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Abstract

Views is an open-architecture application environment that offers a consistent
user interface across applications, interoperability between them, much less
programming to produce an application, and the ability to add and modify
applications on the fly. The system kernel contains a user interface layer and a
persistent data-storage layer, so that applications only have to implement the true
functionality. Objects contain no information on how they are to be displayed, so
the presentation of documents can be changed easily, even on the fly. The main
implementation technique is the use of invariants between objects which are
automatically made two-way by the system. This document describes some
aspects of programming for Views.
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1 Introduction

There are problems with current windowing environments.

The most obvious to users of such systems is the lack of consistency between
applications. Even in environments renowned for their consistency (such as the Apple
Macintosh) there are irritating and error-prone differences between applications, even at
the system level: consider the Macintosh finder compared with the file-finder dialogue box.
The task is the same (find a file to work with) but both the presentation (the look), and the
manner of navigation in the filestore (the feel) are completely different (see Figure 1).
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Figure 1. Within a short time, the new Macintosh user can be confronted with two different styles of browser,
both with essentially the same task, but not recognisable as similar in appearance, and with different
ways of navigating in the file-store

Another problem with current systems is a lack of integration between applications. Again
drawing on the Apple Macintosh as a well-known example, it pioneered mixed-media
applications, where for instance you can include text and pictures in a single document.
But you must use different programs for producing pictures and producing text, so you
have to decide whether you want a text with drawings in it, or a drawing with text in. They
are both possible, and can produce identical results (Figure 2).
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Figure 2. Two similar documents, produced with two different applications. If an application allows you to import
documents from other applications at all, once you have done so, the structure of the original is usually
lost.
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Firstly then you must produce your base document, then you have to change context
and run a different program to produce your drawing that you want to include in your text
(or vice versa). Finally, once you have included the drawing, it is ‘frozen’. there is no
chance to make further changes to it, except to delete it and replace it with a new version.

Another problem is the lack of interoperability between applications in windowing
environments. In Unix-like environments, for example, many applications can be plugged
together to produce new applications and tools. Even though the data-model used (single
lines of text) is rather impoverished, a large range of applications can be used in this way.
For instance, if you have a large, compressed, file of data, and you want to select the
second field of each line that starts with the word ‘Total’, and total them up. It does not take
much work to be able to write something like:

zcat data.Z | grep ~Total | field 2 | total

which would uncompress the file on the fly, select the lines, select the field, and cause
them to be totalled. In windowing environments, similar modes of working are impossible;
the best you can do is start each separate application up separately, and store
intermediate results: it is generally not possible to link applications together to
interoperate. This has caused a number of many-headed monolithic applications to
emerge, allowing you to at least pass data between a small (fixed) number of applications,
such as database, spread-sheet, and text-processor, or text-processor and picture editor.

While not all application environments have all these problems, they are typical
examples of the sorts of shortcomings you can find in current environments. And all these
problems come with another enormous difficulty: the cost of producing the user-interface.
It is said that 90% or even more of the code of an application can be taken up with pure
user-interface matters [1]. As an extreme example, the standard C “Hello World” program,
3 or 4 lines long, can expand to 250 lines or more if you produce a basic version for a
windowing environment, but in general the work necessary to go from functionality to
application is huge, and while the original “Hello world” will run on any computer that has a
C compiler, you have to write a different version for each windowing environment there is,
with hardly a line of code in common between the different versions.

These problems are caused by the isolation of applications from each other: they must
each separately implement their own user interface (encouraging differences) and must
each define and implement data-formats, discouraging integration and interoperability
(see Figure 8.).

2 Views

Views [2] is an application environment that supplies a user interface layer as part of the
system, and implements a data layer hiding all details of external data-formats and even
the existence of disks and the like (see Figure 8.). This means that applications do not
have to worry about user interface details, but are only responsible for the true
functionality of the application. Since data formats and the user interface are handled by
the system, any application may import objects from other applications, and those objects
remain manipulable as if they were still in their original application.

