Maintaining presentation invariants in the Views system

J. Ganzevoort
Computer Science/Department of Algorithmics and Architecture

CS-R9262 1992

Maintaining Presentation
Invariants in
the Views System

Job Ganzevoort

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: Job.Ganzevoort@cwi.nl

Abstract

The Views system is an open application integration environment, in which the
data layer and user interface layer are supplied by the system. Objects in this
environment can be linked through invariants; when the value of either of the
objects changes, the others is updated to match the invariant.

The invariant mechanism is also used for the presentations of objects on screen.
If an object changes, the presentation is updated, but also the inverse should be
true: if the presentation changes, eg. by an edit action, the structure of the object
should be updated incrementally to match the presentation.

In this report, an incremental implementation of some functional list operators
(map, reduce, filter) is presented, and then, using these operators, a general
parsing algorithm is described. The resulting parser is therefore automatically
incremental, without any attention being paid to incrementality in the algorithm.

The
VIEWS

L Sgem

1991 Mathematics Subject Classification: 68N15, 68Q50.
1991 CR Categories: H.1.2,H.5.2, D39, D.3.4, F4.2, F.3.1., 1.1.3.

Keywords and Phrases: user interfaces, ergonomics of computer software, constraint
systems, parsing, incrmental techniques.

2 Maintaining Presentation Invariants in the Views System

Contents

1 Introduction 5
1.1 Software ergonomics 5
1.2 New trends in user interfaces 6
1.3 The VIEWS system 7

1.3.1 The conceptual framework 7

2 Presentation invariants 11
2.1 Tree restructuring 12
2.2 Design of presentation invariants 13

3 Incremental List Operators 15
3.1 Listsoperators 15

311 Map 15
3.1.2 Filter.o 16
313 Reduce. 16
3.2 Implementing the list operators 17
3.2.1 Sorting L 17
3.2.2 The Structure Watcher 18
3.23 Map 19
324 Reduce. 20
325 Filter. 22

4 Parsing 25

4.1 Mapping types on grammars 25
4.1.1 Presentations 25
4.1.2 Creating the grammar 27
4.1.3 'Translating a parse tree to an object value 28
4.14 Example 29

4.2 Incremental lexical analysis 29

4.3 Parsing strategies 0oL 32

4.4 The VIEWS parser 33
4.4.1 'The parser’s operation 35
4.4.2 Parsingexample. 36

4.4.3 Local ambiguity packing
4.44 Lookahead example
4.4.5 Handling e-productions
4.4.6 FError recovery
4.4.7 Locality of changes
4.5 Parsing structures L.
4.5.1 Parsing graphical objects

4.5.2 Parsing combined presentations

5 Conclusions

5.1 General observations
5.2 Current Situation

Bibliography

CONTENTS

Chapter 1

Introduction

1.1 Software ergonomics

The research in software ergonomics has provided many valuable in-
sights concerning factors that influence the productivity in the use of
software. In particular, the research has concentrated on the cognitive
ergonomic aspects of the user interface (or human-computer interface).
One of the lessons learned is that human beings are quite varied in
skills. Many user interfaces are unsatisfactory because they are too
narrow: they require a certain fixed combination of skills and allow no
substitution.

Vital to a good human interface is a human-oriented task analysis.
A substantial part of this analysis can be made relatively domain-
independent, and thus it is possible to obtain generally valid insights
on the design of user interfaces.

Looking at typical present-day products, we find the following kinds of
ergonomical shortcomings:

Lack of integration To obtain the desired results, end users often
have to combine the working of several applications, that each
define their own data format. Once the data of one application
is imported into another, it is fixed, and can only be updated by
re-importing the changed data, instead of changing it in situ.

Inconsistency & mode confusion When working with interactive
programs, users often have to switch context. For example, a user
working in the shell starts a news-reading program, replies to an
article, so the mail program is started which runs an edit session
to create the letter: Four different user interfaces in quick succes-
sion. This requires not only knowledge about all these modes, but
also at all times awareness of the current application and mode,
which is a high cognitive load, and thus a source of errors.

6 CHAPTER 1. INTRODUCTION

Inflexibility

Arcaneness The exact form of formats required for commands or
functions that are not regularly used are often such that it is
impossible to remember them when needed, so they have to be
dug up from the manuals.

The “Swiss army knife” syndrome Many applications package a
number of functions, like, for electronic mail, finding a letter (re-
trieval), archiving it (storing), composing a letter (editing), etc.
Such functions are in fact emasculated versions of much more gen-
eral functions, applied to one specific context. This can lead to
duplication of functionality, inconsistency, and the overall com-
plexity of the user interface.

1.2 New trends in user interfaces

The new trends in user interfaces are the result of the attempts of
software designers to overcome some of the problems mentioned above.

WYSIWYG: The term WYSIWYG (What You See Is What You
Get) is usually applied to text formatting systems in which a text
being edited appears on the screen as it will appear when printed

in hardcopy form. This provides the user with an immediate
feedback.

Direct Manipulation Rather than giving commands in some more
or less arcane command language, the user ‘directly executes’, for
example, the printing of a document by dragging its icon to the
icon of the printer. To the user, it is psychologically the same as
the real physical execution. There is much less chance of making
an error in phrasing the command and the user gets explicit visual
clues on how to express the action.

Integrated Information Systems An information system is called
integrated if it presents itself to the end user as a collection of
functions and tools that are able to cooperate smoothly and that
can be handled by the user in an uniform way.

Open System Architectures Open systems give the vendors a big-
ger potential market, while offering the user more choice and less
vendor dependence. It holds the promise that the kind of inte-
gration that is needed can be achieved not only within a single
system, but also without much additional effort for whole net-
works.

1.3. THE VIEWS SYSTEM 7

Object Oriented and Object Centered Programming The cou-
pling of operations relating to objects to the objects themselves
has made it far easier to specify and build flexible environments.
For example, there is then no need to provide a print capability
that is able, once and for all, to print all conceivable documents,
which would effectively limit the set of available types of docu-
ments. An application designer introducing a new kind of docu-
ment has, instead, to specify what it means for such a document
to be ‘printed’. In combination with an open architecture, this
means a large increase in the flexibility of systems. A step be-
yond this is the new paradigm of object-centered programming, in
which objects are no longer necessarily passive most of the time.
The functionality of the system then results from the interplay of
the objects.

1.3 The VIEWS system

VIEWS addresses these problems by supplying a framework that new
applications can be added to, offering a consistent and integrated user-
interface across applications [9]. The best way to achieve conceptual
simplicity in software systems design is to use the power of mathemati-
cal abstraction in the design and description of the underlying concepts.
The rest of this chapter is an informal description of the conceptual
framework, of which the implementation model is most important for
the understanding of this report.

1.3.1 The conceptual framework

For the purpose of this exposition, the terms ‘document’, ‘object’ and
‘form’ will be used interchangeably. The difference is one in emphasis.
The term ‘document’ is most appropriate if we keep the user’s logical
view of certain data kept in the system in mind. The term ‘form’ is most
appropriate if we want to stress the external appearance of a certain
kind of documents. The term ‘object’ emphasizes a prolonged identity
in time during which the value (contents) of an object may change.

The conceptual framework is now simply that the system consists of
a collection of objects that are linked by certain ‘logical’ relationships
that hold between their values. This may be described in mathemat-
ical terms as a graph or network whose nodes are objects and whose
edges are the links connecting objects. Objects may be atomic, but
also structured (composed of other objects). In the course of time, new
objects and relationships may be created or deleted. There are ‘au-

8 CHAPTER 1. INTRODUCTION

tonomous agents’ that may cause objects to change. The user, editing
a form, is such an agent, but other agents may, for example, be the
clock, or the mail delivery subsystem.

Such a change may, for a fleeting instant, invalidate some of the re-
lationships linking this object to other objects. However, there are
‘daemons’ guarding these relationships, and whenever the validity of
one is impaired, they intercede and restore it by also changing the ob-
ject at the other object of the link. This may, in turn, invalidate other
relationships, which then will also be restored. Thus, a single change
may in principle trigger a cascade of changes throughout the network of
linked objects, so that the ‘events’ generated by the autonomous agents
drive the semantics of the system.

