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other scan architeaures. 

&AN TEST TECNNIQUES provide 
hardware access and control that is 
superior to traditional functional 
test strategies. Though sequential 
circuits often contain nodes that are 
difficult or impossible to access 
with functional tests, the reduction 
of these circuits into the combinato 
rial circuits required by scan testing 
allows access to all such nodes. 

Scan test techniques result in a 
serialized view of circuit nodes be 
cause the nodes are chained to- 
gether into shift registers called 
scan rings. Each individual bit in a 
scan ring provides control and ac- 
cess for a particular circuit element. 
Regardless of its regular functional- 
ity, we can generally test a circuit 
with scan by shifting in a control 
state, applying functional clocks, 
and then shifting out the new state 
and comparing it with the expected 
bit values. In effect, this serialized 
view abstracts the functionality of 
the circuit for testing purposes. 

tion of each scan bit and any rela- 
tionships it has to other bits in the 
scan ring can be nearly impossible, 
especially when performing board- 
level tests involving multiple scan- 
nable chips. Scan techniques may 
abstract the functionality of the 
hardware under test, but in return 
they greatly increase the amount of 
information that must be managed 
during debugging. 

The software driving typical test 
systems is usually designed to en- 
sure rapid and accurate production 
testing, not to aid with debugging. 
Any debugging features provided 
by such software normally facilitate 
only general control of the test 
hardware. Thus, test program devel- 
opers must rely on simulation envi- 
ronments and custom test 
harnesses to debug their software, 
hoping that their tools are accurate 
enough to minimize the effort re- 
quired to get their programs run- 
ning correctly on the actual test 
system. Unfortunately, even the Unfortunately, this same access 

and control afforded by scan test tech- ed values. Isolating the cause of the fail- best simulations cannot predict every 
niques can also be the source of testing ure can be a daunting task when hun- problem that will be encountered dur- 
problems. A failing scan test means that dreds or thousands of bits are involved ing actual testing procedures. 
one or more scan bits contain unexpect- in a single test. Keeping track of the func- By managing the observation and 

46 0740.7475/93/0600-0046$03.00 0 1993 IEEE IEEE DESIGN & TEST OF COMPUTERS 



control afforded by scan testing tech- 
niques, the Remote Interactive Scan En- 
vironment (RlSE+t) provides a powerful 
development and debugging facility for 
scan-based testing of the HP/Apollo Se 
ries 10000 workstation. RISE-H executes 
on a separate workstation and commu- 
nicates with the system under test via a 
local area network. Test engineers can 
easily develop and debug scan tests un- 
der RISE-H because it tracks many trivi- 
al but important details for them and 
provides them with precise control over 
the test hardware. RISE+ effectively rais- 
es the level of abstraction and allows test 
engineers to concentrate on the prob- 
lem at hand. 

DN 1 CKIOO scan architecture 
The scan subsystem of the HP/Apollo 

Series 10000 workstation’ includes the 
scannable hardware and the software 
that drives it. Users can plug various 
boards, including CPU boards, memory 
subsystems, and graphics boards, each 
populated with a number of scannable 
chips, into one of eight slots in the main 
system bus (called the X-Bus) of the 
DNlOOOO workstation. Each board also 
contains one scan and clock resource 
(SCR) chip. This chip allows control of up 
to eight separate scan path ports, with up 
to one internal and one boundary or ex- 
ternal scan ring connected to each port. 
By convention, no more than four scan- 
nable chips reside on any scan path. 

Software executing on the service pro 
cessor (SP) of the machine performs all 
scan operations. The service processor is 
a Motorola 68020 used for booting and 
testing the system. Each SCR connects to 
a systemwide diagnostics bus (DBUS) 
that the service processor accesses via a 
three-register interface called the diag- 
nostics bus interface (DBI). Through the 
DBI, the service processor can address 
any individual SCR, or it can broadcast 
commands to all SCR chips in the system. 
Figure 1 illustrates the Series 10000 scan 
hardware architecture. 

In addition to implementing scan 
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most scan-in and scan-out operations 
, appear to occur at the chip level, regard- 

Figure I. HP/Ape//o Series I 0000 stun 
hardware architecture. 

less of the number of chips chained to- 
gether on each scan path. This 
distinction is very important; without it, 
some scan vector data would be need- 
lessly dependent upon board topology. 
Chip-level scan l/O permits the reuse of 
chip test vectors for board-level testing. 

control functions, each SCR distributes 
and controls the clocks for the board it 
resides on. The SCR allows clocks to be 
started, stopped, burst, and pulsed for 
each scan path independently. 

