aspect

  System.out.println("Transferred: " + amount);

}

Figure 6.11  Weaving in the logging aspect. The amount argument, used in the aspect, is assigned to a variable in-place.

caller(void) [

  ...load Bank instance and Amount arguments on the stack...

  ldc 100;

  invokevirtual Bank.transfer(Account, Account, int : void);

]

Figure 6.12  Bytecode representation of a method call to Bank.transfer(). The invocation is explicitly typed, allowing
easy detection of the join point.



Out of space and performance considerations, it is also possible to store the aspect in abstract syntax tree14

form using the standard binary ATerm [55] format. The resulting overhead from loading the file is then comparable
to loading a binary Java class.
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metadata must be in another form. Existing AOP implementations that support binary traits often use
annotations for this, a standard Java mechanism for placing meta data in source code or class files [2].
Such approaches essentially form a new aspect language on the basis of annotations. This can certainly
be attractive since no extra syntax is needed. It also allows the same annotations to be used in source and
in compiled form. However, the binary class files produced through this method contain extensive
metadata, and can still only be used by using the appropriate aspect weaver (which is often applied in
the runtime for annotation-based implementations). The class files are otherwise meaningless for the
JVM, which defines no semantics for the annotations. Based on this observation, we may also pursue
another approach, where we do not pose the constraint of compliance to the class file format. Using the
standard AOP language and inline bytecode, we can maintain the standard source-level aspect (metadata)
language (see Figure 6.14). We compile only the inserted fragments of code (relying on support for
compilation of code fragments; see Section 7.2.1). This results in a pre-compiled aspect, which does not
requires further compilation of the inserted aspect code. Rather than loading such a file through a class
loader, it can then be loaded using a parser for the mixed aspect language . To apply the advice to target14

classes is at that point the same as applying regular source advice. Figure 6.15  shows an example of
bytecode-based advice inserted in a Java source code method.

Summarizing, there are different approaches one can take to insert crosscutting concerns into existing
code. Our compiler can help integrate crosscutting concerns, by providing a representation that can be
altered in a uniform way, regardless if it represents source code or is already compiled to bytecode. It

caller(void) [

  ...load Bank instance and Amount arguments on the stack...

  ldc 100;

  

  // Store any used arguments in locals, then push them back on the stack

  store amount;

  load amount;

  invokevirtual Bank.transfer(Account, Account, int : void);

 

  stm: { // inserted aspect

    System.out.println("Transferred: " + amount)

  }

]

Figure 6.13  The bytecode method call, with source code advice woven in.

aspect Logging {

  pointcut transfer(amount):

    call(void Bank.transfer(Account, Account, int amount)) 

  after: transfer(amount) {

    [ ldc "Transferred: ";

      load amount;

      ...

    ]

  }

}

Figure 6.14  A pre-compiled aspect, using inline bytecode.
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provides facilities for debugging information, which supports error messages, and allows any inserted
code to be debugged using the originating source file. Finally, the verifier can be used as a safety net to
help detect any illegal modifications. These features together allow for a very slim implementation of
aspect weavers that do not need to be integrated into a compiler.

Finally, the aspect-oriented features we have discussed here are some of the most used, but also most
basic features of aspect weavers. Different aspect weavers have other join point models, and may allow
for more elaborate specification of point cuts, including various conditions other than just a method
signature. Existing implementations have shown that these can be woven into bytecode through various
analysis techniques. Our contribution is to simplify the actual integration of advice, and to simplify the
representation of compiled aspects.

void caller() {

  ...

  bObject.transfer(c1, c2, [ stm: int amount = transferred; expr: amount ]);

  

  // Inserted aspect

  [ ldc "Transferred: "; ... ]

}

Figure 6.15  Weaving the pre-compiled logging aspect into Java source code.
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Chapter 7

Design and Implementation

7.1  Tools

For the implementation of the compiler, we made use of the Stratego/XT program transformation
system, a generic infrastructure for program transformation [3,4,55]. It provides a modular parsing and
transformation solution that has proven invaluable in the implementation of the compiler, as well as for
some of the case studies. Stratego/XT includes the modular syntax definition formalism SDF2 [67] that
allows one to extend an existing grammar. We made use of the Java-front package  that provides a15

syntax definition for the complete Java language, which we extended for our application (as seen in
Figure 3.2 and 3.3 on page 30). We also made use of the derived Dryad toolset , a collection of tools16

for developing Java transformation systems, providing semantic analysis of Java code and interfaces to
Java class files. Dryad closely follows the Java Language Specification to provide type checking as well
as qualification and disambiguation of identifiers. As such it forms the basis of our Java/bytecode
compiler. Because of this substantial basis for dealing with the Java language, we name our imple-
mentation the Dryad Compiler.