The data model

VIEWS supplies a data-layer to applications. VIEWS objects are struc-
tured, thus containing other objects, and consist only of ‘content-full’
parts: they contain no detail of formatting or other presentation in-
formation, which is added by a separate process when objects are dis-
played. Each object has a type, which describing the internal structure
of the object, and it’s external presentation. Any application may im-
port objects from other applications without losing information about
their structure and without having to know about files or external stor-
age. The distinction between applications then blurs. For instance, if
the user pastes a graphical object into a text document, the graphics is
presented in the same way, and is editable in the same way, as before.

Separ ate applications

User interface

Application 3 Truefunctionality

Data access

Applicationsin Views

‘ User interface layer ‘

‘ Application 1 H Application 2 H Application 3 ‘

‘ Persistent data layer ‘

Rather than requiring each application to define its
own data-formats, file I/O and user interface, VIEWS
supplies a data layer and a user interface layer. The
application is only concerned about its true function-
ality.

1.3. THE VIEWS SYSTEM 9

The user’s conceptual model

The basic model in VIEWS is: every object in the system is editable,
every action is carried out by editing, and you edit the object directly.
There is a generic editor which knows about the structure of objects,
and allows the user to edit all objects in the same way, regardless of
how they are presented.

Implementation model

Types FEach object in VIEWS has a type. Types can be primitive,
such as numeric and boolean types, or composed from other types using
the following type constructors:

e An object of type choice (a1, @y, . . ., a,) can be of any of the types
a1,09,...,0n,.

e An object of type compound (f; : ay, fo: ao, ..., fr: @,)is an n-
tuple, where field ¢ has name f; and type a;. 7y applied to a
compound c selects the field c.f.

e The type sequence(«) is the type of lists of elements of type «.

e An object of type reference(a) is a pointer to an object of type
a.

Invariants Objects are linked by invariants, that specify the relations
that must hold between objects. A link is a vector from some objects
Z1...ZT, to some other objects y; ...y,, labeled with an update opera-
tion. If any of the objects z; . ..z, is changed, the link is outdated, and
at some later instant, the update operation is executed, which updates
the values of y; ... y,.

The invariant y = fx can be implemented by the two links ¥y = fz and
r = f~'y, which generates the bidirectional behavior.

Functions A function can be built-in or generated from other func-
tions. One method of generating a new function is currying; If f is
a function taking two arguments, (fz) is a function in one argument.
Applying this function to y is equivalent to applying f to x and y. For
example, (+1) is the increment function. Functions in VIEWS can be
partially parameterized, where the omitted arguments of the functions
are denoted by the symbol 0. Currying can be expressed using partial
parameterization: (curryfz) = f(x,0), where f has type a x 3 — v, z
has type «, and f(z,0) has type 5 — 7.

10 CHAPTER 1. INTRODUCTION

Sharers In some cases, it is useful to distinguish between the ob-
ject and its contents. The contents can be shared with other objects,
guaranteeing the sharers’ values to be equal. This may be regarded as
multiple instances of the same object, or as an optimization of equal-
ity links. Some details of the implementation, especially of the filter-
invariant (see 3.2.5), rely on the concept of sharers.

Chapter 2

Presentation invariants

Each object in the VIEWS system has a type, which describes the in-
ternal structure of the object, and its external presentation. When
an object is displayed, the description of its external presentation is
accessed and used to determine how the object should look. The in-
variant mechanism is used very generally throughout the system, so
that presenting objects on the screen is done by the application of the
invariant “The presentation on the screen matches the object”: if the
object changes, then the screen gets updated.

Object
Presentation
description

Presentation of documents on the screen is done us-
ing the invariant mechanism. When a document is
‘visited’, a new presentation object is created, linked
by an invariant to the object to be visited and the
description of how the object should be displayed.

The type of a clock might be:

Type clock = compound(h: hours, m: minutes, s: seconds)
presented row[h, ":", m, ":",]

What follows the word presented is any expression yielding a ‘presen-
tation’; in this case, the function row takes a list of objects and their
presentations, and joins them together horizontally. So a clock might
look like ‘12:21:30°, depending on the presentation of hours, minutes
and seconds.

Even though the presentation of an object is conceptualized as a sin-
gle invariant between object and presentation, the system can actually

11

12 CHAPTER 2. PRESENTATION INVARIANTS

break them down into lower-level invariants, which has an extra advan-
tage of automatic screen update optimization: if only the seconds field
changes, only the seconds part of the presentation needs to be updated.
In the editor, a mixed style between free textual editing and rigid syntax
directed editing is desired. That means that it in some situations, it
should also be possible to focus on an object’s presentation, allowing
the text to be edited. In some situations, the user’s conceptual model
of the object relates to the appearance of his document, rather than to
the structure. An expression displayed as 2 + 3 * 5 may be regarded
as linear (presentation) rather than hierarchical (structure). In a word
processor, where words are separated by spaces, a user might select a
space and remove it, in order to concatenate two words. In these cases,
it should be possible to move the focus through the presentation of
the object. Selecting an object’s presentation is not always meaningful
however (see [4, ch.3]).

The presentation invariant thus needs to work two-way; the presenta-
tion should be updated whenever the object changes, but if the pre-
sentation is edited, the contents of the object should be updated to
match that presentation. The presentation invariant thus needs to be
composed of the functions, one that generates a presentation for an
object, and the inverse function that generates an object value given
the presentation.

2.1 Tree restructuring

As an example of the kind of problems expected for the presentation
invariants, the following problem is investigated: If a user is editing an
expression, a parse tree will be maintained. For a + b + ¢ that would
be the tree ((a+b)+c¢). If the second operator is changed into a *, the
expression’s presentation will be a + b* ¢ and the parse tree ((a+b) *c)
would not match the presentation. This problem can be solved by two
totally different approaches:

1. Assume the parse tree is correct, and use brackets where neces-
sary in the presentation. This solution is chosen in more classical
syntax-directed editors, eg. the editors generated by the Synthe-
sizer Generator [11].

2. Assume the presentation is correct and adjust the parse tree. We
believe this fits better in the VIEWS model, since the parse tree
is a function of the presentation and vice versa. Therefore, this
approach is preferred.

2.2. DESIGN OF PRESENTATION INVARIANTS 13

An experiment was used to clarify the expected behavior: An invariant
was created between the operators, with knowledge of the precedences,
that can restructure ((a +b) * ¢) to (a + (b*¢)) as in:

2 1

AT

Operator tree restructuring

Based on the grammar given below, an expression was created, which
was displayed both structurally as (34 (5%7)) and flattened as 3+5x7.
Changing the operators in the flattened display had the desired effect
of restructuring the parse tree.

Exp — Exp Op Exp | (Exp) | Num
Op —+|-[x*]/
Expression grammar

2.2 Design of presentation invariants

Two approaches to the design of presentation functions and the in-
verse were recognized. These approaches are not totally different, but
represent different viewpoints that should be integrated.

Structure-directed presentation To construct the presentation of
an object, the presentations of the sub-objects are glued together.
As an example, the map operator (see 3.1.1) on lists applies a
function to all elements of the list. This can be used to merge
the presentations to all of the elements to form the presentation
of the entire list. In this approach, generally applicable strategies
to update the structure of the object if the presentation changes,
as for example the tree restructuring above, are needed. One way
to generalize the method of this example is to create mechanisms
(for example structure watchers, see 3.2.2 and 5) to guard the
restrictions imposed on a structure.

Parsing The inverse process of the presentation is parsing, to which
all of chapter 4 is devoted. Parsing graphical presentations of ob-
jects is hard though. Therefore, the structure of the presentation
should resemble the structure of the object, hinting the parser

14

CHAPTER 2. PRESENTATION INVARIANTS

how to (re)construct an object from the presentation. Section 4.5
elaborates on this, and related problems.

Chapter 3

Incremental List Operators

Expressions in a functional language can be constructed, manipulated
and reasoned about, like any other kind of mathematical expression,
using more or less familiar algebraic laws. This provides a concep-
tual framework for programming which is simple, concise, flexible and
powerful. For an introduction to functional programming, see [3]. A
textbook on the implementation of functional languages is [6].

Lists are finite sequences of values of the same type. We use the nota-
tion [«] to describe the type of lists whose elements have type «. Lists
will be denoted using square brackets; for example [1,2,1] is a list of
three numbers. The notation used is adopted from [2].

In this chapter, three useful operations on lists are introduced, followed
by their implementations. These operations will be used very generally
in the presentation invariants. A vital aspect of the implementation
of the operators is that they work in an incremental manner; a slight
change in the input list should update the result, and the costs of the
updates should be minimal. For example, the map operator can be
used to build the presentation of a list from the presentations of the
elements. If one element changes, only the presentation of that element
has to be updated, and not for the entire list.