The scan subsystem driver software 
allows access to SCR operations through 
a hierarchical hardware access model 
for its clients. The model reflects the hi- 
erarchy present in the hardware design: 

n a system contains scannable boards 
n a board contains scan paths 
n a path contains scannable chips 
n a chip contains scan rings 
n a ring contains scan bits 

To use this model, application soft- 
ware specifies access to any scannable 
component of the hardware via scan 
addresses whose values reflect the place 
of the component in the hierarchy. The 
hierarchical view of scannable hard- 
ware provided by controllers like the 
SCR has also proven effective for board- 
level built-in self-test2 Figure 2 graphical- 
ly depicts this scan hardware hierarchy. 

One important aspect of the hierar- 
chical hardware access model is that 

All in all, the hierarchical hardware 
access model simplifies the amount of 
state information the scan subsystem 
driver software must internally maintain. 
It provides a clean, powerful abstraction 
of the hardware domain to applications 
such as RISE-H. 

RISE++ architecture 
We can accurately describe RISE++ as 

a symbolic hardware debugger because 
it provides the ability to symbolically ma- 
nipulate each component of the hierar- 
chical hardware access model. In other 
words, each scannable entity in the sys- 
tem, including boards, chips, and scan 
bits, can be accessed and controlled by 
name. This aspect of RISE+ is analogous 
to the symbolic access that software de 
buggers provide for programming lan- 
guage variables and functions. 

RISE++ is well integrated with the Unix 
environment. It follows the Unix philoso 
phy of providing simple tools that can be 
combined to create other specialized, 
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more powerful tools as the need arises. 
The alternative of attempting to imple- 
ment RISE++ as a fixed set of debugging 
tools would almost certainly have failed, 
since it would have been impossible to 
foresee all the circumstances in which 
RISE-H would prove useful. 

Similar to most software systems, 
RISE++ is composed of several layers of 
functionality: 

n extensible command line interface 
n interactive command functions 
n naming service for scannable 

entities 
n object-oriented scan hardware 

model 
n remote procedure call (RPC) soft- 

ware 

Figure 3 graphically depicts the rela- 
tionships between these layers. 

Extensible command line inter- 
face. Via the command line interface, 
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users can issue RISE-H commands and 
extend RISE-r-t to fit their particular test 
requirements. Ousterhout has observed 
that “a general-purpose programmable 
command language amplifies the pow- 
er of a tool by allowing users to write 
programs in the command language in 
order to extend the tool’s built-in facili- 
ties.“3 The Tool Command Language 
(Tel) developed by Ousterhout provides 
the basis for the RISE-H extensible com- 
mand line interface. Tel is composed of 
a library of C functions that provides 

W command language parsing 
n a set of built-in commands 
w functions enabling extension of the 

built-in command set 

The Tel built-in commands provide 
programmability for the RlSE+t com- 
mand line interface. Commandssuch as 
Eval, For, Foreach, and If provide pro- 
grammable control constructs. Other 
commands such as Proc and Set allow 
for the creation and manipulation of 
command procedures and variables. 
Other commands enable users to ma- 
nipulate mathematical expressions, lists, 
strings, or files. Still others provide ways 
for users to interact with the underlying 
operating system. 

Tel command arguments, variable 
values, and command return values are 
all ASCII strings. Each command inter- 
prets its arguments as it wishes. For ex- 
ample, the Expr command expects its 
arguments to be strings of numbers and 
mathematical operators. All string return 
values from command functions are au- 
tomatically displayed to the user. Unix 
tools such as 1s and grep can also be in- 
voked from the command line, just as 
they are called from a Unix shell. Users 
do not have to reinvent the functions 
provided by common Unix tools. 

RISE-H extends the built-in command 
set of Tel with commands specific to the 
scan-testing problem domain. These in- 
clude commands to 

w manipulate scan vector data 

w access SCR and DBI registers 
n access files containing test vectors 
n interact with the scannable entity- 

naming service 
w determine the configuration of the 

hardware 
n address different X-Bus slots 
n perform operations on scannable 

entities 
n control functional clocks 

The RISE-H command line interface 
provides 149 commands in all, includ- 
ing the built-in commands of Tel. Exten- 
sive documentation for each RISE-H 
command is readily available from the 
command line via the Unix Man 
command. 