Like Dryad, our implementation uses the Stratego programming language, a program transformation
language based on rewriting using rewrite rules (see Section 2.2). It allows the specification of strategies
(functions) for controlling how these rules are applied. Stratego has an extensive library of strategies for
term traversals and transformations, and uses the ATerm format [55] to allow processing of abstract
syntax trees as produced by the SDF parser. Using Dryad, this format for terms can also be used to read
from and write to binary Java class files. We designed our bytecode syntax definition to closely follow
the tree grammar of the ATerm representation as defined by Dryad (albeit with the introduction of certain
abstractions, as seen in Section 3.2). This means that in our implementation we are only concerned with
rewriting terms, from one grammar to the next. With the Stratego feature of using inline concrete syntax
in the source code [4,55], this results in a highly readable and maintainable program.

In the remainder of this chapter we will give a high-level overview of our compiler implementation and
its design. We include some small code samples that introduce some of the more advanced features of
Stratego to illustrate selected aspects of this implementation. For background information on the Stratego
language, we refer the reader to the Stratego documentation [55].
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7.2  Compiler architecture

The compilation process is divided into three stages. The inputted Java/bytecode is first processed by
the front-end stage, which performs parsing and semantic analysis. The code generation stage then
rewrites the Java constructs to bytecode instructions (using the reduced instruction set described in
Section 3.2). Finally the assembly stage specializes all pseudo-instructions, and transforms the generated
code to a regular Java class file. Figure 7.1 shows a diagram of these stages, and includes some of the
more important components that will be introduced in the remainder of this section.

Figure 7.1  A diagram of the compiler architecture. For each of the three stages, key strategies and their relations are shown.
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7.2.1  The front-end

At the beginning of the compilation chain, the input is parsed using the Java/bytecode parse table. This
input can be any number of source files, or optionally a code snippet such as a method, a Java expression,
or list of bytecode instructions. Parsing a snippet allows quick compilation of a fragment of code, which
can be useful for debugging or unit testing. We also applied this technique to pre-compile fragments of
code used in aspects (see Section 6.3).

The partial parsing implementation depends on the generalized-LR parser used to parse the SDF2
grammar [67], which allows parsing of ambiguous inputs. Java code fragments can sometimes be
ambiguous; for example, an input ‘int i;’ could be parsed as either a field declaration, or as a local
variable declaration. The parser deals with such ambiguities by producing a parse forest – a set of all
possible parse trees for the input. Rather than requiring the user to specify the correct sort (i.e.,
interpretation) of an input, we disambiguate automatically based on a set of rules specific for the
Java/bytecode language. For our application – compiling small fragments of code – we have selected
rules that simply work by means of a preference order on the set of possible interpretations. The strongest
preference is for regular classes (which could alternatively be interpreted as local classes in method
bodies), followed by methods, statements, and finally expressions. For our example input (‘int i;’),
this means it is interpreted as a declaration statement.

The parsing and disambiguation process occurs in the dryad-compiler-parse strategy (see Figure 7.1).
It can be reused as a basis for parsing Java language extensions, by providing a custom parse table. After
the input is parsed, the resulting abstract syntax tree is processed by Dryad. Dryad loads all imported
classes and performs type-checking. It also uses this information to disambiguate Java identifiers. For
example, a statement like System.out.println() is highly ambiguous: System could be a package, a
class, or even a local variable; likewise out could be an inner class or a field. Naming conventions may
help the human reader, but cannot be depended upon in a compiler. Dryad determines the exact meaning
of identifiers based on their context, taking into account local declarations and imports. Dryad also
qualifies all unqualified identifiers (e.g., resulting in java.lang.System.out.println()), and makes
all this information available through annotations on the abstract syntax tree and through an API
interface.

The dryad-front-mixed strategy extends the regular Dryad front-end, by providing an interface over
the bytecode class structure and by extending the Java type checker with the bytecode type
checker/verifier that is also used in the assembly stage (see Section 7.2.3).This ensures that all type errors
are caught during the front-end stage, and provides essential typing information for the code generation
stage. This information is for example used by Dryad for method overload resolution.