3.1 Lists operators

3.1.1 Map

The operator * (pronounced “map”) takes a function and yields a func-
tion that operates on each element of a list. We have

f*[alya’%"')a’n] = [fa’hfa?:"':fan]

15

16 CHAPTER 3. INCREMENTAL LIST OPERATORS

The type of * is given by

1 (a— f) = [o] = [F]

3.1.2 Filter

The operator < (pronounced “filter”) takes a predicate p and returns a
function that selects all elements of a list that satisfy p. For example,

prime<[1..10] = [2,3,5, 7]
The type of < is given by

4: (a0 — Boolean) — [a] — [a]

3.1.3 Reduce

The operator / (pronounced “reduce”) takes an operator & and yields a
function that works on a list. Its effect is to insert & between adjacent
elements of the list. Thus:

®/[ar,a2,...,a,] =a1 Bas®---ay,

For the right-hand side of this equation to be unambiguous in the ab-
sence of brackets, the operator & must be associative. In fact, the form
@®/z is only permitted when @ is associative, so the grouping of terms
on the right is irrelevant.

For a singleton list [a], we have from the informal description of &/ that
@®/[a] = a. For the empty list, if @ has an identity element e, ®/[] = ¢;
otherwise @/[] is not defined. This means that +/[] =0, x/[] = 1, but
1 /[] is undefined. This preserves the law

®/(zHy) = (8/z)® (S/y)

The symbol H is the concatenation operator: [a;..a,] H [b1..b,] =
[a1..a,, by1..b,].
The type of / is given by

[(axa—a)—[a] =«
Thus, in the combination &/z, the operator @& has a type of the form

axa — « and z has a type of the form [a]. The combination will then
have type a.

3.2. IMPLEMENTING THE LIST OPERATORS 17

Reduce variants The ‘left reduce’ & -.[a1, as,. .., ay], which eval-
uates (((e®@ay) @ az) - @ a,), and ‘right reduce’ & < [a1,as, ..., a,)],
which evaluates (a1 @ (as @ --- (a, ® €))), can be used if the operator
@ is not associative. These have the types:

+:B8—=Bxa—p)—a]=p
F:B—=(axB—p)—a]=p

In @ 4.z, the unit e has type [, the operator @ has type (6 x a — 3),
z has type [a] and the result has type [.

The reduce operators can be used very generally to express some form
of iteration, where the order is (-4, <) or is not (/) relevant. For
example, the special symbol Y corresponds to +/, as in:

> fi=+/f % (1)

3.2 Implementing the list operators

The list operators were implemented using the invariant mechanism.
This implied that an application can impose an invariant structure on
the sequence, which may have to be adjusted as a side-effect of inserting
an element into the sequence, or removing one from it. This can be
demonstrated with a simple bubble-sort application.

3.2.1 Sorting

A sequence of integers was sorted by joining each two consecutive el-
ements with an invariant x < y. If the invariant is invalidated, it is
restored by swapping x and .

SISISIS
HEER00

Bubblesort approach to sorting

This solution sorted the sequence, but when an element is inserted into
the sequence, two invariants have to be created and one deleted. For
deletes the inverse is needed.

18 CHAPTER 3. INCREMENTAL LIST OPERATORS

Restructuring the sort-links

This was solved by using a structure watcher (see next section). The
side-effect of an insertion into, or removal from the sequence should be
the restructuring of the invariants.

3.2.2 The Structure Watcher

The structure watcher is an aid to the application to maintain the
invariant structure imposed on a sequence.

Design principles

The solution chosen was to define the structure watcher as a mechanism
for attaching two callback-functions to a sequence. Whenever an ele-
ment is inserted into, or removed from the sequence, the corresponding
function is called. The update and the following callback function call
form an atomic action. The application’s callback-functions are respon-
sible for adjusting the invariant structure. Using this philosophy, the
structure watcher need not have any knowledge of the actual structure
the application imposes on the sequence.

Implementation

The structure watcher is an administrative link between the sequence,
a compound of two function objects, and an Info object. The sequence-
update operations search for a structure watcher link, and call the insert
or remove callback-function with the inserted or removed child and the
Info object as parameters. The insert callback-function is called after
the update, whereas remove callback-function is called before, thereby
making the siblings and parent available to the callback-function, since
they may be needed in the restructuring.

The Info object can be of any type. It can be used by the update
functions for any extra context information needed. Since in general,
the Info object is not visible, it is not necessary to react to changes
made to it by the user’s editing.

3.2. IMPLEMENTING THE LIST OPERATORS 19

Structure
Watcher Seguence
1 2 3 4 5
Functions Info
| nsert Hook
RenoveHook
The structure watcher link
3.2.3 Map

If the invariant ¥ = f % X is created, then any subsequent change
in either X or Y should affect the other to re-establish the invariant
incrementally. For the sake of discussion, let’s specify that X = [1, 3, 5]
and Y = (x2)* X, so Y will be the list [2,6,10]. Two types of changes
can be distinguished:

Contents changes If an element is changed, the corresponding ele-
ment in the other should be updated to match. Changing the 3 in X
to 4 should change the 6 in Y to 8. Note that invariants are two-way,
so changing 10 in Y to 100 should change 5 in X to 50. This type of
changes can be catered for incrementally by creating, for each pair of
corresponding elements, the invariant y; = 2 X x;.

Structural changes If an element is removed from, or inserted into
either X or Y, the corresponding element in the other sequence should
also be removed or inserted: deleting 1 from X should remove 2 from
Y. Appending 8 to Y should append 4 to X. These changes are best
handled with the help of a structure watcher.

Implementation

For the implementation of the invariant Y = f % X, structure watchers
are attached to both X and Y. The information object Info used by
the callback-functions contains the function object f, and references to
X and Y. For each pair (z;,y;) the invariant y; = fx; is maintained.
The Info object and the callback-functions are shared by the structure
watchers. In the following description, it is assumed, without loss of
generality that the removed or inserted element is x;, an element of X.
Its left and right siblings are x;—; and x;4;.

20 CHAPTER 3. INCREMENTAL LIST OPERATORS

Structure

Watcher
1 2 3 4 5
| nsert Hook %2
RenpveHook()
2 4 6 8 || 10
Structure
Watcher

Map implementation

RemoveHook (z;, Info) This is the removal callback-function for the
sequences. It locates the corresponding element y; in the other
sequence by looking at the invariants of z;, deletes the invariant
and then removes y;. If y; cannot be found, that must be because
removing y,; induced removing z;, so no more work needs to be
done.

InsertHook (x;, Info) This is the insertion callback-function. It identi-
fies the corresponding elements y;_; and y;y1 of its siblings. If
these are siblings, the corresponding element y; is created and in-
serted between y;_; and y;11. If these are not siblings, the element
between them has to be y;.

If z; is the first element of the sequence, v, is expected to be the
first of the other sequence. If so, y; is created and prepended to
the other sequence, if not, the first has to be y;. Mutatis mutandis
the same if z; is the last.

If the invariant between z; and y; did not exist yet, it is created
now. In the Info object are references to X and Y. If the sequence
x; is in, is X, the invariant to be created is y; = fz;. If z; is in
Y, the invariant is x; = f y;.

This mechanism correctly handles recursion and —if allowed— circu-
larities like Y = fx X;Z =g+ Y; X =hx 7.

3.2.4 Reduce

For the left and right reduce invariants r = @& —¢[a1,as, ..., a,] and
r =@ «.]a1,as,...,a,], a linear implementation is needed. For the
operation r = @/[a1, as,. .., a,], the evaluation order is not specified.

In a tree, the number of invariants that may have to be re-established
to update the result, which is the length of the path to the top node,

3.2. IMPLEMENTING THE LIST OPERATORS 21

is logarithmic in the number of elements of the sequence, instead of
linear, so the evaluation structure chosen is a tree.

Implementation

A structure watcher link is attached to the sequence. The Info object
contains the operator, references to the sequence and the result, and a
sequence of subresults of the evaluation. In the evaluation tree, a node
z is joined to its children z and y by an invariant z = x @ y. The result
r is joined to the top-node ¢ by the invariant r = {.