Users can extend the built-in com- 
mand set by writing their own com- 
mand scripts, called procs. Like regular 
Unix commands, user-defined procs 
can take arguments and return values. 
Procs can call built-in commands or oth- 
er procs as required. Once defined, a 
command implemented by a Proc is in- 
distinguishable from a built-in com- 
mand. Examples of procs and built-in 
commands appear later. 

By providing a straightforward pro- 
grammable interface to the scan hard- 
ware, RISE-H extends the arena of test 
development to hardware design engi- 
neers and manufacturing personnel 
who do not necessarily possess the train- 
ing required to create test software. The 
simplicity of the RISE+t command inter- 
face allows it to serve as a common lan- 
guage that hardware designers, test 
engineers, and manufacturing person- 
nel can all use to communicate hard- 
ware problems and share test solutions. 

Naming service. The Processor Con- 
troller microcode for the IBM 3081 pro 
vided access to machine registers via 
scan by translating symbolic register 
names to the physical scan addresses of 
the bits comprising them! The associa- 
tions of the symbolic names and the 
physical scannable entities they repre- 
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sented were stored on disk in translation 
tables. Under RISE+, such groups of log- 
ically related scan bits are called scan 
buses. The scan operations that exam- 
ine and change the bits making up the 
register are completely transparent to 
the user. The physical locations of the 
scan bits making up a scan bus do not 
matter; they need not be contiguous nor 
even reside on the same chip. 

Symbolic manipulation of chains of 
scan bits requires 

n a descriptive identifier for each of 
the scan bits 

n knowledge of the ordering of the 
scan bits within the scan rings 

n knowledge of the number of scan 
bits in each scan ring 

Without this information, software 
like RISE+ cannot properly format scan 
vector data nor allow accurate access 
and control of individual scan bits. 

A separate tool called the vector con- 
figuration file compiler (VCFC) trans 
lates a textual vector configuration file 
(VCF) containing names for boards, 
chips, scan bits, and scan buses into an 
associative database based on Unix 
ndbm files5 Some of the names present 
in a vector configuration file come di- 
rectly from the hardware design netlists, 
while many of them are created by users 
for customization purposes. 

Each entry in the databases contains 
an association of a name character 
string with information about the scan- 
nable entity it represents. To prevent 
name clashes on boards with multiple 
instances of the same chip, the compil- 
er treats each chip declaration in the 
vector configuration file as a different 
naming scope. It requires all scan bit 
and scan bus names to be prefixed by 
the name of the chip containing them, 
as in chip-name.bit-name. 

Because the compiler program is a 
separate compilation tool, RISE+t also 
allows names to be defined from its 
command line at runtime. Names de- 
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fined via RISE- are not added to the 
name database files, however, to pre- 
vent them from becoming filled with in- 
formation that was only relevant for one 
debugging session. Using VCFC to com- 
pile a vector configuration file is the only 
way to create or modify scan name 
databases. 

The use of the Unix ndbm facility for 
scan name databases has several advan- 
tages. The most important advantage is 
that scannable entity-naming informa- 
tion can be located rapidly; the ndbm 
facility normally requires only one or 
two disk accesses to locate an item.5 
Another advantage is that names are dy- 
namically loaded as they are required. 
Without this ability, RISE+ would have 
to load all names when it started up, re- 
sulting in slow start-up times and unac- 
ceptable memory requirements. Since 
nearly 50,000 names are used to de- 
scribe all the scannable entities present 
in a fully loaded Series 10000 system, 
dynamic loading allows each name to 
be loaded from the databases as it is ref- 
erenced. This approach minimizes memo 
ry usage and spreads name loading time 
out over the life of the RISE-H process. 

