
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Modelling interaction tools in the Views architecture

E.D.G. Boeve

Computer Science
�

/Department of Algorithmics and Architecture

CS-R9261 1992

Modelling Interaction T ools in the
Views Architecture

Eddy Boeve

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: Eddy.Boeve@cwi.nl

Abstract

Views is a user-interface system in which the user interface is a layer above
applications, guaranteeing consistency of the interface, and with a data-layer
implementing external object representation, allowing exchange of objects
between applications without loss of structure. Although Views offers an
architecture to deal with user interface aspects on a high level, in this paper it is
shown that also low level interaction can be modelled with the architecture
provided.

1991 Mathematics Subject Classification: 68U99.

1991 CR Categories: H.1.2, H.5.2, D39, H.5.0, I.7.2, D.3.3.

Keywords and Phrases: user interfaces, information interfaces and presentation,
application environments, document preparation, constraint systems, window managers.

V I E W S
The

System

�
Model l ing Interact ion Tools in the Views Archi tecture

1 Introduction
As applications become more complex, the design of their user interfaces tends to
become harder and harder. Brad Myers states in [8] that 60% of the effort of designing a
specific user interface is put in the graphic design part of that interface. Therefore user
interfaces for more complex applications are often created with so-called user interface
management systems (UIMSs). More advanced UIMSs [3, 6, 7] are often provided
themselves with a graphical user interface to manipulate the interaction tools (such as
widgets) on the screen for the application to build: buttons, menus, sliders, text input
boxes, etc. These interaction tools can be positioned and resized by mouse actions. Once
positioned, other attributes can be edited to change colours, fonts and other properties. In
most UIMSs the user interface created in this way is combined with the functionality of the
application and linked with the routines for handling user input and system output for a
specific window system to create the desired application.

This paper describes how basic user interaction in the Views System — as typing
characters, clicking a button, resizing objects, etc.— can be modelled within the Views
system itself. In fact, in the designers (application-builder) point of view there is no need
for a UIMS or a high-level window system interface at all. In Views there is no distinction
between the way the application appears on the screen and the actual functionality of the
application: both are defined — whether interactive or not — within the system itself and
doing this immediately results in a working application.

The first section gives a general overview of the Views System. There follows a
description of the interaction model in Views with some examples of designing interfaces
in Views. Finally, in the last section the conclusions are given and some remaining
research topics are listed.

2 Views
Views [9] attempts to address user interface inconsistency by supplying a framework that
new applications can be added to, guaranteeing a consistent and integrated user-interface
across applications.

From the user’s point of view, Views is a computing environment where all actions are
achieved by editing documents, so that once you have learnt how to use the editor you
can in principle work out how to do everything else.

From the application builder’s point of view, Views is an open-architecture computing
environment, where applications are easily added, the user-interface is guaranteed
consistent across applications, and where user-interface issues are largely absent from
applications1.

Views has a data layer implementing external object representation, allowing
exchange of objects between applications without loss of structure. Each object in the
system has a type, which describes the internal structure of the object, and an external
presentation, be that as text, as some picture, or even some other medium, such as
sound. In general, objects can be viewed in different ways, even simultaneously, for
instance as text in one view, but graphically in another. Structured objects are often called
documents in Views. The presentation of a certain type on the screen is stored in the
type’s style sheet, named presentation object in the Views system.

1. Applications in Views are not applications in the normal sense. Because they all use the same user-interface,
they tend to be more “specialised tasks” then applications.

Views �

The main implementation model is that in general there are invariants (or constraints)
between objects in the system. These invariants state that there is a direct relationship
between the contents of an object and one or more other objects. If an object gets
changed (usually by the user editing it), the invariant goes out-of-date, and has to be
reinstated, which is done by calling a related function: the invariant function. See figure 1
for a diagram showing a simple invariant between three objects.

In contrast with other constraint-based user interface systems (e.g. [5]), Views has no
explicit invariant solver or satisfier to decide which invariants should be satisfied, which
rules should be used to satisfy each invariant and in what order the rules should be
invoked to satisfy the invariants. Views uses local propagation to propagate changes
through the invariant network and outdated invaraints are queued for recalculation. In
principle, all invariants work two-way.

For all clearness, Views is not a UIMS, but is an environment in which the designer
can develop and prototype new applications. The system will take care of the user
interface layer and the data layer of the application under construction (see figure 2).

New applications can be easily added to the system and have a consistent user
interface with respect to the other applications already in the system and the system itself.
Because of the generic data layer it is easy to import objects defined by already existing
applications into a newly created application.

In figure 3 we see a schematic presentation of the system. The dark shaded rectangle
represents the plain Views System. User input events and screen output are handled by
the so called canvas layer. This is a low level interaction level, implementing primitives for

Figure 1: Three objects (A, B and C) connected with the invariant “A + B = C”.