Structure
Watcher

| nser t Hook
RenmoveHook

(2] o] =] o]

15

Reduce implementation

RemoveHook (z;, Info) This is the removal callback-function for the
reduce. The element has to be removed from the evaluation tree.
At this point, some tree balancing could be done, but this is
omitted in the current implementation. If z; is the top-node, the
result is unset, and this function terminates. If not, an invariant
z=x; Py or z=1y®x; is searched. y will replace the node z
in the tree. Therefore, the invariant 2’ = 2@y or 2/ =9y @ z is
searched and replaced by 2’ = y® ¢ or 2/’ =9y @ y. If 2z is the
top-node, 2’ is the result, so the invariant z’ = z is replaced by
7' = y. Eventually, z is disposed.

InsertHook (z;, Info) This is the insertion callback-function. The ele-
ment z; has to be inserted into the tree. If z; is a sibling of z; and
z is the parent of z;, a new subresult 2’ is created. The invariant
z =x; @y is then replaced by z = 2’ @y and 2' = z; @ z;.

Note that, in general, 2 = @y is not equivalent to z = yPx since
the operator is not required to be commutative. The same care
to preserve the order should be taken as before, but a uniform
treatment of left/right cases is notationally convenient.

22 CHAPTER 3. INCREMENTAL LIST OPERATORS

If z; is the first or last element of the sequence, the choice (left or
right sibling) is trivial, but if z; has two siblings, both are valid.
To make any sensible choice in order to obtain the best balance
(shortest average path to the result), extra information is needed
in the tree nodes. In the current implementation, a random choice
is made.

Left and right reduce variants

The reduce variants & —.[a, as, ..., a,] and & «f.[a1,as,...,a,] are
usually implemented as:

B Pell =e

©® 7L>6[a1,a2, e -aan] =& 7L)(e®a1)[CL2a e -aan]
D el =e

B +elar, ag,. .., 0, = a1 D (B +elas, ..., a,))

The implementation (that will be) used here transforms the recursion
into a sequence of subresults [ry, ..., r,], with the invariants r; = r,_; &
a;, 1o = e and result = r, for the left reduce, and r; = a;®7r;11, rpe1 =€
and result = r; for the right reduce:

Lelz]=]¢] HEBER

Implementation of & +.[a1,as,...,a,) and & < c[a1, a9, ..., a,]

3.2.5 Filter

The implementation of an invariant Y = p< X is slightly more complex,
since the structure of the result depends on the contents of the sequence
elements. If an element of X is changed, the predicate has to be re-
applied to it, and if the result has changed, the result sequence has
to be updated. If we define the function split(p, X) = (Y1, Ys), where
Y] consists of all elements of X that satisfy p, and Y, consists of all
elements of X that don’t, then the filter function can be defined as
4 =y - split.

3.2. IMPLEMENTING THE LIST OPERATORS 23

Implementation

Let’s say that Y = p< X, or (Y,N) = split(p, X). Then for each
element x in X, a boolean z, is maintained with a predicate invariant
xp, = pr. A sharer 2’ is created with a special filter invariant from z; to

x', specifying that if x; is true, then z’ should be in Y, else 2’ should
bein N.

Structure
Watcher

28”29" 30" 31||32| X
Basel nser t Hook()
BaseRenpveHook()
N | o e
Fi |l t eredl nsert Hook()
Fi | t er edRemoveHook()

Structure ’
Watcher

Filter implementation

The Info object The Info object contains the predicate function, the
sequence of booleans X3, the sequence of filtered-out elements N
and references to X and Y.

FilterLink (zp, ') Thisis the function implementing the filter invariant.
If x, changes to true, move z’' to Y, If x, changes to false, move
2’ to N. Since the order in Y and N! is the same as in X, the
correct position for z' has to be found by finding the last y, that
precedes x3, such that ¢ is in the correct sequence (Y or N). z’
is then inserted after y/'.

The quintessence of finding the position for z’ is a UNION-FIND
problem with deletes. The (linear) approach used is the simplest.
If X, is implemented as a collection of trees however, a logarithmic
algorithm can be used?. This will only be noticeable at (very)
large segments of filtered-out elements.

BaseRemoveHook (Me, Info) Find Me, and M¢, remove the links and
then the objects.

las N is an internal object, not meant to be visible, keeping it in the same order
(or even as a sequence) is not strictly necessary.
2The deletes prevent path-compression

24 CHAPTER 3. INCREMENTAL LIST OPERATORS

BaselnsertHook (New, Info) If New, and New' do not exist yet, create
them. Let New, be false, and insert New’' into N. If it should be
in Y, the filterlink will bring it there anyway.

FilteredRemoveHook (M¢', Info) Find Me, and Me, remove the links
and then the objects, but only if Me, is true. This test is needed
to prevent an object from being removed from X as a side-effect
of moving its sharer from Y to V.

FilteredInsertHook (New', Info) If New, and New do not exist yet, cre-
ate them. Let New, be true, since New is in Y. If New does
not satisfy p, the predicate link will set New, to false, and the
filterlink will then move New’' to N. This means that the newly
inserted element is also inserted into X, and then immediately
removed again from Y. This seems to be the most sensible reac-
tion to inserting an element into a sequence where it should not
be, since if, at a later instant, the elements value changes such
that it satisfies p, it is automatically re-inserted into Y.

The implementation Y = #/(f * X), where fz = if pz then [z] else [],
and H is the concatenation operator, would also be valid for Y = p< X.
The current implementation is much more direct, and more efficient in
terms of time and number of objects needed to maintain the invariant.
Besides, the invariants L = L; -+ Ly and x = if ¢ then z; else x5 are
not implemented yet. The concatenation would be implemented using
structure watchers, the if-invariant is implemented trivially.

Chapter 4

Parsing

4.1 Mapping types on grammars

Since the presentation information in the type of the object is used,
the grammar for the parser has to be generated from the type system.
A type definition gives a name, a structure and a presentation, as in
the type definitions below. A number of standard types, like numbers
and text, are provided, and 5 ways to build new types: compounds,
sequences, choices, references, and likenesses. Likenesses are a way of
specifying a synonym of a type, possibly with a different presentation,
as in:

Type clock = compound(h: hours, m: minutes, s: seconds) 12:21:30

Presentation of an
n.n n.n
presented row[h, ":", m, ":" g object of type

Type gclock = like clock clock
presented circled(combine[mhand, hhand])

mhand = line(20) rotated(mx6)

hhand = line(15) rotated((h mod 12)x30 + m/2)

For the presentation invariant of an object, the grammar of the object’s
type is created to enable parsing of the presentation. The parse tree and (f t}){’pe
can then be translated to object values. geloc

4.1.1 Presentations

The presentation of an object can be built using the following rules:

e vline (length), hline (length), circle (diameter), square (width) and
box (width, height) are basic presentations.

e A presentation p can be manipulated to form a new presentation
in the following ways: rotated (p, degrees), at (p, pos(zx,y)), which

25

26

CHAPTER 4. PARSING

moves the picture to a new origin, and circled (p), squared (p) and
boxed (p), which draw a circle, square or rectangle around p.

literal (z) is just the string z.

std (x) is the standard presentation for a type in a certain class;
std (s) presents text-like types, std(d) reals and std (i) presents
integer-like types. In the example type above, the type hours
would probably be like (integer), presented std(i). std(x) for
other values of x can be for multi-media objects, types, certain
pictures, etcetera.

field (f;), where the typeis a compound (f; : t1, fa : o, ..., fx @ tr),
presents field f; with the presentation for ¢;.

alt () is a presentation for choices. The object is presented using
the chosen type; if the object z is of type choice (1,1, ..., t),
then chosen (z) is of type ¢; for some i € [1..k].

loop (p) and seploop (p, s) are presentations for sequences. If type
T = sequence(t), loop(p) will apply the presentation p to each
of the elements of the sequence. seploop(p,s) also applies the
presentation p to each of the elements, but separates the elements
with the presentation s. Typically, p will be self() and s will be
a literal (", ").

self () is the presentation of the entire object. Displaying an object
of type T = S presented self() will therefore loop. If however
self () is enclosed in a loop (p), it refers to the child to be displayed.
It will then follow the presentation of the type of the children,
which is often precisely what is desired.

If p1,ps, ..., pr are presentations,
— row|[py, pa, . . -, Pk is a presentation putting py, ps, ..., px ad-

jacent to each other.

— hang|[py, ps,- .-, pk) 18 a presentation stacking pi,ps, ...,k
on top of each other (p; on top).

— pile[p1,pa, ..., px] is a presentation stacking pq, pa, ..., pg on
top of each other (pj on top).