Object-oriented scan hardware 
model. A large portion of RISE-H was 
designed and implemented using 
object-oriented software development 
techniques. These techniques focus on 
the entities that exist in a problem 
domain and the operations that can be 
performed upon them. Thus, an object- 
oriented view of a system differs from an 
algorithmic view because the latter mere 
1y“highlight.s the ordering of events.“6 

The agents of the scan-testing prob- 
lem domain that are modeled by the 
object-oriented RISE++software include 
scan vectors, scan bits, scan rings, scan- 
nable chips, and scannable boards. The 
hierarchical nature of the hardware do- 
main is directly reflected in the construc- 
tion of the object model: Boards are 
composed of chips that in turn are com- 
posed of scan rings composed of scan 

rise> size 4 
Slot 4:cpu, board type 5, revision 2 

path O/device 0 ip, revision 4 
path l/device 0 mmu, revision 6 
path 2/device 0 cba, revision 9 
path S/device 0 cbd0, revision 2 
path 3/device 1 cbd 1, revision 2 
path 4/device 0 fpc, revision 0 
path 5/device 0 frfl, revision 1 
path 5/device 1 frfu, revision 1 
path G/device 0 alu, revision 0 
path G/device 1 mul, revision 0 
path 7ldevice 0 amd298 18, 

revision 0 

Figure 4. Size command example. 

bits. These objects are accessed via ab- 
stract address objects, conceptuallysim- 
ilar to the methods by which they are 
physically accessed in the hardware 
domain. 

i When RISE+t is invoked, it sizes the 
system under test and creates a hierar- 
chy of software objects that models the 
scannable hardware to be tested. The 
example in Figure 4 shows a result of is- 
suing the Size command for X-Bus slot 4 
(the “rise>” text is the command prompt). 

Once the RISE++ process constructs this 
internal software model, each scan-related 
command is ultimately performed by the 
software object representing the hardware 
entity being acted upon. 

The object-oriented software used to 
model the hardware under test is written 
in the C-H programming language.7 C+t 
was chosen because of its efficiency, 
strong type checking, and facilities for 
encapsulation, dynamic binding, and 
inheritance. The importance of these 
features to the software engineering 
aspects of RISE+ cannot be overem- 
phasized. In fact, quite likely the devel- 
opment of RISE-H would have failed 
had it not been for the use of C-H. 

Remote procedure call software. 
While others have described remote 
procedure calls (RPCS),~~~ I briefly ex- 
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plain their use in RISE+ to show the 
benefits of remote testing. Each call to a 
function in the driver software from the 
rest of RISE-H is transparently converted 
into a remote procedure call that is sent 
across a local area network to the sys- 
tem under test. A small remote scan 
server executing on the system under 
test processes the request, invokes the 
desired driver function, then packages 
up any return values and sends them 
back across the network to the caller. 
The RISE-H software that makes calls to 
the driver is completely unaware that 
such calls execute on another machine. 

A major benefit provided by the use 
of remote procedure calls is that very 
few resources are required of the system 
under test. The scan remote procedure 
call server (ScanRS) program that servic- 
es remote requests for scan operations 
requires only 20Kbytes of RAM space 
within service processor memory. Thus, 
if the service processor correctly exe- 
cutes from its memory and successfully 
communicates with the local area net- 
work hardware, the machine can be 
tested and debugged using RISE+ from 
a remote location. 

Another advantage afforded by the 
use of remote procedure calls is that 
RISE+ executes on top of a Unix operat- 
ing system on the remote client ma- 
chine. Thus it can provide a much 
easier-to-use environment than if it had 
to function alone on the system under 
test. A stand-alone program cannot rely 
upon the features of an operating system 
to provide services such as file l/O, com- 
mand line editing, and process manage- 
ment. These features are usually difficult 
to develop in a stand-alone environ- 
ment, so most test facilities do not pro- 
vide them. Because it executes remotely 
on a client workstation, RISE-H fits di- 
rectly into the productive computing 
environment offered by Unix. 

A third benefit of the employment of 
remote procedure call techniques 
comes from the remote aspect itself. Sev- 
eral systems can be accessed from one 
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client workstation running RISE+. The 
user can easily control and observe test- 
ing of multiple machines simultaneous- 
ly. This particular use of remote 
procedure call techniques enables re- 
search and development engineers to 
help with difficult testing problems in 
the manufacturing plant without having 
to leave their offices. 

The use of remote procedure calls 
contributes very little to the time re 
quired to perform most remote scan op- 
erations. Measurements indicate that 
RISE+ can perform scan I/O operations 
at a level that is 50% of the throughput 
achieved by programs running directly 
on the service processor of the system 
under test. This efficiency level has prov- 
en more than adequate for interactive 
test debugging and development. 

Test examples 
The various services provided by 

RISE+ allow users to develop many dif- 
ferent types of tests. Simple tests general- 
ly verify the integrity of scan hardware 
such as the SCR and the scan rings, 
while the most complex tests can isolate 
faults within cache RAM. 