7.2.2  Code generation

In the code generation stage, the source abstract syntax tree is rewritten to class file form. At the heart
of this translation lies a series of rewrite rules. These rules rewrite Java constructs to bytecode
instructions, thereby essentially specializing the language to its bytecode component. As these rules can
make use of the reduced instruction set, any specialization of the emitted instructions can be delayed until
the assembly stage, which greatly simplifies the used rewrite rules (see Section 3.4) This stage also
processes any existing bytecode instructions, to ensure proper sharing and scoping of local variables.
Figure 7.2 shows an example of a basic rewrite rule for the Java if statement.
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For some more advanced Java statements and expressions, additional context information is required for
compilation. This is provided through annotations set by the front-end, which provide type information
and allow for reflection using the Dryad API.

7.2.3  Assembly

The final compilation step is the assembly stage. While we perform complete type-checking and
verification in the front-end stage, the assembly stage performs a final verification of the generated
bytecode. This allows the detection of errors in the code generation process, but also picks up Java errors
that are not currently reported by Dryad. (Presently, Dryad only performs basic type-checking of
expressions, and does not confirm that, for example, a conditional expression as seen in Figure 7.2 is
actually a boolean.) 

During the assembly stage, the type-checker also provides type information that is used for instruction
specialization: The rewriting of instructions from the (overloaded) reduced instruction set to regular
bytecode instructions. This process is described in Section 7.5.

After instruction specialization, the bytecode is normalized further, removing the source location infor-
mation and exception handler blocks (see Section 3.2). Every instruction is traced back to the original
line of code it originated from. This information is stored in debug symbol tables (see Section 2.1.9).
Similarly, all the instruction offsets of the exception handler blocks are placed in exception handler
tables.

7.3  Source code tracing

During every stage of the compiler, location information about the original source code is maintained.
This information is either provided by the parser, or extracted by the front-end using source tracing
information that may be embedded in the syntax (see Section 4.2). Source tracing information maintains
the original source construct that was used to generate the target construct, its location information, and
the resulting generated code:

trace (<originating code> @ <filename>:<line>:<column>) [

  <generated code>

]

emit-if:

  ƒ if (e) stm1 else stm2 „ ÿ
  ƒ <emit-java> e;
    ifeq else;

      <emit-java> stm1;

      goto end;

    else:

      <emit-java> stm2;

    end:

  „
  where (else, end) := <new-labels>

Figure 7.2  Rewriting the Java if statement to a series of bytecode instructions. The conditional expression e and the inner
statements are recursively rewritten through application of the <emit-java> strategy. The where clause in this rule is used
to define new else and end labels, used in the right-hand side of the rule.
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The originating code, a fragment of source code from the original file, is optional in this clause. We
include it, however, to display compile-time errors not only with the originating location, but also with
the fragment of code that it originated from (see Figure 7.3).

7.3.1  Rewriting with source code tracing

The parser places default location information as annotations on the abstract syntax tree, which can be
used if tracing information is not available. These annotations can also be used to implicitly generate
source tracing information when a source construct is rewritten:

  desugar-if:

    ƒ if (e) stm „ ÷ 

    ƒ trace (stm_traced) [ 

      if (e) stm else ; 

    ]

    „
    where stm_traced := <id> // assign input of this rule (including annotations)

In this rewrite rule, the one-armed if statement is desugared to a regular, two-armed if (as seen in
Section 2.2). The rule also introduces a trace clause that includes the original if statement, and its
associated position information in implicit annotation form. As we apply this pattern of adding tracing
information for practically rewrite rule in the compiler, we defined a strategy that will introduce the
trace clause automatically:

  desugar-if': ƒ if (e) stm „ ÷ ƒ if (e) stm else ; „
  

  desugar-if = trace(desugar-if') // apply tracing (to one or more rules)

The trace strategy operates on the basis of the context of the language construct that is rewritten, and will
only add a trace clause if there is no tracing information yet available. Note that we make use of the
ATerm format [55], which is based on the principle maximal sharing of terms, which means that the
inclusion of the original construct has the same memory footprint as a pointer.

Although we built our implementation on this basis, in Stratego, it is equally possible to generate this
information in an implementation based on a different platform. The resulting, generated code contains
the information in the syntax, and can be produced independently of the parser and library strategies we
provide for it. This way, a language extension implementation can still make use of the source tracing
facilities, while maintaining minimal coupling with the back-end compiler implementation.