— combine[py, pa, . .., pg) is a presentation putting p1, pa, . . ., Pk
on the same spot.

If p; and py are presentations yielding 8 and m, then row [p;, ps]
yieldsHIL, hang [p1, po] yields E, pile [p1, p2] yields E, combine [p1, ps]
yields m®.

4.1. MAPPING TYPES ON GRAMMARS 27

4.1.2 Creating the grammar

In the generated grammar, the symbols are not text strings. Instead,
the nonterminals are types, and the terminals are primitive presenta-
tions, literal (string) or std (string). This does not make the task of the
parser generator any more difficult, while reducing some problems of
the grammar generator. In the discussion of the parser, textual names
for the nonterminals are used.

To generate a grammar from a type:
e Create an empty grammar.

o If typeis “Type name = structure presented presentation”, add
the production “type — build-rhs (presentation, structure)” to
the grammar.

The function build-rhs (presentation, structure) is defined as:

e If presentation is a row (list) or a hang (list),
Return flatten map build-rhs (o, structure) list.

o If presentation is a pile (liSt),ooveiiiiiii ..
Return build-rhs (hang (reverse (list)), structure), since the pre-
sentation pile[as, as, ..., a,] is equivalent to hangla,, ..., as, a1].

o If presentation is a literal (string),
Return a list containing this literal.

e If presentation is a std (String),oieiueriiiiiini...
Add the token with the regular expression for string to the current
grammar and return a list containing the token.

The regular expression for std (i), the standard presentation for
integers, could be [0-9]", but for std (s), the standard presentation
for strings, a sensible choice is harder to make. If however the
structure remains available in the presentation level, std (s) could
recognize just the word it presents, which suffices.

o If presentation is a field (name),
structure should be a compound(...,name: typ€,...). Merge
the grammar for type’ into the current grammar and return a list
containing type’.

To avoid a looping recursion, first complete the current produc-
tion, before adding the production for typée'.

28 CHAPTER 4. PARSING

e If presentation is an alt (),oeviiiiiiiii i
structure should be a choice(type,,...,type,). Create a new,
unique type type. For each type;, merge the grammar for type;
into the current grammar, and add the production “type —
type,”. Finally, return a list containing type'.

e If presentation is a 100p (SUb), «...oviviii i
structure should be a sequence (subtype). Merge the grammar
for subtype into the current grammar. Create new, types type;
and types. Add the productions “type; — type,” and “type; —
type, type,” to define a left-recursive sequence, and “type; —
build-rhs (sub, sub-structure)”, where sub-structure is the struc-
ture of subtype. Finally, return a list containing type;.

e If presentation is a seploop (sub, Sep), ...,
This is essentially the same as a loop (sub), except that the el-
ements are separated by sep, which is typically a literal (", ").
The second production differs from loop (sub). It is: “type;, —
type, build-rhs (sep)type,”.

e If presentation is a Self(),ouuiiiiiiiiiiiii i
it is probably enclosed in a loop () or seploop (). Return structure.

The discussion of the generation of productions for graphical presenta-
tions is postponed to section 4.5.1.

4.1.3 Translating a parse tree to an object value

If a parse tree is constructed, it should be translated into the corre-
sponding object value. Actually, the parse tree is not constructed. The
edges from a stacknode to the previous nodes (see 4.4.1) are labeled
with objects instead of parse trees. While the presentation of the type
corresponds to the concrete syntax of the grammar, the type structure
corresponds to the abstract syntax. To create the object value, which
is the abstract syntax tree, the abstract syntax trees of all the children
in the concrete syntax tree are merged. The structure and presentation
of the type are compared to create the translation. For example, a
field (f;) in the presentation of a compound (fi : t1, fa:ta,..., fn:tn)
means that the corresponding child in the concrete syntax tree is child
number ¢ in the abstract syntax tree. Presentations such as literals that
do not correspond to elements in the abstract syntax are simply omit-
ted, elements in the abstract syntax that do not occur in the concrete
syntax will either receive the “unknown” value, or their old value, if
that is available.

4.2. INCREMENTAL LEXICAL ANALYSIS 29

4.1.4 Example

For the type stmt and its subtypes on the left hand side, the grammar
on the right hand side is generated by the rules above.

Type for stmt and subtypes Grammar
Type stmt = compound(lhs: id, rhs: exp) stmt —id ":=" exp
presented rowl[lhs, ":=", rhs] id — std(s)

exp — opexp

Type exp = choice(opexp, brexp, num) L
exp — brexp

presented alt()
exp — num

opexp — exp op exp
op —op

Type brexp = like exp op’ —add
presented row[" (", alt(), ") "] op’ —sub

op’ —mul

Type opexp = compound(left: exp, oplus: op, right: exp)
presented row|left, oplus, right]

Type op = choice(add, sub, mul, div)

, .
presented alt() op’” —div

add — |I+||

Type add = nil presented "+" sub s M=

Type sub = nil presented "-" mul —s k"

Type mul = nil presented "*" div. — /v

Type div = nil presented "/" brexp — " (" exp ")"
Type num = like(integer) presented std(i) num — std(i)

Type id = like(text) presented std(s)

4.2 Incremental lexical analysis

The task of the lexical analyzer is to group characters into recognized
‘words’. For example if an expression is presented as ‘15+3’, it con-
sists of the words num (15), op(+) and num(3). If the + is deleted,
the presentation is ‘153", and the words num (15) and num (3) should
therefore be joined to form num(153). In the same spirit, the edi-
tor should —when working on a textual document that is divided in
chapters, sections, paragraphs, sentences and words— join words when
the spaces between them are deleted, split a paragraph in two when a
delimiter (eg. blank line) is inserted, etcetera.

Regular expression matching A regular expression over an alpha-
bet ¥ specifies a language over X, a set of recognized strings of symbols
taken from Y. Regular expressions are built using the following rules:

1. € is a regular expression that denotes the empty string.

2. For each symbol a € X, the regular expression a denotes the
language {a}.

30 CHAPTER 4. PARSING

3. If r and s are regular expressions denoting L(r) and L(s), then r
and s can be combined by the following operators, introduced in
ascending order of precedence:

Alternation r|sis a regular expression denoting L(r)UL(s), the
set of words w, where w € L(r) or w € L(s).

Concatenation rs is a regular expression denoting L(r) - L(s),
the set of words wv, where u € L(r), v € L(s).

Kleene closure r* is a regular expression denoting L(r)*, the
set of words wyws - - - wy,, n > 0, where w; € L(r).

Grouping (r) is a regular expression denoting L(r).

Some shorthands commonly used are 7+ = rr*, for one or more
occurrences of r (r* specifies zero or more), r? = rle for zero
or one, and character ranges: [abc] = alble, [a-z] = [abc--- 2],
["zyz] = X — [zyz].

A nondeterministic finite automaton (NFA, for short) is a mathematical
model that consists of an alphabet X, a set of states S, a start state
sp € S, a set of accepting (final) states £ C S and a transition function
move that maps state-symbol pairs to sets of states. A recognizer for a
language L is a program that determines whether an input string x is
in the language L. A recognizer for a regular expression r may operate
by creating an NFA for r, and try and find a sequence sq, sy, ..., Sk
such that s;41 € move(s;,a;),s8x € F and ajas---a,, = z. A lexical
analyzer is a program that takes a string z of symbols from ¥, and a
set of tokens T with associated regular expressions R(7T), and divides
x into lexemes, each of which is recognized by some regular expression
r € R(T). The output is the a sequence (¢;,[;), where ¢; is the token
matching [;, and 15[, = x.

Current implementation The input is a sequence of words, the
output is a sequence of matches, generated by a map (match, input),
where match (word) is a function that finds the longest, first match of
word, according to the set of regular expressions and literals, splitting
the word if necessary. Between every two consecutive matches, a link
exists! that joins them if that results in a longer match.

The matching function is built on top of the regexp library. The ad-
vantages are in simplicity; the use and maintainance of the DFA’s is
done by the library functions.

I This scheme is maintained with a structure watcher, the same way as in the
bubblesort example (section 3.2.1).

4.2. INCREMENTAL LEXICAL ANALYSIS 31

Example The set of regular expressions is {"+", num: [0-9]"}, the
input is “[15+3]”. The function match (15+3) will find num (15) as best
match, and split the input into [15, +3]. The function match (+3) will
then find + as best match, and split the input into [15, +, 3]. match (3)
will the find a complete match num (3). The generated output is then
[num (15), +, num (3)]. If the + is next removed from the input, the
invariant join (15, 3) then finds a longer match, num (153), and joins
the two words to form [153], and output [num (153)].