Scan ring I/O. The ability to read 
and write the contents of scan rings is 
one of the most important requirements 
for RISE*. Sread and Swrite commands 
perform these operations. The following 
example shows typical uses of these com- 
mands. Here, the AMD29818 device on 
CPU scan path 7 is being read and written: 

rise> sread amd29818 
I\ 
Dl\ 
I 
rise> swrite amd29818 DO 
rise> sread amd29818 
I\ 
DO\ 
I 

The first Sread command displays the 
contents of the 8-bit AMD29818 scan 

path as the hexadecimal value Dl. Then 
the Swrite command modifies the value 
to DO, and the second Sread command 
verifies that the value of the scan ring did 
indeed change. Values for the scan bits 
making up a ring are always displayed in 
the same order that they are scanned 
out of the hardware, with leading zeros 
always being displayed. Up to three ex- 
traneous bits may appear on the end of 
the displayed vector value due to the 
hexadecimal output format. 

The curly brace and backslash char- 
acters surrounding the displayed scan 
ring data values allow the output of 
Sread to be assigned to variables and 
used directly as input for other com- 
mands. They also help readability by al- 
lowing long scan vectors to be split 
across multiple lines. Using Sread vec- 
tors as input to other commands corre 
sponds to their usual handling, since 
they are typically compared against 
known good vectors or are slightly mod- 
ified by programming and then scanned 
back in. The next example, in which the 
scan ring of one chip is written with the 
data read out of a different chip, shows 
the typical treatment of full Sread vectors: 

rise> swrite cbd0 [sread cbdl] 

The square brackets cause the Sread 
command to be performed and its re- 
turn value to be substituted for it on the 
command line as the value argument to 
Swrite. 

Scan buses can be accessed in a very 
similar manner, but the compiled vector 
configuration file must be loaded first 
via the Names command: 

rise> names compiled-mem-names 

Here, compiled~mem~names corre 
sponds to the Unix pathname of the direc- 
tory holding the vector configuration file 
name databases for the memory board. 
Once the names are available, a scan bus 
access can be done; see Figure 5. 

First, the entire scan ring for the chip 
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rise> swrite mmc0 0 
rise> swrite mmcO.cb-addr 55 
rise> sread mmcO.cd-addr 
0x55 
rise> sread mmc0 
I\ 

1 

Figure 5. Scan bus access. 

called mmc0 is set to zeros. Then, a 7-bit 
scan bus called mmcO.cb-addr is set to 
the hexadecimal value 55 (the leftmost 
bit of the value is not used). It then is 
read back to verify its new value, and the 
entire mmc0 scan ring is read out. As 
expected, the example output shows 
most bits as zero except for those corm- 
sponding to the mmcO.cb-addr scan 
bus. Unlike scan ring data, scan bus val- 
ues are displayed in regular MSEtoLSB 
fashion with no leading zeros. Up to 
three extraneous leading bits may ap 
pear in the displayed value due to the 
hexadecimal output format. 

The scan bus example hints at the 
power of the symbolic access provided 
by RISE+. Attempting to set the value of 
the mmcO.cb-addr register by setting in- 
dividual bits in the scan ring would be 
extremely error-prone and time- 
consuming, as would attempting to read 
its value by piecing together the values 
of the bits. With RISE++, the user can 
concentrate on the logical state of the 
hardware and let the environment han- 
dle all the necessary translations. 

CPU register access. The example 
code in Figure 6 shows a user-defined 
Proc. This Proc can display the contents 
of the general-purpose registers (GPRs) 
of the integer processor unit (IPIJ) of the 
Series 10000 CPU-TX board. 

The Stop command stops the function- 
al clocks so that scan operations may be 
performed. The Dip-cmd and Scr com- 
mands configure various testability regis- 
ters within the integer processor unit and 
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SCR chips to prepare for general-purpose 
register access. Next, the loop construct 
performs 32 iterations of the sequence of 
actions required to read a general- 
purpose register. The iterations allow all 
32 integer processor unit general-purpose 
registers to be read. In that sequence, the 
first Swrite sets all bits of the integer pro 
cessor unit scan ring to 0. 