Figure 2: Applications under the V iews system.

20

10

10

invariant
function

A

B

C

+

20

30

10

User Interface Layer

Application
1

Data Layer

Application
2

Application
3

User Interface Layer

Application
1

Data Layer

Application
2

Application
3

�
Model l ing Interact ion Tools in the Views Archi tecture

graphical screen manipulations and handling raw key and mouse input events. The high
level interaction layer is implemented in Views, using a special type of interaction tool: the
interactor.

3 Interaction in Views
The interaction tools found in other UIMSs can be stripped down in the Views system to
more basic Views objects. One or more of these objects, possibly connected with invariant
functions and fulfilling a specialised task (e.g. a menu, a button or a slider), is called an
interactor . In figure 4 an example of such an interactor is given. The application this
interactor belongs to has one internal object whose value can be toggled between the
values one and zero by an OK-button.

An interactor can be seen as the interaction part of an application (see figure 5). Users
can interact with the interactor by direct manipulation: by clicking, typing, dragging, etc. In
general we distinguish three aspects:

♦ user interaction

♦ application interaction

♦ presentation

Figure 3: The Views system modules.

Figure 4: An example application with one internal object, whose value is
controlled by a button.

OBJECT SERVER

user
screen
output

input

EVENT
LAYER

CANVAS
LAYER

E
D

IT
O

R
D

IS
P

LA
Y

INTERPRETER

INVARIANTS

OBJECTS

0

Screen

System
interactor

1

interactor

Object

OKOK OK

Interact ion in Views �

The user is interacting with the presentation of an interactor, i.e. the image Views presents
the user on the screen, depending on an internal layout description of the object (in the
object’s presentation document). The interactor converts events into commands for the
application.

User interaction
When interacting with the system, the user will generate events. In general, events in the
Views system are asynchronously generated by the user via keyboard and mouse input.
An image of an event containing all relevant information of the event, is called an event
record. Relevant information would be for example the key code of the character typed,
the mouse pointer location or a modifier key code (shift, alt, control, etc.) at the moment
the mouse button is depressed. Beside the user generated events, there are some system
event sources in Views: the system timer for instance can generate timer events for timing
purposes.

In the Views interaction model, interactive input is presented to the system by the
canvas layer. It provides the system with a stream of mouse and keyboard events. There
is one central event record queue in the system and entering an event record in this
queue will trigger other actions. In figure 6 we see the event record queue and a invariant
Process Event Records between the event record queue and the queues containing a
subset of the incoming input events.

The invariant function is a kind of arbitrator, filtering out the event records in this
central queue into different objects in the queue document . For instance, the mouse-
move event records are used to put the current mouse pointer position in the Mouse

Figure 5: The flow of actions and commands between the interactor , the
application and the user .

Figure 6: The main Event Record Queue.

Presentation
Documentinteractor

Application

user actions

commands

Presentation
Document

application
actions

interactor

Application

Event Record Queue Process
Event

Events entered

Queue Document

Canvas Layer

Records

X Y

Keyboard

Mouse Position

Daemon Queue

Mouse Queue

�
Model l ing Interact ion Tools in the Views Archi tecture

Position object. But this is not enough: there are applications that are not only interested in
the most recent mouse position, but also in the mouse track. They can not use this mouse
position object because its value is overwritten during successive mouse movements.
Therefore all mouse events are also entered by the arbitrator invariant in the Mouse
Queue. Timer events are stored in the Daemon Queue. Applications that need regular
impulses to work (like the Views clock) can link themselves to this queue.

The Process Event Records invariant divides the event queue into some sub-sets of
its contents. Because memory is a limited resource, the items in the Event Record Queue
are copied into one of the Queue Document queues and then deleted from the Event
Record Queue. We still regard this as a invariant, although in the pure sense of the word,
it is not.

In general, events stored in one of the queues in the Queue Document are converted
to commands for the application by a lookup invariant (see figure 7). Events in the queue
are looked up in the Command Table belonging to the application the queue is for. The
Command Table contains “event — command” pairs and the command corresponding
with the event is inserted in the Command Queue for the application.

To support multi-key codes (like the sequence of characters generated by an arrow
key on certain keyboards) and modifier keys (like shift and control keys) certain events in
the Command Table can be references to a sub-table, containing entries for possible
completions for an event sequence.

In general, executing a command in the Command Table belonging to a user action is
nothing more than triggering the invariants bound to the application.

Application interaction
The application can influence the behaviour of the interactor by changing fields in the
object’s Presentation Document. It can, for instance, enable or disable a button or menu
entry and change the interactor’s screen presentation.

Interactor presentation
Like other objects in Views, the presentation of an interactor depends on its Presentation
Document. This document describes (amongst others):

♦ the shape of the interactor

♦ the interactor’s position on the screen

♦ choices for different presentations (an enabled, disabled or a hidden shape)

See [1] for an extensive description of the graphical aspects of objects in Views.