This reduction in the areas of responsibility of an application, plus other factors to be
discussed shortly, result in more than an order of magnitude reduction in the amount of
programming needed for an application: for example, a clock program for a traditional
windowing environment requires hundreds of lines of code. A similar application for Views
needs a dozen lines, with the added benefits that the result can be used in other
applications, the objects imported into other documents and so on.
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Views is not a toolkit or a User Interface Management System, but an application
environment. Emacs for example [3] is also such an environment, but with a rather
simple, some would even say impoverished, data model (lines of text). Just as with
Emacs, Views is not an environment that existing applications can be directly integrated
into: applications have to be written for it; this is the only way Views can offer the degree of
integration that it does.

3 The user interface

Since there is one single user interface supplied by the system, a model had to be found
that would satisfy all potential applications. Preliminary research [6], [7] led us to what we
have come to call the TAXATA model of user interaction: Things Are eXactly As they
Appear. This has the following properties:

¢ Allinformation is presented to the user as ‘documents’, in a broad sense (whether
textual, graphical, or mixed).

¢ All objects are in principle editable
¢ All actions are achieved by editing

¢ The state of the screen exactly reflects the state of the ‘world’. This is a stronger
form of WYSIWYG (What You See Is What You Get): as you edit objects the
‘world’ gets updated to match, on the fly.

An object can be for example a text document, the clock, a diagram, or a menu.
Traditionally, editing a file is performed on a copy, which then has to be explicitly written
back to the disk. The TAXATA model is closer to what one does in everyday life when
changing a document. The one major advantage of editing a copy of a document — that
you can retrieve the original version after a disastrous mistake — is offset by an unbounded
undo mechanism in the Views data-layer.

As an example of the basic mechanism, consider document management. Instead of
individual commands to list the documents that you have in a directory or folder, to rename
them, to delete them, copy them, and so on, you just ‘visit' the folder — which is a
document in itself in Views — which causes its contents to be displayed on the screen. To
rename a document in the folder you just edit its name; to delete it, you just delete its
entry; to copy a document, you just use the normal copy and paste facility of the editor.

Similarly, to read electronic mail you just ‘visit' your mail box. This causes its contents
to be displayed as a list of message headers. Again, you can visit these individual
messages (themselves documents), rename them, delete them, copy them, all in exactly
the same way.

To print documents, you just copy them to the document representing the printer
gueue; to cancel printing, you just delete its entry; if you keep the printer queue document
open on your screen, you can watch the progress of your printing jobs.

And so on for other tasks: reading news, listing and deleting running processes, editing
textual documents, or amending a spread-sheet. Surprising applications, considered from
a traditional point of view, include setting the time of day by editing the clock, and
rearranging and renaming the menus, and redefining the shortcuts for menu entries, by
editing a document describing the menus.

A major advantage that should be emphasised, is that once the user has learnt the
basic actions of working with the editor, it should then always be obvious how to deal with
a new application that the user hasn’'t seen before.
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4 Implementation

Views objects are structured, thus containing other objects, and consist only of ‘content-
full’ parts: they contain no details of formatting or other display information, which is added
separately when objects are displayed.

Each object has a type, which describes the internal structure of the object and its
external representation, be that as text, as some graphical representation, or even some
other medium, such as sound. In general, objects can be viewed in different ways, even
simultaneously, for instance as text in one view, but graphically in another (see Figure 3).
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=] Graphic Clock [
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A| Syztem Time | a | J| 4| Clock | a | J|
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A| Some Clock | a | J|
¥ Visit Edit Display Focus
Clock{Date!Year{1992), Month(1}, Day(10%),
— | Time{Hour{16}, Minute{43}, Second(0)}) E

Figure 3. Four views of the time. On the left is the time as represented internally by the computer: the number of
seconds since the beginning of 1970. This value is then projected in three different ways: as an
analogue-style display of the time, as a digital-style display, and lastly showing the internal structure of
the digital-style display, without any added formatting. In this last display, the type of each (sub-) object
is given, followed by its value in brackets. Each display also shows its name, and has a ‘menu-bar’ for
editing the object and controlling the display.

When an object is displayed, the description of its external representation is accessed
and used to determine how the object should look.

Within the user interface layer there is a generic editor which knows about the structure
of objects, and allows the user to edit all objects in the same way, regardless of how they
are displayed.

In general there are ‘invariants’ between objects in the system (Figure 4).

Figure 4. Invariants, here represented as a circle, link objects together. If an object is changed, the invariant is
re-instated by changing linked objects. Here an object representing the temperature in degrees
Fahrenheit is linked by an invariant to an object representing degrees Celsius. Since the invariants are
two-way, if the user edits either one, the other gets updated automatically.