The second Swrite sets the value of a 
scan bus within the integer processor 
unit to the address of the general- 
purpose register to be read, then scans 
the entire integer processor unit vector 
into the hardware. After Dbi-cmd pulses 
the functional clocks, Sread scans out 
the value of an integer processor unit 
scan bus containing the value of the 
general-purpose register. The Set com- 
mand stores it into the value variable. 

Finally, the Print command displays the 
register number and its value to the user. 

The example in Figure 6 shows the 
use of RISE++ abstractions together with 
direct hardware access functions. One 
abstraction is the use of the scan buses 
ipugpr-addr and ipu.gpr-val to symbol- 
ically access the general-purpose regis- 
ter addresses and values. The Dbi-cmd 
and Scr commands provide direct ac- 
cess to the DBI and SCR registers. The 
loop construct provides iteration, and 
the iteration variable reg is also used to 
set up the address of the general- 
purpose register to be read. (J’he Hexpr 
command merely returns the value of 
reg in hexadecimal format.) 

As shown in Figure 7, users may in- 
voke the dumpgprs procedure by typ- 
ing its name at the RISE++ command 
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t-i- dump_gprs 
IP~G~:~~l 
IP REGlSTER : 01 OoOO3F71 
IP REGISTER : 02 0007EE31 
IP REGl!TER : 03 00007EE3 
IP REGISTER : 04 OOOOOO01 
If REGISTER : 05 O%OOO93 
IPREGISTER : 06 oIlK@OOD 
IP REGISTER : 07 OOOOOOIF 
IP REGISTER : 08 0000475E 
lPREGlSTER:O9OOOWOOO 
IP REGISTER : 10 01000127 
IP REGISTER : 11 OOOOOOOF 
IP REGISTER : 12 OOOOOOlF 
IPREGlSTER: 13QoOOOOO7 
IP REGISTER : 14 OOOOOOOF 
IP REGISTER : 15 00000007 
IP REGISTER : 16 OOOOOO7F 
lP REGISTER : 17 OOOO3F71 
IPREGJslER: 18~ 
IPluxxlER: 19~ 
IP~~:20~ 
IP~Gl~:21~3 
IP REGISTER : 22 024D81BB 

1P REGlSTER : 24 OOOOOO3F 
IP REGlSTER : 25 ooO3F718 
IP~~:26~ 
IP REGISTER : 27 OOOOOQOF 
IP REGISTER : 28 OOOFF 184 
IP REGISTER : 29 OOOlTl88 
IP REGlSTER : 30 OOOOOOOF 
IPREGlSTER:3100000000 

prompt. They do not have to be aware of 
the sequence of scan operations and 
clock pulses that dumpgprs performs 
to read the general-purpose registers. 

One important aspect of the 
dump-gprs procedure is the use of 
scan techniques to access nonscanna- 
ble logic. Access to nonscannable 
hardware is similar to traditional scan- 
testing techniques. Both require a set- 
up of logic inputs, followed by an 
application of system clocks, followed 
by an examination of logic outputs. 
Scan-in and scan-out operations con- 

, 

trol logic input and observe logic out- 
put. Multiple clock cycles are usually 
needed to propagate the state of the 
nonscannable logic to a point where it 
can be observed via scan. Without the 
scan buses provided by RISE++, access 
to the scan bits that allow control and 
observation of nonscannable logic 
would be difficult, since these bits are 
usually spread out among several chips 
on a board. The scan buses allow the 
logic to be considered at a functional 
level even though it is actually being 
accessed via scan operations. 

The brevity of the dumpgprs script is 
also notable. AC language program that 
duplicates the functionality of the script 
required approximately 1,000 lines of 
source code, yet the Tel script is only 13 
lines long. Much of the compactness of 
the dumpgprs script results from the 
use of scan buses. The values of many 
scan bits can be set with one RISE+t 
command, while each bit must be set 
separately in the C language program. 
T’he dumpqprs script shows both the 
power of expression in the Tel language 
and its simplicity. 

Cache RAM testing. While the 
dumpgprs script is relatively simple, a 
more complex RISE-H test procedure 
provides fault detection and isolation for 
[he cache RAMS on the CPU-TX board. 
This facility is composed of 10 userde- 
lined procs consisting of approximately 
1,000 lines of Tel code. We developed it 
3ver the course of several weeks during 
the laboratory debugging of the hard- 
ware prototype of the CPU-TX board. De- 
velopment proceeded from the bottom 
up; that is, we wrote the simpler procs 
first and then refined and combined 
:hem into larger procs as the need arose. 