Figure 7: Event Handling.

Command
Table

Lookup
 Event

Command
Table

Event Queue

Queue Document

Application

Using interactors �

4 Using interactors
The designer using Views to build an application is offered a toolkit with high-level
interactors, built from low-level interactors with standard presentation and interaction
styles. The reason for this is consistency. By already filling in major parts of the Command
Tables, interactors are always presented in a consistent way and they always react in a
consistent way: the “look and feel” of an interactor is similar within one and across other
applications within the system.

How can the designer use the interactors in the application she is building? There are
two major ways of defining interactors in Views: with direct manipulation and by a
specification language. The direct manipulation method is functionally the same as in
other well-known UIMSs: interactors can be chosen from a toolkit, positioned somewhere
in the application area on the screen, resized, etc. The values the interactors are
controlling can be named by the designer and used in the applications she is creating. In
the second method the designer uses the underlying specification language of an
interactor.

In the next two paragraphs two simple, but complete applications under Views are
shown to demonstrate this: converting degrees Celsius to Fahrenheit and vice-versa, and
a bar graph application.

In the last two paragraphs examples are given of how to use the Queue Document.

The specification language presented in the examples shows only a possible form of
the syntax of this language. The language has not been fully worked out yet and will
probably change in notation and structure in the future.

Converting degrees Celsius to Fahrenheit
The application will appear to the user as in figure 8: she can either drag the thermometer
leveller to the desired position or edit the value in the box.

The application will show out to be quite simple, because in Views the functional
behaviour of the application and its appearance on the screen are strictly separated. If we
name the application Temps, the specification language could look like:

C_F_thermometer Temps

Temps.C = Convert(Temps.F)

function Convert(F) = C
where C = (F - 32) * 5/9

Figure 8: An application under V iews: conversion from degrees Celsius to
degrees Fahrenheit.

100 50 0 -50
0 oC oC

100 50 0 -50
32 oF oF

�
Model l ing Interact ion Tools in the Views Archi tecture

Now we have to specify the presentation of the objects on the screen. We remark that
both the numeric temperature value and the graphical value are in fact the same object,
but with different presentations:

type C_F_thermometer(T) = compound (int C, int F)
presented

hang(Celsius(T.C), Fahrenheit(T.F))

type Celsius(C) = like int
presented

row(boxed(unit(C, “ oC”)), therm(C, “ oC”))

type Fahrenheit(F) = like int
presented

row(boxed(unit(F, “ oF”)), therm(F, “ oF”))

In the code, keywords are underlined. Hang and row are functions that distribute
objects given as parameters vertically and horizontally, boxed displays its parameters in a
rectangle and unit and therm are pre-defined valuators to display continuous values
respectively numerically and graphically.

Type information is specified with the “ <object> <type> ” construction. In more
complex type definitions there will also be information about the presentation of the type
when selected, disabled, etc.

A bar graph
In figure 9 we see a bar graph presentation of the sales figures of an item in four
successive periods.

If we name the application Sales , the application language could look like:

tablegraph Sales
Sales = { 100; 300; 200; 50 }

type tablegraph(list) = sequence int
presented

row(table(“Sales”, list),
bar(list))

Figure 9: A spread sheet-like application under V iews.

Sales

100
300
200
50

Using interactors �

type table(T) = compound (string title, sequence int list)
presented

boxed hang(T.title, hang(T.list))

type bar(list) = sequence int
presented

width = 1
row(f illed(box(width , ∇)) * list))

As mentioned before, the specification language is a functionally oriented language.
Operators found in other functional programming languages, like the map (*) and reduce
(/) operators, are available (see also [10] and [2]).

The map operator applies a function to each element of a list of objects:

squared * [1, 2, 3, 4] = [1, 4, 9, 16]

Because squared is defined as a function that takes one number and returns the square
of the number, we could write the latter also as:

squared(∇) * [1, 2, 3, 4]
= [squared(1),squared(2),squared(3),squared(4)] =
= [1, 4, 9, 16]

where ∇ takes subsequently one of the numbers of the list as input.

The reduce operator also takes a list of objects and a function and inserts the
function between every elements of the list:

+ / [1, 2, 3, 4] = 1 + 2 + 3 + 4 = 10

The function box takes two parameters, width and height, and draws a box of that
size. In our example, the height variable is taken from the number list. The f illed
function fills the graphical object it is applied to.

Mouse position
The invariant function processing the event records will update the mouse position object
in the Queue Document at every mouse movement (as we saw in figure 6). This global
position can be converted to a local position for an object on the screen with a simple
invariant. For instance, in figure 10 the local mouse position object (X1,Y1) of a window is
connected to the global mouse position (X,Y).