7.4  Evaluation and unit testing

For testing specific features of a language or language extension, unit tests can be used to verify that the
correct code is generated. Writing such tests can directly help find bugs during the development of the

void foo() {

  String s = 1 as String;

}

Foo.Java:3:3: Input can never be of type:

              java.lang.String

  String s = 1 as String;

  generated: checkcast java.lang.String

Figure 7.3  On the left, an expression using the as operator (see Section 5.1) that causes an error message (right), which refers
to the original code and the generated checkcast instruction.



In Java SE 6 class files were extended with a new attribute to declare types of local variable types. This17

can significantly increase the JIT verifier’s runtime performance as it only needs to check types, not infer them.
However, this only applies to classes generated by the new compiler, and it is not used in this project.
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compiler. Maintaining a collection of unit tests can help prevent regressive bugs from being introduced.
However, specific for code generation, specifying the complete outputted code for a specific input can
be quite tedious. Generated code is often much larger than the inputted code (see for example Figure 5.4
on page 48; the bytecode generated for the simple as operator). This may tempt some programmers to
blindly copy-paste the result from the generator itself, defeating some of the purpose of the tests.
Additionally, it is not trivial to verify generated names for fresh variables and labels, even though this
may influence the semantics of the generated program.

An alternative way for unit testing is to test the functionality rather than the code of a generated program.
We support this approach by executing the generated program in the JVM, and comparing the result of
the program to a given expected result. The partial program parsing and compilation technique (see
Section 7.2.1) makes it possible to compile and directly evaluate small program fragments. We have
successfully applied this technique for unit tests of the Dryad Compiler itself, as well as for the Java
language extensions of some of the case studies (see Figure 7.4). Every input fragment in such a unit
test generates Java/bytecode for the specific application. The resulting program or fragment is then
further compiled by Dryad Compiler to a stand-alone class file. This program is then loaded and executed
in an instance of the JVM, and returns a value in the form of a string. This string is then compared to the
expected unit test value. If this test fails, or if any of the compilation steps reports errors or warnings,
the unit test will fail.

7.5  Verifier and inferencer

7.5.1  Bytecode analysis and verification

The JVM specification includes an abstract specification of how a bytecode verifier (see Section 2.1.10)
should operate [1]. It allows different approaches of type checking bytecode, and [15] contains an
overview of the area. The most straightforward (but also most computationally intensive )17

implementation and follows directly from the specification. The JVM specification describes the process
as a fix-point iteration, where a method’s instructions are iterated over a number of times until all
possible execution paths have been analyzed. Because of restrictions on the form of a method its
instructions, this can be a straightforward process. The first restriction is that for all instructions their
effect on the stack can be statically determined. For a method invocation instruction, this means that it
must specify the arguments it takes from the stack and what the return type is. This also means that the
verification can be done in an intraproducural setting [18], i.e., it only requires analysis of a single
method at a time. The second restriction is that the stack must be the same for all possible execution
paths leading up to an instruction (which follow the branching instructions). This restricts the way

operator-tests =

  test-eval(|ƒ "a"  as String  „, "a");
  test-eval(|ƒ "a"  as Integer „, "null");
  test-eval(|ƒ "a"  ?? "b"     „, "a");
  test-eval(|ƒ "a"  ?? null    „, "a");
  test-eval(|ƒ null ?? "b"     „, "b")    

Figure 7.4  Unit test definitions for the as operator (Section 5.1) and the ?? operator (Section 5.2). For each line, the
expression on the left is evaluated using the Java Virtual Machine, while the expression on the right is the expected result.
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programs that can be expressed in bytecode, but is essential for allowing accurate and fast verification
by the JIT compiler. Using fix-point iteration all paths can be followed and iterated over, until finally
all stack states can be determined to be complete and correct. This process can be aborted with an error
message if two paths leading up to an instruction have inconsistent stack states, or if the stack types are
not as expected.

While it is not intended to have such as broad coverage as the BCEL verifier, our current implementation
provides adequate type and stack consistency checking. It is implemented using a basic fixpoint iteration
strategy, expressed as a monotone framework [18]. This representation, due to Kam and Ullman [17],
allows a generic formulation of such analyses. Figure 7.1 shows the place of this (the flow-state
strategy) and derived components in the compilation architecture.

One of the instances of this framework is the type checker, where the framework is applied to determine
the incoming stack for each instruction. It is defined using two operators, and an argument that
determines the initial lattice (i.e., stack):

P iThe transfer function f  determines the resulting stack of an instruction (see Figure 7.5). In its
basic form, this function gets a tuple of a specific instruction in the method and its input stack,
and must return the resulting stack. As an implicit argument (using dynamic rules [55]), source
tracing information is provided, which is used in case an error is encountered.