These invariants state that there is a direct relationship between the contents of an
object and one or more other objects. If an object gets changed (usually by the user
editing it), the invariant goes ‘out-of-date’, and is re-instated by the system.
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In general, the invariants are two-way, so that it doesn’t matter which objects in an
invariant get changed. Higher-level invariants, defined in terms of user-defined functions,
get broken down into a network of low-level invariants by the system (see Figure 5).

Figure 5. A high-level invariant, such as the one in Figure 4 is broken down by the system into a network of
lower-level invariants

Local propagation [4] is then used to propagate changes through the network of
invariants when any object gets changed; no knowledge of the structure of the invariant
graph is used for constraint solving [5]1. An optimisation is used that ‘puts to sleep’
invariants that are attached to currently unused objects (objects that are not visible on the
screen and not part of a chain of invariants leading to a visible object).

In fact, the invariant mechanism is used very generally throughout the system, so that
for instance, displaying objects on the screen is done by application of the invariant ‘the
representation on the screen must match the object’. When an object gets ‘visited’ (i.e.
made visible on the screen), a window is opened, and a chain of invariants created that
creates a presentation of the object, and causes that to be displayed on the screen. If the
object gets edited, then the screen gets updated (see Figure 6 and Figure 7)

Object

Presentation

Presentation
description

Figure 6. Presentation of documents on the screen is done using the invariant mechanism. When a document is
‘visited’ a new ‘presentation’ object is created, linked by an invariant to the object to be visited and the
description of how the object should be displayed (itself an object); from the presentation object
emerges a second invariant that maps the presentation onto the screen. If the visited object gets
changed, the invariant goes briefly ‘out of date’ and is restored by the system, by updating the
presentation document. Such an arrangement also means that if the description document gets
changed (for instance, edited by the user) the presentation changes to match, on the fly.

1. Infact, there is a school of thought that says that such a system of equality constraints is not a constraint sys-
tem at all. We bypass this problem by only referring to invariants, and not constraints.
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View D—’ View
w/v HIM/S Q View
System
seconds [ ]
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Figure 7. A simplified view of the internal connections of the objects displayed in Figure 7. The oblongs
represent objects, and the circles invariants connecting them. If an object changes, any connected
invariants are used to update connected objects. The system-time object gets changed automatically
by the system each second. The diagram has been simplified to show the main relationships, but the
display functions (marked with a D) for instance, are also connected to objects describing how the
objects are to be displayed, and giving the details (size, etc.) of the windows in which they are to be
displayed.

5 Adding new applications

To add a new application to Views, the application designer has available a large
collection of built-in types and objects, and types and objects created for other
applications. If necessary however, new objects can be defined: how they are structured
internally, how they are to be displayed, and the relationships between the different
objects in terms of invariants. The Views system takes care of the rest: input and changes
to the objects, displaying objects, and ensuring that the invariants are kept up-to-date.

To add a new application then, the application programmer creates a new workspace,
and follows a number of steps:

¢+ defines any new data-types to be used, and their external representations
¢ creates the necessary objects (instantiations of the data-types)

¢ specifies the necessary invariants between the objects.

These steps are treated in more detail in the following sections.

6 Data types

Views supplies a data-layer to applications (see Figure 8). This layer hides all details of
the external representation of objects; to an application all objects are directly accessible
and the existence of disks and main-memory is transparent. The data-layer decides on the
structure of objects on disk, and takes care of transferring objects from disk to main-
memory as objects are called for and changed. All objects are effectively ‘persistent’: they
only disappear when they are explicitly deleted. Even if you stop running Views, and come
back later and restart it, the objects are still there.

Part of the data layer is an unbounded undo mechanism, so that all applications have
automatically and transparently full undo available.

Apart from the pre-defined data-types available in the library (including primitive types
such as numbers and strings), new data-types can be built up from a small, generally
useful set of constructors:
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User interface User interface layer

True functionality Appliiation Appligation Appliéation b
Application| |Application| |Application|
1 2 3

Data access

Persistent data layer

TRADITIONAL APPLICATIONS VIEWS

Figure 8. Rather than requiring that each application define its own data-formats as is the case with traditional
applications, Views supplies a data-layer that takes care of external data-formats and where objects
are stored. This allows any application to import objects from other applications without losing
information about their structure and without having to know about files or even the existence of
external storage.