The mechanism for converting global positions to local ones is used so often in the
Views system, that we will name the construction in figure 10 a locator.

Window queues
Events in a queue in the Queue Document have to be directed to the application they
belong to. To simplify the distribution of events, the event stream is first split over the
windows in the system. Once a window has been created, there is an event queue related
with the window: the window queue. The events in the window queue are further split up
into queues for the different applications in the window.

	�

Model l ing Interact ion Tools in the Views Archi tecture

One way to obtain the correct division between windows, is labelling event records
with the current mouse position at the moment the event occurred. With help of a locator,
the events can then be directed to the window where the mouse pointer is located. But this
is not always correct: for instance, in a “click to type” window environment, there is a
notion of a current window and even if the mouse is located outside the window, events
are still generated for the active window.

To overcome this problem, we introduce active window queues. Events that cannot
directly be related to a certain position on the screen (like keyboard events) are always
directed to the queue of the active window. The window manager application can decide
how a window can be made active, e.g. by single clicking in the title bar of the window or
by entering the mouse into the window area.

Within one window, events are directed to the interactor they belong to (depending on
the mouse position). As with windows, there will be an active interactor queue for events
without mouse position information.

5 Conclusions and research topics
Designers of user interfaces will profit considerably of the Views system, where the design
of a new application — both the functionality as well as the user interface — takes place
on a high level, allowing a pure top-down design process. Although there are more user-
interface design tools that allow top-down design of the user-interface within one unified
tool (see for instance [4]), defining the applications within the system itself has big
advantages above separate user interface management tools.

On a lower level, interactors in Views offers the designer a powerful method to build
complex interaction tools. The designer of an user interface can choose one of the
available interactors and, if necessary, combine them to more complex structures.
Presentations and behaviour of interactors can be changed to fully agree with the desires
of the designer and the user.

The mechanisms used by the interactors — objects and invariants — fits naturally in
the Views approach. This will result in a system where every aspect of the interface can be
manipulated in a consistent way and the interface with the out-side world (for instance the
canvas layer and the keyboard) can be kept as small as possible.

 The exact way the designer uses direct manipulation or the specification language to
handle interactors has to be worked out more in detail. With regard to the specification
language, we see the following research topics:

Figure 10: Converting a global mouse position to a local one.

X Y

X1 Y1

x1 y1X Y

Global mouse

position

X1 Y1

x1 y1

in window

Local mouse position

Window’s

global position
invariantsSubtract

Acknowledgements
	�	

♦ How to design an easy to learn, but nevertheless powerful specification
language?

♦ What should the primitives of the language be? (e.g. pile , row)

♦ Which library functions should be accessible to the designer? (e.g. box , slider ,
button)

♦ How can the specification language be translated into Views structures?

Direct manipulation asopects raises other research questions:

♦ How should the interaction model be defined? For instance, how should the
actions followed by dragging a document icon onto the printer icon be modelled?

♦ Can the direct manipulation model be described in the same specification
language as used for describing interactors and presentations?

6 Acknowledgements
Thanks to Steven Pemberton, Lambert Meertens, Lon Barfield, Guido van Rossum and
Dirk Soede for their comments on earlier drafts of this article.

7 References
[1] Lon Barfield. Graphics in the Views System. CWI Report CS-R9260, CWI,

Amsterdam, December 1992.

[2] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice
Hall International (UK) Ltd., 1988.

[3] Jan van den Bosch and Chris Laffra. Project Digis: Building Interactive Applications
by Direct Manipulation. Computer Graphics Forum, vol. 9, pages 181—193.

[4] Andy Holyer. Top-Down Object-Based User Interface Definition and Design
Paradigms. In Proceedings of East-West International Conference on Human-
Computer Interaction '92, pages 421—428, August 1992, St.-Petersburg, Russia.

[5] John Maloney. Alan Borning and Bjorn Freeman-Benson. Constraint Technology for
User-Interface Construction in Thinglab II. In Proceedings of ACM Conference on
Object-Oriented Programming Systems, Languages and Applications, pages 381—
388, October 1989.

[6] Brad A. Meyers. Creating User Interfaces Using Programming by Example, Visual
Programming, and Constraints. ACM Transactions on Programming Languages and
Systems, vol. 12, no. 2, April 1990, pages 143—177.

[7] Brad A. Meyers et al.. Garnet — Comprehensive Support for Graphical, Highly
Interactive User Interfaces. Computer, November 1990.

[8] Brad A. Meyers. User Interface Tools: Introduction and Survey. IEEE Software,
January 1989.

[9] Steven Pemberton. Views: An Open-Architecture User-Interface System. In
Proceedings “Interacting with Computers: Preparing for the Nineties”,
Noordwijkerhout, December 1990.

[10] David A. Turner, editor. An Overview of Miranda. Addison-Wesley Publishing
Company, pages 1—16, 1990.