P The join operation  merges the stack at branch targets (i.e., labels and exception handlers).+,

While different control flow edges leading up to a single point in a program must always have
the same stack height, the types on the stack may be unified to form a new stack. For example,
a String and an Integer on the stack unify to the Object type. In addition to the two input
stacks, this function is also provided with implicit source tracing information.

P As an additional parameter, the framework takes the initial stack (4) of the method or code
fragment (which is normally an empty list).

Interesting about these analyses is that they are performed on the generated bytecode, which can come
from an arbitrary source language. Bytecode instructions as represented here include source tracing
information and inline exception handlers, forming a tree that can be implicitly traversed using the
framework. The flow-state algorithm maintains all context information so any errors reported can
directly be provided with source tracing information. Figure 7.6  shows the concrete implementation of
the unassigned variable analysis using these techniques.

We have used this technique for other analyses, such as an unassigned variables analysis and an analysis
to confirm final variables are only written to once. The analyses that we specified are all based on a
forward data flow analysis and use as the bottom element (z) the term Unreachable.

// given an instruction, and its input stack, determine the resulting stack

bc-stack-effect =

  ... // match the instruction, to determine the result:

  IFEQ;        op(\Boolean  ÿ []\  |1) // takes 1 Boolean, returns nothing

+ ARRAYLENGTH; op(\Array(t) ÿ Int\ |1) // takes 1 arraytype, returns int

+ RETURN;      op(\[]       ÿ []\  |0) // takes 0 operands, returns nothing

Figure 7.5  Instructions and their effect on the stack are defined using the op() function. Each instruction is specified on a
line of code with respectively the instruction, the inputs expected on the stack (e.g., a boolean), the resulting output (e.g., an
empty list; []), and finally the number of inputs expected. This information is used to determine the stack effect of an
instruction, and for displaying errors for invalid inputs.
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7.5.2  Optimizations based on bytecode analysis

To allow small transformations of code based on the collected information, we extended the monotone
iframework with an additional, optional operator g . This operator may return a new instruction or

sequence of instructions, given an instruction of the program and the state at that point (e.g., the operand
stack). Based on this, we also formulated a dead code elimination optimization, which replaces all
instructions that have an Unreachable state with an empty sequence of instructions. We also
implemented peep-hole optimizations that simplify common bytecode patterns. As the pattern matching
is implemented as part of the framework, it is fully aware of the control flow in a method. This ensures
that the optimization algorithm does not wrongfully replace a fragment of code that has multiple inbound
control flow edges.

7.5.3  Type inference for bytecode instructions

Most bytecode instructions normally have a specialized version for various types (see Section 2.1.8). For
example, to load a local variable on the stack one of five different instructions must be used (aload,
iload, fload, dload, or lload, depending on the type of the variable). Before running the code, the Java
verifier determines the types of all local variables and stack operands using data flow analysis. If an
instruction of the wrong type is used, it will throw an exception. For the purposes of both analysis and
bytecode engineering, we felt it would be more convenient to generalize this to a single overloaded load
instruction (see Section 3.4). The type information already available to the integrated verifier, and it is
possible to apply this information select a properly typed instruction based on a given pseudo instruction.

In addition to load and store instructions, specialized instructions are also used for arithmetic operators,
comparison operators, primitive type conversions, stack operations, and array access (see the JVM
Specification [1], Section 3.11.1). For each of these, we have defined equivalent pseudo-instructions that
can be used instead (see Section 3.3). Any regular bytecode program can be expressed using this set, as

/** Verify definite assignment of local variables. */

bc-verify-local-assignment =

  bc-flow-state-stack(

i    // f : handle load/store instructions (see below), or do nothing (Fst)

    bc-local-assignment-state <+ Fst

  

  , // : intersect states (e.g., remove if assigned only in one arm of "if")+,

    isect

   

  | // 4: initial state; "this" and all method parameters are assigned

    ["this" | <bagof-MethodParamNames>]

  )

/** Add any assigned variable to the state set. */

bc-local-assignment-state:

  (state, STORE(x)) -> [x | state] where not(<Unreachable> state)

/** Give an error if an unassigned variable is loaded. */

bc-local-assignment-state:

  (state, LOAD(x)) -> stored

  where not(<Unreachable> state);

        not(<elem> (x, state));

        bc-error(|"A value must always be assigned to", x, LOAD(x))

Figure 7.6  Verification of definite assignment: Java requires each local to have a value assigned to it before use. This bytecode-
level analysis confirms this property and generates errors with source tracing information for unassigned local variables.
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it provides direct equivalents for all the regular bytecode instructions. For the purpose of modifying or
analyzing existing classes, we created a tool that rewrites the class to use the reduced instruction set. This
disassembler was fairly straight-forward to implement, as we made sure that a direct mapping exists
between the regular instructions and their overloaded counterparts.