Problem If the set of regular expressions is [aaa, a], the input [aaa]
will match aaa. If the last a is deleted, the input word will split, to
form [a, a]. Now appending an a will result in [a, a, a], and the longer
match [aaa] is not found. The matches found can therefore depend on
the history of edit actions, which is incorrect. The problem originates
from the fact that it is not possible (in the current implementation) to
trace a match extending over more than two consecutive tokens.

Two possible solutions are:

e The boundaries of a word in the input depend on the matches of
the preceding words. Changing a word might enable a longer
match that starts earlier in the input. The matching should
therefore start again, starting at the earliest position in the in-
put that might form a match extending past the changed word.
The rematching can stop when a word boundary is found, af-
ter the changed word, that existed before the rematching. Since
the starting position is not known, the only safe approach is to
rematch the entire input. The simplest solution is therefore to
implement the invariant —the output is a sequence of matches
of the input— as one monolithic function, instead of a fine-grain
mechanism as above. For large inputs, this approach is unaccept-
able.

e The other option is to associate some information with each char-
acter, or word, in the input. This information could be a set of
states in the DFA, or a pointer to the earliest position in the in-
put that tried to form a match extending past this position, but
failed. Both types of extra information imply that the use of the
regexp library is not satisfactory.

For more on lexical analysis, see [1, ch. 3].

32 CHAPTER 4. PARSING

4.3 Parsing strategies

The parser generator should be capable of handling general context-free
languages. Although the LALR(1) class is usually large enough to de-
fine programming languages, the larger class of context-free grammars
is desired for the following reasons:

e Many parser generator systems do not allow certain kind of rules,
like left-recursive or epsilon rules. This forces the grammar writer
to avoid these constructs, and specify the grammar in a less ob-
vious and elegant way.

e In VIEWS, the grammars are created from the type system. Nar-
rowing the parser generator to a limited class like LALR(k) re-
stricts the possibilities to derive grammars from types, which is
undesirable.

e [t is not possible to exclude just the ambiguous grammars, as it is
undecidable whether a grammar is ambiguous [7]. In practice, one
can only ensure that a grammar is non-ambiguous by restricting it
to a smaller class of grammars, like LR(k) or LL(k). On the other
hand, it is not desirable to exclude the ambiguous grammars,
since using an ambiguous grammar can be more convenient to
specify some grammatical construct. A well-known example is a
grammar for expressions?. Here, the ambiguities can be resolved
by using operator precedences.

The parsing strategies considered are:

LR parsing LR(k) and LALR(k) parsing algorithms, as used for ex-
ample by the parser generator YAcc [8], are controlled by a parse
table that is constructed beforehand by a table generator. The
number £ is the number of lookahead symbols available to the
parser. The complexity of the parse table depends upon k, while
the parser’s efficiency does not; the parser works in linear time.
With conventional LR or LALR table generation algorithms it

2Two expression grammars: ambiguous unambiguous
Exp—Exp + Exp | Exp — Term
Exp—Exp - Exp | Exp — Exp + Term
Exp— Exp * Exp | Exp — Exp - Term
Exp — Exp / Exp | Term — Factor

Exp— (Exp) Term — Term * Factor
Exp — Num Term — Term / Factor
Factor — (Exp)
Factor — Num

4.4. THE VIEWS PARSER 33

is difficult to update an already generated parse table incremen-
tally if the grammar is modified. For a detailed description of LR
parsing, see [1, ch.4.7].

Generalized LR parsing This is an extended LR parsing algorithm,
see [12], that requires a conventional (but possibly multi-valued)
LR parse table. The parser starts as an LR parser, but when it
encounters a multi-valued entry in the parse table (conventionally
known as a conflict), it splits up into as many parsers working in
parallel as there are conflicting possibilities. If two parsers have
the same state on top of the stack, they are joined in a single
parser with a joined stack. If a parser encounters an error entry
in the parse table, it is killed by removing it from the set of active
parsers. Using this method, the parser can use as much lookahead
as needed to resolve an ambiguity, using simple LR(0) tables. For
ambiguous input, all possible parsings are rendered.

IPG An incremental, lazy parser generator for parsing context-free
grammars is described in [10]. It is an incremental version of the
generalized LR parsing method. Parsing starts with an empty
parse table, which is expanded by need during parsing. A change
in the grammar is handled incrementally by removing those parts
of the parse table that are affected by the change; these parts
are recomputed for the modified grammar when the parser needs
them again.

The parsing strategy chosen for the VIEWS system is analogous to the
IPG.

4.4 The VIEWS parser

Basic to LR parsing, of which the VIEWS parsing method is a derivate,
is the notion of an item; a production with a dot in its right-hand side,
which denotes how much of the rule has been parsed. Items are grouped
into sets, which give rise to states in the parser. Kernel items are the
initial item Start — X, where X is the start symbol of the grammar,
and all items whose dots are not at the left end. The closure of a kernel
item set is generated by adding, for each item A — o e B, and each
production B — -, the item B — e7. In other words, having seen « of
A, the next thing expected is a B, of which nothing is seen yet.

The function transition (I, X) for an item set I and a grammar sym-
bol X is the set of all items A — aX e § such that A — e X is in
closure(I). The function reductions(I) for an item set I is the set of

34 CHAPTER 4. PARSING

productions A — « for which A — «e is in closure(I). Intuitively, if
the parser is in some state with kernel I, it can, recognizing some part
of the input as X, move to the state transition (I, X), or perform a
reduction for any rule in reductions([).

The parse table, the set of states for the parser, is constructed by the
following algorithm:

o States = {{Start — oS} }

e while there is a set / in States, and grammar symbol X, for
which the state transition (I, X) is not empty and not in States,
add transition (I, X') to States.

In the parsing process, the parse table is generated by need. It consists
of unexpanded states, which have a kernel, and expanded states, which
have a kernel, a transition table, and the set of reductions. Initially, it
contains the unexpanded state with kernel “Start — ¢ X” where X is
the left-hand-side nonterminal in the first production of the grammar.
If the parser needs to know a state’s transitions or reductions, the
state is expanded, possibly creating new (unexpanded) states to which
transitions exist. This lazy generation mechanism is transparent to the
parser.

The parser starts in the first state. If the parser is in state S; and
finds symbol X;, and S;+; = transition (S;, X;) exists, it shifts X; and
S;+1 onto its stack and moves to the state S;11. If a reduction A — «
exists, and n is the number of symbols of «, it then pops n symbols
and states of the stack, creates a parse tree labeled with A, and the n
symbols as children. It then pushes the parse tree and then new state
Si+1 = transition (S;_,, A) onto its stack and moves to S;;1.

There is one accept state: If X is the start symbol, then the first state
has kernel “Start — X", and a transition for X to a new state which
has kernel “Start — Xe”, and is therefore always the accept state.

In some states, more than one action is possible. This is known as a
conflict. A LR parser chooses one action, but the VIEws parser splits
into as many parsers as there are conflicting possibilities.

After handling the last token, only the parser in the accept state is
interesting. It contains the (possibly ambiguous) parse tree for the
input text. If no parser is in the accept state, then no parse tree can
be found; the input does not match the grammar. The operation of
the parser is described now in a mathematical formulation, followed by
some examples demonstrating its behavior.

4.4. THE VIEWS PARSER 35

4.4.1 The parser’s operation

First, some types are defined. The presentations are omitted, since the
parsing structures are internal, invisible, objects:

Type Structure

StackNode compound (state : State, backlinks : BackLinks)
BackLinks sequence (BackLink)

BackLink compound (tree : ANY, node : NodeRef)
NodeRef reference (StackNode)

ActiveParsers sequence (StackNode)

A stack node is the basic object in the parse stack. It contains a
reference to the state the node is in, and links pointing back to the
previous stack node. These links are labeled with the parse tree found
while moving from the previous state to the current.