Sequences (lists)
Compounds (tuples)

+
+
¢ Unions
+

References

¢ Likenesses (type synonyms).
For instance, a simple clock contains three fields, the hour, the minute, and the second:
Type clock = compound(h: hours, m minute, s: seconds)

where hour, m nut e and second are types defined elsewhere. Additionally a data-type
declaration must specify the presentation:

Type clock = compound(h: hours, m ninute, s: seconds)

presented rowfh, ":", m ":", s]

What follows the word ‘presented’ is any expression yielding a ‘presentation’; in this case
the function r ow takes a list of objects and takes their presentations, and joins them
together horizontally. So, depending on the presentations of hour, ni nut e and second,
when visited, a clock might look like this:

12:21: 30

It can immediately be seen that even though presentation of an object is conceptualised
as a single invariant between object and presentation as in Figure 6, the system can
actually break it down into lower-level invariants (see Figure 9.), giving the extra
advantage of automatic screen update optimisation: if only the seconds field changes,
only the seconds part of the presentation needs to be changed.

Along with r ow, there is a function hang that joins presentations vertically. So the
presentation:

presented hang[h, "--", m "--", s]
would give something like:

12

21

30
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12 21 30 Clock

12 : 21 : 30 Presentation

Figure 9. Splitting a high-level presentation invariant into low-level ones.

7 Invariants

Of course, the above definition of the type cl ock only defines the structure and look of
the clock: it doesn'’t tick yet. To do this some invariants need to be defined between
objects. The general structure of an invariant is:

expressi on = expression
for instance:

a=>b+ 10
Note that because invariants are two-way, this example is equivalent to:
a- 10=»>b

For the clock, we need the help of a system supplied object: the system seconds. This is a
simple document (an integer) that represents the number of seconds since the beginning
of 1970; the system updates it each second. We have to build the necessary invariants
between this and our clock:

i mport system secs

cl ock now

now. s secs nod 60

now. m = (secs + 60) nod 60
now. h (secs + 3600) nod 24

This code imports the document secs from the workspace system creates an
instantiation of the type cl ock, and then defines the necessary invariants between the
two. This could alternatively have been written using a compound display:

i mport system secs

cl ock now = cl ock(h: (secs + 3600) nod 24,
m (secs + 60) nod 60,
s: secs nod 60)
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8 Graphics

Graphical objects in Views are treated in the same way as other types of objects. For
instance, an object of type | i ne contains only a number, its length. The fact that it
appears on the screen as a line is purely a presentation issue (an inbuilt system property
in this case). Other attributes, such as position, orientation, or colour are properties of all
graphical types, and not particularly of lines.

For instance, suppose we wish to make a graphical clock. The data type is the same
as the type cl ock we defined above, since the information content is the same; only the
presentation changes:

type gclock = like clock
presented circl ed(conbi ne[ decor; hhand; mhand; shand])

Here we see the use of the function conbi ne; this works like r owand hang, except that it
combines the presentations on top of each other as it were. The function ci r cl ed puts a
circle around any graphic.

The second hand shand can be defines as follows:
shand = line(slength) rotated (s x 6)

for some value of sl engt h. The function | i ne yields a line object as described above;
the function r ot at ed rotates any graphic by the given amount.

The minute hand looks the same:
mhand = line(m ength) rotated (m x 6)

The hour hand is only slightly more complicated, since its rotation should partly depend on
the minutes as well:

hhand = line(hlength) rotated ((h nod 12) x 30 + m + 2)

Finally decor is any decoration we wish to add to the clock.
To make a graphical view of the existing ticking clock, we only have to say:

gcl ock gnow
gnow = now

and on visiting this document, we would see something like Figure 10.

Figure 10.The graphical clock
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9 Two-way invariants

It was mentioned above that invariants are in general two way. At first sight this would
appear to only be possible for invertible functions, and not with functions like ‘mod’ used in
the above example. However, in Views, functions are more generally invertible. Take as
an example, the function of selecting a field of a compound, which is in classical
mathematical terms non-invertible. How this is implemented in Views can be visualised in
Figure 9: if a field is selected from an as yet unset compound, the compound is created
and the other fields are marked as ‘unset’, and the invariant is set up between the field and
its target. If either end of the invariant gets changed, the other end gets changed to match.