The idea of overloaded instructions is not unique, and is for example also applied by the .NET
framework, which defines an instruction set where most instructions are overloaded. For Java, the
decision to use type-specific instructions was made to allow easy implementation of interpreters (whereas
in .NET code is always JIT compiled). Nevertheless, since proper, modern JVM implementations include
a verifier that can statically determine the types on the stack, this typing information on instructions is
essentially redundant.

The Dryad Compiler implements the instruction type inferencer as a direct extension of the built-in type
checker (see Figure 7.1). The type checker determines the current types on the stack at any position in

ithe bytecode. The inferencer extends it by defining the g  transformation operator. This allows it to
replace all overloaded pseudo-instructions with type-specific, regular instructions, based on the
information collected by the type-checker. Essentially, it maps each overloaded instruction and type
combination to a regular, typed bytecode instruction. Some instructions, such as the equality operators
(see Section 3.3.8), actually rewrite to a sequence of regular instructions. This is because such
instructions know no direct equivalent in the regular set. For example, the lt operator, when applied to
integer inputs, rewrites to: 

  if_icmpge else

    ldc true

    goto end

  else:

    ldc false

  end:

This fragment of code makes use of one of the regular if comparison instructions (see Section 3.3.8), and
loads a boolean on the stack to indicate the result of the comparison. Sometimes the code generated in
this fashion is not the most efficient, but by using optimizations in a later compilation stage it is possible
to remedy that.

Finally, it is possible that a pseudo-instruction is applied to an input type for which no specialized
instruction exists (e.g., add is given an object and an int, or a float and an int). In such cases we report
an error, rather than attempt to convert the input types. Using the source tracing information, such errors
are reported not only with the offending instruction, but also with a reference to the originating source
code location.
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we also support concrete Java/bytecode syntax.
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Chapter 8

Related Work

8.1  Compilers and domain-specific languages

Open compilers, such as Polyglot [34] and OpenJava [52], provide an extensible front-end to a Java
compiler. They can be used for building extensions of the Java language, by transformation of the
abstract syntax tree (AST) before being handing it to a standard Java compiler. We support similar pre-
processor implementations, but without the restriction of only generating Java code. Instead, we also
allow direct use of the underlying bytecode primitives normally only supported by extending the back-
end of a compiler. For example, the implementation of finite state automata (used in parsers), or yield
continuations benefit from this (see Section 5). Another open compiler is the very mature Eclipse Com-
piler for Java (ECJ) [56], implemented in Java. It has unparalleled support for incremental compilation,
and is integrated in the Eclipse development environment. The JastAdd extensible Java compiler [66]
is built upon a system of attribute grammars for semantic analysis and inter-type declarations to allow
modularization of otherwise tangled concerns. Brothner [10] introduced Kawa, an extensible compiler
for the Scheme language. It is based on the Kawa language framework, a library that provides a basis
for developing (Lisp-related) dynamic languages. It forms an abstraction layer over the low-level BCEL
bytecode engineering library. These compilers allow for the same preprocessing approach, but also
provide an extendible back-end to take full advantage of the JVM. However, to take advantage of this
in languages and extensions requires intricate integration in all stages of the compiler. Especially with
the large Eclipse compiler, this can be a very involved process. Our approach, as it allows bytecode in
the input, provides a more loosely coupled approach that allows taking advantage of the back-end in the
initial stages of the compilation process.