Parsing starts in state 0, and reductions (if appropriate) are applied:
NullParsers = ReduceStates|startstate (table (grammar))], where the
function ReduceStates is defined later. The predicate accept? deter-
mines whether a stack node is in the accept state. At the end of the
token stream, we find the active parsers:

LastParsers = ParseWord -+ NullParsers 10kenStream
and the accepting parsers:
AcceptingParsers = accept? <« LastParsers

Since parsers in the same state are joined, AcceptingParsers contains
at most one stacknode, so the parse trees are found :

ParseTrees = Tr¢ree * (firstAcceptingParsers).backlinks

The function ParseWord finds all states {transition (p,t)|p € P}, ap-
plies all available reductions, and joins all nodes which are in the same
state:

ParseWord : ActiveParsers x Token — ActiveParsers
ParseWord Pt = JoinNodes (ReduceStates (transition (0, t) * P))

The function JoinNodes is InsertNode ++;

InsertNode : ActiveParsers x StackNode — ActiveParsers

InsertNode [z, ..., Tn—1| T, =
[Z1,...,Tpn1] if x, =1,
[T1,...,Zi1, M, Tix1 ..., Tyn_q1] if m = MergeNodes(x;,x,) # L,

[x1,. .., 2] otherwise.

36 CHAPTER 4. PARSING

Two nodes can be merged if they are in the same state, so:

MergeNodes : StackNode x StackNode — StackNode
MergeNodes (z,y) =
(z.state, x.backlinks + y.backlinks) if x.state = y.state
1 otherwise.

The function ReduceStates extends a set of active parsers by adding all
parsers that can be derived by applying some reduction of one of the
parsers. This is specified by a function Closure, parameterized with a
function Derivations:

ReduceStates : ActiveParsers — ActiveParsers
ReduceStates = Closure Derivations

Closure : (a — [a]) — [a] — [a]
Closure (derivations, X) =

{zy |Vi € [1..k] : x; € derivations (x;_1),z9 € X }
Derivations : StackNode — [StackNode]
Derivations(s) =
A — a € reductions (s.state),

n = fa,
Vi € [1n] : (tl,T 32') c si_l.backljnks,
! —
S | S =S,

s'.state = transition (s,.state, A),
t' = Tree (A — Q, [tn, tho1y---, tl]),
{ s'.backlinks = [(t',1 s,)]

Tree is the function that builds a parse tree from the production and
the sequence of subtrees. See section 4.1.3.

7

4.4.2 Parsing example

According to a simple grammar for assignment statements, the string
x := 3+7 will be parsed. The set of regular expressions used for recog-
nizing the tokens are: { id: [a-z|*, num: [0-9]", "+", "" ":=" } The
output given by the lexical analyzer is “id (x) := num (3) + num (7).
The grammar used is:

Stmt —id ":=" Exp
Exp — Exp "+" Exp
Exp — Exp "*" Exp
Exp — num

The fully expanded parse table is:

4.4. THE VIEWS PARSER

State | Kernel Transitions | Reductions
0 | Start — e Stmt Stmt 1
id 2
1 | Start — Stmt e accept
2 | Stmt — id e := Exp 1= 3
3 | Stmt — id := e Exp Exp 4
num 5
4 | Stmt — id := Exp e Stmt— 1d := Exp
Exp — Exp e + Exp + 6
Exp — Exp e * Exp * 7
5| Exp — num e Exp — num
6 | Exp — Exp +e Exp | Exp 8
num 5
7| Exp — Exp *x e Exp | Exp 9
num 5
8 | Exp — Exp +Exp e Exp — Exp + Exp
Exp — Exp e + Exp + 6
Exp — Exp e * Exp * 7
9 | Exp — Exp *xExp e Exp — Exp * Exp
Exp — Exp e + Exp + 6
Exp — Exp e * Exp * 7

Steps in the parser

37

1. Parsing begins in state 0. After the token id (x), we reach state 2:

2. After the token :=, we reach state 3:

‘O‘id(x)‘Q‘

10 [id(x) [2]:=]3]

3. After the token num (3), we reach state 5. In this state, a reduc-
tion Exp — num is possible, and then Stmt — id := Exp, so we

have:

0id(x)[2]:=]3] num(3) 5
3 Exp 4
num (3)
0 Stmt 1
id(x) := Exp
num (3)

4. Only state 4 has an action for the token +, so the other possibilities
are rejected, and we have:

38 CHAPTER 4. PARSING

0id(x) |2]:=]3 Exp 41 +]6
num (3)

5. After the token num (7), we reach state 5, and we can reduce

again:
0id(x)|2]:=]3 Exp 4|+ |6 | num(7) 5
num (3)
6 Exp 8
num (7)
3 Exp 4
Exp + Exp
'num(3) | | num(7) |
0 Stmt 1
id(x) := Exp
Exp + Exp
| num(3) | | num(7) |

6. At the end of the token sequence, one parser is in the accept state,
and its parse tree is:

Stmt
id(x) := Exp
Exp + Exp
| num(3) | | num(7) |

4.4.3 Local ambiguity packing

To demonstrate how the parser deals with ambiguity, the input is now
extended to “id(x) := num(3) + num(7) * num(2)”. The parsers in
states 8 and 4 can shift * to state 7, which shifts num (2) to state 5.
Then, the following reductions can be performed:

e State 5 performs an Exp — num reduction and moves to state 9.

e State 9 performs an Exp — Exp * Exp reduction, following two
paths: one back to state 6, and one back to state 3, so the new
parser states are 8 and 4.

e State 8 performs an Exp — Exp + Exp reduction and moves to
state 4.

e State 4 performs a Stmt — id := Exp reduction, moving to the
accept state.

4.4. THE VIEWS PARSER

State 4 was reached in two different ways, caused by the

The parse stack and tree is:

Par se stack

Stmt

Resulting parsetree

idx) =

Stmt

ambiguity

Exp Exp

Exp

Exp + Exp
num(3) num(7)

*

Exp

Exp
num(2)

4.4.4 Lookahead example

Active
Parsers

39

ambiguity.

A conventional LR(k) parser can use up to k symbols of lookahead
to determine what to do. Since the VIEWS parser uses LR(0) tables,
this information is not available. The parser is nevertheless capable of
making the right choices, simply by trying all options, expecting one of
the possibilities to succeed eventually.
In this example, a reduce/reduce conflict is resolved by making both
reductions, since no lookahead information is available.

Grammar Parse table
S A a State | Kernel Transitions | Reductions
S -Bb 0 | Start — e S S 1
A—x S —eAa|A 2
S —eBb | B 3
B—x A —ex X 4
B — & X
1| Start— S e accept
218S —Aea| a 5
318 — Beb | b 6
4 | A —XxXe A— x
B — X e B— x
S —Aae S—Aa
6 |S — Bbe S—Bb

If the input is xa, the parser takes the following steps:

40 CHAPTER 4. PARSING

e Parsing starts in state 0. After the first token, x, the parser shifts
to state 4, where 2 reductions are available. The set of active
parsers is then:

.
e
1o

Active Parsers

e At the next token, a, only the parser in state 2 can shift, and the
other parsers are killed. In state 5, a reduce to the accept state is
possible. The parser has thus been able to postpone the choice in
the reduce/reduce conflict until it could be made without using
lookahead.

4.4.5 Handling e-productions

If a state’s closure contains the item X — a e Y3, then Y — o7 is
also in that closure. If v = ¢, then the rule Y — ¢ is present in the
reductions of that state. If the parser encounters this state, it is possible
to perform this reduction.

Example

In the grammar of this example, which describes the language xb*, a
reduction A — ¢ must be done for every b in the input string.

Grammar Parse table
S—SASb State | Kernel Transitions | Reductions
S x 0 | Start— e S S 1
A—e S —eASDb | A 2
S — ox X 3
A —ec A— €
1| Start— S e accept
2|S — AeSb | S 4
S —eASDb | A 2
S — o X X 3
A —ec A— €
318 — X e S—x
4| S — ASeb | Db 5
518 — ASbe S—ASb

If the input is xbbb, the parser takes the following steps:

4.4. THE VIEWS PARSER 41

e Parsing starts in state 0, and immediately, the first A — € reduc-
tion can be made, going to state 2, where another A — ¢ reduction
can be done, going to state 2. To avoid a loop, the stack nodes
are shared, having a number of links to previous nodes. In this
case, the parse forest becomes cyclic.

o After the token x, state 0 and state 2 both shift to state 3, where
a reduction S — x is possible, bringing state 0 to the accept state
and state 2 to state 4, where it is ready to shift another b.

Eeree i
2]
A Active Parsers

e After every b that follows, the parser in state 1 dies, but the parser
in state 4 shifts to state 5, and reduces S — A Sb, splitting into
two parsers: one in the accept state, and one in state 4. The
parser can therefore perform just as many A — e reductions as
needed, by using the cyclic parse stack.