One notable aspect of the cache RAM 
RISE-H procs is that they strongly resem- 
3le the code used to simulate them. 
3nce the cache test algorithms were ver- 
fied on the logic simulator, we used the 
YSEtt naming facility to create scan 
3use-s that provide the same logical view 

of the hardware as presented by the sim- 
ulator. The test code was thus easily and 
directly translated from the logical simu- 
lator environment to RISE+. 

Testability features designed into the 
CPU-TX hardware simplify the testing of 
the cache RAMS, but the testing process 
still requires a large number of scan bits 
to be controlled and observed. Without 
the naming services and debugging fa- 
cilities of RISE++, the development of 
the cache tests would have required sev- 
eral person-months rather than several 
person-weeks to complete. 

Large RISE++ tests. Reilly et al. hint 
at performance problems caused by the 
use of scannable entity name translation 
for critical functions4 They developed a 
compiler to solve their problems. It per- 
formed the name translation process 
and produced data for entire scan rings, 
allowing for the elimination of the trans- 
lation overhead from the runtime of the 
critical functions. 

For large RISE-H test procedures such 
as the cache RAM tests, a similar process 
dubbed snapping eliminates the thou- 
sands of name-to-address translations 
that may occur when using the RISE+ 
naming services. Once a large test Proc 
has been developed, debugged, and 
readied for production use, the process 
initializes input chip vectors via the 
RISE+ naming services and takes “snap 
shots” of their values. This raw scan vec- 
tor data is then used in the production 
test procedures in lieu of calling the 
naming services for data translation. No 
special compiler is used for snapping, 
however; the test script itself obtains 
data snapshots. The snapping process 
results in large RISE++ test procs that ex- 
ecute five to 10 times faster than the otig- 
inal test scripts. 

Other scan archktures 
Note that the HP/Apollo Series 10000 

scan architecture was developed before 
the IEEE 1149.1 boundaryscan stan- 
dard’O and differs from it in several ar- 
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eas. This means that RISE-H as currently 
implemented cannot handle devices 
conforming to that standard. 

However, most if not all of the con- 
cepts and techniques used to design 
and implement RISE+t are applicable to 
1149.1 and other scan architectures. For 
example, remote testing has been 
achieved for 1149.1 architectures via 
specialized hardware attached to a host 
system that supports the remote display 
capabilities of the X Window System.” 

Test systems that run on workstations 
or personal computers rather than ex- 
pensive dedicated test machines have 
been described elsewhere.‘*J3 Most 
Unix systems provide simple databases 
like those used for symbol storage and 
retrieval in RISE-H, and other more so- 
phisticated database systems are com- 
mercially available. The Tel software 
used to implement the RISE++ extensi- 
ble command line interface is freely 
available via the anonymous file transfer 
protocol (RP) over Internet from 
sprite.berkeley.edu. Discussions con- 
cerning it can be found on the Usenet 
comp.lang.tcl newsgroup. Finally, com- 
pilers for the C+t programming lan- 
guage are readily available for most 
platforms. All in all, the success of 
RISE-H comes from the application of 
proven technologies to the scan-testing 
problem domain. 

Comparison to other systems 
Three other remote scan debugging 

systems for the HP/Apollo Series 10000 
workstation preceded RISE-H. These 
programs proved that remote scan test- 
ing was possible, and their development 
provided many insights into how a tool 
like RISE+t should ideally be designed 
and implemented. The Advanced Tech- 
nology Logic Analyzer System (AT- 
~)',I4 was the first of these systems, 
followed by the Extensible Logic Analyz- 
er (ELA),14 and the first-generation Re- 
mote Interactive Scan Environment 
(RISE). All three tools aid in the debug- 
ging and testing of the prototype hard- 
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ware, but only RISE was intended for use 
in a manufacturing environment. 

The implementation of ATLAS was 
based on prototype versions of much of 
the software used within RISE-H. Careful 
analysisshowed that substantial efficien- 
cy gains could be made by redesigning 
the ATLAS scan subsystem driver to ex- 
ecute faster and take up less RAM space. 
The scan subsystem driver software 
used by RISE+ was the result of this 
analysis and redesign. Also, improve- 
ments could be made in the remote pro- 
cedure call server software; this resulted 
in the custom remote procedure call 
code used in RISE++. 