21

Figure 11. The invariant selecting a field of a compound.

Now we can use this fact to define ‘mod’. Mod is not invertible, but the function
‘divmod’ which returns a compound of two fields containing the (integral) divisor, and the
modulo is, so the Views ‘mod’ function can be defined as:

function a nod b = (a divnod b).nod
which selects the mod field of the resulting compound.

10 Programs

As mentioned above, Views programs reside in workspaces. However, rather than being
held internally as text objects, the programs are Views objects in themselves. For
instance, an invariant like:

now. s = secs nod 60
is held internally as something like:

i nvari ant (expr(selection(expr(id("now"')), id("s"))),

expr (operator (id("nmod"), expr(id("secs")),
expr(const("60")))))

This is in fact just the ‘abstract syntax’ of the invariant, and the presentation of this object
would then add the ‘concrete syntax’. As an example, the data-type i nvari ant can be
defined as something like:

type invariant = conpound(left: expr, right: expr)

presented rowfleft, " =", right]

This means that the precise details of how Views programs look are unimportant. It
also means that Views programs are ‘translated’ into an executable form (i.e. a network of
invariants) using invariants themselves. In fact, programming in Views is just another
Views application! At the top level there is an invariant that equates the program with the
network of invariants implementing it, as in Figure 12.
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Program ——» Network

Figure 12.Translating a program.

This high-level invariant is of course split up into lower-level invariants. For instance,
consider the translation of a simple identifier “now”. This identifier has to be searched for
in the local ‘environment’ (a collection of named locations), to give the location referred to
(creating it if necessary). This gives the picture in Figure 13.

Figure 13.Translating the identifier ‘now’

A more complicated expression, like a selection such as “now.s” is pictured in
Figure 14. Here there is a new invariant going from the object found, yielding its type,
which is used for the search of the field “s”. This in its turn yields an offset for the true
selection.

Figure 14.Translating the selection ‘now.s’

Finally an invariant such as “now.s = secs mod 60" is presented in Figure 14. You will
notice that there is a strong correspondence between the abstract syntax tree for the
invariant and the corresponding network of invariants, and it should be clear which parts of
the network are linked (by invariants) to which part of the syntax tree.
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now.s = secs mod 60

Figure 15.Translating an invariant

As mentioned, these invariants are for translating parse trees into the network of
invariants implementing the code. Other work has been done (designed but not yet
implemented) for translating the external representation of the parse tree (the
presentation) back into a parse tree using invariants purely based on the presentation
information for the types involved, in other words making the presentation invariants two-
way. This is described in [8].

11 Open architecture

The fact that the whole system is defined in terms of Views objects that are accessible and
changeable means that many aspects of the system which are traditionally hardwired are
tailorable to the user in Views. We have already mentioned the representation of
programs, but such things as menus and shortcuts are also tailorable to the user in Views,
even on the fly.

The reader will have noted that Views is actually an incrementally evaluated functional
system, and that everything visible is just the result of applying functions to objects. In fact
this is true right down to the lowest level. The system has no true concept of the ‘events’
that are present in traditional windowing systems. Within the Views kernel events are just
added to a buffer from which leads an invariant that causes them to be distributed to the
interested parties, by appending them to buffers which in their turn are attached to
invariants. In this way the whole system is just the result of evaluating the effect of all
events that have come in on the initial state of the system. While not everything in the
actual implementation is purely functional (for instance the events are thrown away after
being handled), the non-functional parts can be modelled functionally and the difference
can be seen as optimisation. Further treatment of the low-level use of the Views model
can be found in [9].
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12 Conclusions

Programming for applications in ‘traditional’ windowing environments is difficult and time
consuming. While tools such as graphical and user interface toolboxes, and User
Interface Management Systems can help the programmer, applications remain unwieldy,
and isolated from each other, adding to the problems for the user of the applications. It is
our belief that the problem lies in the degree of abstraction offered by existing windowing
systems; imagine the programming and user problems that would exist if current operating
systems didn't offer hierarchical file stores, but only ways to access the bytes on disks.
Views addresses many of the problems experienced by programmers and users of
existing windowing applications by unifying the approach to applications and using a very
simple yet powerful invariant mechanism widely across the system, yielding very great
gains in programming time and ease of use.
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