4.4.6 Error recovery

The parser should not only respond correctly to syntactically correct
inputs, but also try and interpret incorrect inputs, which are very likely
to occur as intermediate states in the editing. Simply complaining that
the parser’s input is incorrect and disposing of the parse tree is unwise.
A few general error recovery strategies used in compilers are:

Panic-mode This is the simplest method to implement. On discover-
ing an error, the parser discards input tokens until one of a des-
ignated set of synchronizing tokens is found. The synchronizing
tokens are usually delimiters whose role in the program is clear,
such as a semicolon or the keyword end for a PASCAL parser. It
is however hard, if not impossible, to automatically select these
delimiters from the automatically generated grammars.

Phrase-level recovery On discovering an error, the parser may per-
form local correction on the input. Typical local corrections are
replacing a comma by a semicolon, or inserting a token that en-
ables the parser to continue. Its major drawback is the difficulty
it has in coping with situations in which the actual error has
occurred before the point of detection.

42 CHAPTER 4. PARSING

Error productions If a good idea of the common errors that might
be encountered can be obtained, the grammar can be augmented
with productions that generate the erroneous construct. If the
parser then needs to use an error production, an appropriate error
message can be generated. Since it is very likely that the input
is in an intermediate state, it could be sensible for a production
A — XY Z to create the error productions A - Y7, A - X7
and A — XY. The size of the augmented grammar would then
become extremely large.

The approach chosen is a combination of the first two strategies: If
none of the active parsers can shift:

e If some parser has a transition for some symbol S to a new state,
and ParseWord (Parsers,S) has a transition for the token, it may
seem logical to presume that S is missing, and insert a placeholder
for it in the input.

o If that fails, try a replacement: if some parser has a transition for
some symbol S to a new state, and the new state can shift the
next token, replace the token by a placeholder for S.

o If that fails, flag the token as erroneous and skip it; that means
passing the active parsers to the next step.

4.4.7 Locality of changes

The implementation of the parser should be highly incremental; minor
changes should require minimal updates. This is achieved by specify-
ing the parser as a left-reduce that breaks the parser into the set of
invariants r; = ParseWord r;_; a;, where r;_1 is a set of parsers trying
to shift token a;, forming r;. Suppose the old text is changed to new,
where both can be derived from some nonterminal 3:

Start =* afy
154 =* old
I} =* new

The changes are then local to 3, so only the part of the parse tree
recognizing (3 needs to be recalculated. After the last token in the
derivation of (3, the parser is in the state A — «f e v, whether
derived old or new. For example: if a new token is inserted into the
tokenstream, then the invariant r; = ParseWord r;_1 a; is replaced by
r; = ParseWord rpew a; and rpew = ParseWord r;_1 apew. r; was in a
state recognizing a sequence, and will be the same now, so the changes
do not propagate along the left-reduce chain.

4.5. PARSING STRUCTURES 43

4.5 Parsing structures

Although the preceding sections have assumed a linear (textual) input,
the approach does not exclude parsing structures. If an object (of type
t1) is copied, and then pasted into a placeholder for type to, it is not
desirable to reject that action if ¢; is not identical to ¢3. Rather, the
pasted object should be cast to type 5. This type casting can be done
by parsing the object to the grammar of the required type. If the types
are identical, there is a transformation for ¢; in the start state of the
grammar for {3 to the accept state. If t; # t5 and the object is a
composite object, its children can be parsed to form an object of type
tQ.

The function ParseWord (P,t) as defined in section 4.4.1 (page 35) is
extended in the following way:

ParseWord : ActiveParsers x Token — ActiveParsers
ParseWord Pt =
JoinNodes (ReduceStates (transition (0, t) * P))
if ¢ is a token
JoinNodes (ReduceStates (T))
if ¢ is an object of type T,
T = transition (O, 7) * P)) # L
ParseWord +pt

otherwise

4.5.1 Parsing graphical objects

If the structure is maintained in the edit level, presentations that are
non-textual, like circled (something), can then be parsed. A type with
a graphical presentation, for example Type T' = S presented circled (p),
could have the production 7" — circle build-rhs (p, S) (see section 4.1.2).
If the contents of the circle is updated, the circle does not have to be
parsed, since it is known to surround its contents. Yet the circle and
contents together can be parsed if they are of the correct type. This
introduces grammars for which (some) sentential forms cannot derive
sentences. A sentence is a sequence of symbols from the grammar’s
alphabet that can be derived from the start symbol. This is not a
problem, since the edit level contains the structure of the presentation,
and can therefore offer the sentential form to the parser.

4.5.2 Parsing combined presentations

In the same manner, it is not a problem that objects are presented on
top of each other, since in the (structured) presentation, the elements

44 CHAPTER 4. PARSING

are distinguishable. The only problem is that the order is missing. The
problem is therefore to match a bag of items to a bag of patterns. A
brute-force approach would be to try and match every permutation of
the items with patterns, which costs O(n!).

Chapter 5

Conclusions

5.1 General observations

Because the parser is defined in a strictly functional manner, imple-
menting the basic functions it is composed of in an incremental way
should guarantee that the parser itself is also fully incremental without
any special care.

The parser generator should be incremental, since the presentations
may change on the fly, but the demands are not as high as in the
case of the ASF+SDF programming environment development system,
where a user is editing the grammar rather often. The incremental
parser generator IPG [10] of which the main ideas for implementing the
VIEWS parser originate, was developed for that system. A less efficient
parser generator could therefore suffice, but the generated parser itself
should be very efficient and highly incremental. The efficiency of the
parser and the parser generated have not been tested.

5.2 Current Situation

Structure watchers It should be possible to apply structure watch-
ers not just to sequences, but to any structured object. Note that in-
sertions and deletes may not be applicable to compounds and choices,
but replacing a child by another can be interpreted as a delete followed
by an insert.

More important, it is possible to completely overwrite the structured
object by some other object, for example in a paste operation. This
too can be regarded as a series of deletes and insertions, but it is also
possible to regard the paste as one single operation. This is the case in
the current implementation of the paste operation, and therefore, the
structure watcher, and all applications that rely on it, fail to handle a

45

46 CHAPTER 5. CONCLUSIONS

paste operation on the entire object correctly. This is a bug, which can
be solved by either changing the paste operation to perform a series
of deletes and insertions, or by extending the update-functions object
with a third callback-function for paste operations.

The update-functions object should contain entries, or methods, for
elementary operations on the structure of objects. The decision which
operations are considered elementary may depend on the type of the
object a structure watcher is attached to.

Incremental list operators Apart from the paste-bug mentioned
above, the implementation of the sorting program and the map, reduce
and filter operations is fairly good. For easy programming using lists,
more list operators should be implemented in the kernel, for example
x = first[z1,...], L = x : [xy,...] which is just the inverse, L = X # Y,
L = merge(X,Y), and some predicates, for example in = z € L.

Implementation of the parser The lexical analyzer works, but
contains a bug as explained in section 4.2. The parser generator is
implemented and seems to work reasonable well. An extremely fragile
prototype of the parser was implemented. The mapping of types to
grammars has not been implemented yet.

Bibliography

[1] A.V. Aho, R. Sethi and J.D. Ullman. Compilers, Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[2] R.S. Bird. An introduction to the theory of lists. Logic of Pro-
gramming and Calculi of Discrete Design. Springer-Verlag, (1987)
3-42.

[3] R.S. Bird and P.L. Wadler. Introduction to Functional Program-
ming. Prentice Hall International, 1988.

[4] E. Boeve. PhD thesis, draft, 1992.

[5] J. Early. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2): 94-102, 1970.

[6] A.J. Field and P.G. Harrison. Functional Programming. Addison-
Wesley, 1988.

[7] M.A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley, 1978.

[8] S.C. Johnson. YACC: yet another compiler-compiler. Bell Labo-
ratories, 1986. UNIX Programmer’s Supplementary Documents,
Volume 1 (PS1).

[9] S. Pemberton. The Views Application Environment. CWI Report
CS-R9257, CWI, Amsterdam, December 1992.

[10] J. Rekers. Parser Generation for Interactive Environments. PhD
thesis, University of Amsterdam, 1992.

[11] T.W. Reps and T. Teitelbaum. The Synthesizer Generator. A sys-
tem for constructing language based editors. Springer Verlag, New
York, 1989.

[12] M. Tomita. Efficient Parsing for Natural Languages. Kluwer Aca-
demic Publishers, 1985.

AT