For scannable entity naming services, 
ATLAS relied upon compiled Pascal 
records to represent scan vectors, and the 
Fields of the records could be examined 
and modified via a software debugger. De 
lrelopels quickly recognized that consider- 
sble flexibility could be gained by moving 
to an interactive naming service. 

The designs of ELA and RISE solved 
some of the ATLAS problems. For exam- 
ple, the scannable entity-naming 
schemes of both ELA and RISE relied 
tipon ASCII text files. Loading these files 
zither when the program starts up or at 
:he request of the user allows users to 
easily customize the names of the scan- 
nable elements. 

However, an effective naming mech- 
anism for RlSE+t was needed to im- 
prove the speed and efficiency of the 
name-loading mechanisms. Measure 
ments for ELA indicated that the naming 
files for each board in the system took 
approximately five minutes to load. For 
a system containing seven or eight 
boards, the EL4 and RISE naming mech- 
anisms were not efficient. The dynamic 
name-loading mechanism of RISE-H 
overcame these problems. 

The command lines of ATLAS and 
EL4 provided limited extensibility for 
users. RISE provided a graphical user in- 
terface rather than a command line, 
making predetermined operations sim- 
ple to perform. However, users required 

All in all, the success 

of RISE++ comes hm 

he appliccalion of 

proven technologies 

fo fk scan-testing 

prvblem domain. 

programmability at the command line 
level to create custom test scripts that 
solve special unforeseen test problems. 
The programmable RISE+t command 
line interface grew out of the recogni- 
tion of this need. 

The Advanced Support System for 
Emulation and Test (ASSET) from Texas 
lnstruments is arguably one of the most 
advanced scan software systems com- 
mercially available today.‘* With ASSET, 
users can develop and apply tests to 
scannable circuits that conform to the 
1EEE 1149.1 boundalyscan standard. It 
shares many of the same features of 
RISE++, such as the naming of scanna- 
ble entities and commands for abstract 
scan operations. 

ASSET executes on a personal com- 
puter, which is attached to the system 
under test via a direct hardware connec- 
tion. ASSET provides no programmable 
command language, but it does allow 
users to use C+ modules to customize 
its graphical user interface for their spe 
cific test applications. The fact that the 
Series 10000 scan architecture preceded 
the 1149.1 boundq+can standard meant 
that ASSET was not a viable environment 
for Series loo00 test development. 

hE VARIOUS m-6 provided 
by RISE++ provide a productive environ- 
ment for the development and applica- 
tion of scan-based tests. The scan 
subsystem driver software allows RISE-H 
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to provide low-level access to the scan 
hardware from its command line. Users 
can accurately control the testability fea- 
tures of the Series 1 O O O Q  workstation from 
a remote system. At the same time, the 
RISE-H naming services provide a high- 
level logical view of the scannable hard- 
ware under test by allowing arbitrary 
named scan bits to be grouped into logi- 
cal scan buses. The use of the program- 
mable Tel language enables users to 
build upon and greatly extend RISE+ 
functionality tosuit their needs. Even tests 
for embedded nonscannable logic such 
as cache RAMS can be easily developed 
using scan test techniques due to the 
powerful combination of the RISErH fea- 
tures described here. 

Even though RISE-H is a complex 
software system, the use of object- 
oriented design and implementation 
techniques made it relatively easy to de 
velop. RISE-H is composed of approxi- 
mately 40,000 lines of C++ and C, and it 
required one person-year to design and 
implement. 

Note that the design goals and archi- 
tecture of RISE-H are suitable for most 
other scan architectures, including the 
1149.1 boundary-scan standard, even 
though the current implementation is 
specific to the Series 10000 scan 
architecture. 

The object-oriented design and im- 
plementation of RISE+ has resulted in a 
system that mirrors the construction and 
operations of the hardware domain. The 
abstractions provided by RISE-H fit natu- 
rally into the problem domain of hard- 
ware designers, test engineers, and 
manufacturing technicians, thus en- 
hancing their productivity. 

Forseveral reasons, including an inter- 
nal company focus on Hewlett-Packard’s 
PA-RISC architecture and a shift away 
from the HP/Apollo Series 10000 architec- 
ture, work on RISE+tended in early 1991. 
I hope the ideas described here, which 
made RISE-H a productive and success 
ful test tool, will help others who face sim- 
ilar test development needs. @  
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