Many open compilers, are written in a general-purpose language (the aforementioned are implemented
in Java, with the exception of JastAdd). Rewriting programs in such languages, rather than a specialized
transformation language, can be a tedious task. Kalleberg and Visser [51] developed a system for
interfacing with the ECJ front-end, allowing program transformation with the Stratego/XT
transformation system [3,4] using the ECJ AST. While our implementation has not reached the level of
maturity of ECJ, it is natively written in Stratego/XT which allows complete integration with any
language extensions written in it. Using a language-independant exchange format , it also allows18

interoperability with other platforms. Bravenboer et al. introduced MetaBorg [4,47], a general approach
to use the Stratego/XT system to integrate and assimilate embedded DSLs into a host language. It spans
from syntax definition extension to rewriting programs, and may be used in conjunction with our
approach.
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new code rather than modifying code, and to operation at the class member level rather than the method body level.
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Macro systems and some pre-processors are generally only concerned with syntactic extensions to a
language. Recent systems for Java include JSE [43], EPP [44], and JPP [45]. Unlike open compilers they
cannot make use of semantic or typing information. It is not clear how these systems scale for large
extensions to the base language.

A general problem with generating to source code is the limited ability to include debugging
information [65]. This information, used by debuggers and to display stack traces (for runtime errors),
is normally generated for the generated source code rather than the originating code. Van Deursen et al.
[50] developed origin tracking, a technique for maintaining source location information in rewriting
systems. It maintains a pointer to the original code for every construct where a rewrite rule is applied.
This information can be passed to a compiler by use of a construct like the C# #line directive [42],
which allows specifying the original source code line number. We unify these techniques and implement
syntax to specify origin information, as well as a library for rewriting with this information. We apply
this for composition and separate compilation, both at the Java and at the bytecode level.

Java 5 introduced annotations [2], in-code metadata that may be placed at select places (classes,
packages, member signatures, and local variables). They can be used for attribute-oriented
programming [57], a form of declarative programming where annotations are used to rewrite classes.
Annotations can form an alternative for true embedded DSLs, at the cost of some syntactic salt and
flexibility. While annotated Java still complies to the Java syntax, it can only be correctly compiled by
the use of an external annotation processing tool . An example of this is the AspectWerkz aspect19

weaver [60], which uses annotations to represent aspect descriptions. Our compiler can be used to
develop such tools, providing facilities for modifying compiled classes and providing debugging
information. We however encourage the development of specialized languages, and as such designed
an aspect language for compiled aspects on the basis of a regular aspect language with inline bytecode.

Another approach to add language extensions without adapting the syntax or compiler is to use dummy
invocations. This technique is applied in the f2j compiler that translates Fortran to Java source
code [48], while translating the goto statement to placeholder statements (e.g., Dummy.go_to(10)). More
recently the Yielder library also used a similar approach to implement the ‘yield’ control flow
statement [58]. The resulting code can be compiled with a regular Java compiler, but then requires
bytecode-level modifications to replace the dummy invocations. Since the Java compiler is oblivious
about the special semantics of the invocations, and is unable to properly integrate this in the control flow
analysis, this approach has a limited applicability. For example, it may cause the compiler to fail because
of seemingly unreachable code, and it may perform optimizations that break the intended rewriting (see
Section 5.4.2). A later revision of f2j directly generates bytecode instead, eliminating such problems
[49]. In our approach we do this by allowing the required bytecode primitives in the source code, which
spares the code generator implementors from a complete bytecode-based implementation.

8.2  Software composition

To aid code reuse, various extensions to Java have been proposed and implemented. These require
modification of Java classes at the source or bytecode level. Kiczales et al. [32] introduced AspectJ, a
popular implementation of aspect-oriented programming [31,40] for Java, aiding in separation of
concerns by allowing the insertion of cross-cutting concerns into classes. Initially implemented to
integrate such aspects at the source level, AspectJ was later adapted to do this at the class file (bytecode)



Related Work 93

level. This meant it no longer requires access to the source code of classes and aspects, but it required
the AspectJ developers significantly more implementation effort to integrate this into the existing Eclipse
compiler. Using a combined target language of Java and bytecode, we allow the aspects can be directly
composed into target classes regardless of their base language, Java or bytecode. This allows for very
slim aspect weavers that may implemented separately from the compiler (see Section 6.3).

Traits, a concept introduced by Schärli et al. [6], apply composition to integrate and combine modules
of reusable code into classes. Existing implementations do this at the source level [6,24,26,37]. This
preprocessor approach simplifies the composer as it need not be concerned with the remainder of the
compilation. We maintain this advantage, but with our extended target language also accept compiled
classes and traits as inputs (see Section 6.2).

8.3  Bytecode and assembly

The Soot framework [35] allows analysis and optimization of Java bytecode. It provides different levels
of language abstractions over representing bytecode, ultimately completely abstracting over the operand
stack, forming a Java-like language. This provides opportunities for optimizations at different levels. We
do not abstract over the language per se, but offer pseudo-instructions that can simplify analysis and
emitting code. Lance et al. [22] perform analysis over bytecode as an alternative to Java source analysis,
taking benefit of the simpler structure of the language. Using Jaristotle to analyze a low-level bytecode
representation, they use debugging information to maintain a link to the source code. We implement our
own set of analyses and optimizations, as well as a verifier on the basis of monotone frameworks [18]
(see Section 7.5). Using source tracing (debugging) information, we maintain a similar link to the
original source code, allowing certain error conditions checked and reported after the code is emitted.

Some programming languages, such as C++ and Ada allow inline assembly code [41,59]. This is often
used for optimizations or obfuscation, which is also possible with the Java/bytecode language. Assembly
code, however, is a representation of actual CPU instructions, and is therefore much more low-level and
less safe than bytecode. This means it can also access to processor-specific instructions or system calls,
not supported in bytecode. Inline assembly code is also not very portable, as it depends on the compiler
and the CPU architecture it compiles for [59]. Bytecode on the other hand is platform-independent as
it targets the Java Virtual Machine. The dependency on the CPU and compiler, together with the lack
of structure of assembled code, means that it is very hard to manipulate natively compiled programs,
even after disassembly. We apply such manipulations of bytecode for the purposes of separate
compilation and modifying compiled classes; with assembly code it is not feasible to do this. For inter-
operability with surrounding code, inline assembly only supports local variables through the use of the
stack or registers, while we allow the use of named local variables.

Like Java, the C# language [42] is compiled to a bytecode language, the Common Intermediate
Language. It also uses a verifier to guarantee the safety of the bytecode. Using attributes on classes or
methods, it is however possible to disable the type-safety features of this verifier (as long as the security
policy allows it). C# applies this fort “unsafe code”, a series of pointer-based language constructs that
allow direct access to memory (of the virtual machine). Unsafe code is often used for interoperability
with native libraries written in C or C++, or sometimes for minor optimizations. Unlike unsafe code,
embedded bytecode adheres to generally the same safety restrictions as the host language (i.e., Java). For
interoperability, the Java Native Interface (JNI) [46] however provides similar features (and unsafety)
as unsafe code, albeit with a higher performance overhead since it cannot provide the same level of
integration with native (pointer-based) data structures.
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Chapter 9

Conclusion

Java provides a safe, mature, and ever-evolving platform for developing applications, from small applets
to large enterprise applications. In addition to the Java language, the platform is frequently used to host
other general-purpose languages [9,48,49,11,27,28]. To increase programmer productivity in specific
areas, domain-specific languages have been and continue to be developed. Java and bytecode form
simple, portable compilation targets implementing languages in both categories. Combining the two
languages has a truly synergetic effect: The raw power of bytecode is combined with the convenience
and familiarity of Java. The combined language allows rapid development of language extensions that
operate in a separate compilation stage, which is further supported through source code tracing to provide
compile-time errors and debugging information.

The Dryad Compiler also opens the doors for new, more fine-grained forms of separate compilation.
Embedded languages and software composition systems, such as aspect weavers [31,32,40], or compilers
for traits [6], can use the language as a foundation for combining classes and methods up to instruction-
and expression-level precision. Using fine-grained separate compilation, reusable units of code can be
pre-compiled with the same precision. With the integrated debugging information facilities, these
composed fragments of code can be traced back to their original source files. This in turn allows accurate
source location information for error messages as well as debug-stepping, supporting software compo-
sition using a preprocessor approach.

9.1  Future work

Our current experience with the Java/bytecode language is based on the use of code generation and
software composition applications of limited size. In the future, it would be interesting to see how this
system scales up, and how the separate and multiply staged compilation performs for larger applications.
Our current implementation does not yet support the complete Java language, as we simply implemented
the language features as they were demanded. While this is not a limitation for implementing new
languages or systems that do not depend on the complete Java language, for larger applications and for
more general use it may be essential to offer support for the complete Java language.

As our current compiler implementation compiles to native code rather than code for the JVM,
integration options with Java applications are limited. It would be interesting to compile a future version
as a native Java program. This would offer new opportunities, such as run-time or load-time code
generation and manipulation. Such techniques are already actively applied in the field of aspect-oriented
programming [60], and provide increased flexibility, albeit at the cost of performance. Using the pre-
compilation techniques such as we already applied to aspects (see Section 6.3.5), such overhead can be
minimized, but can never be completely avoided.
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