
Toward Integration

90 JULY • AUGUST 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Putting the “Web”
into Web Services

Web Services Interaction Models, Part 2
Steve Vinoski • IONA Technologies • vinoski@ieee.org

A s I discussed in my previous column, each
different style of middleware promotes one
or more interaction models that determine

how applications based on that middleware com-
municate and work with each other.1 In the rela-
tively simple publish-subscribe model, for example,
a source publishes information, perhaps by posting
it to a message queue, and subscribers interested in
that information either retrieve it from the queue or
receive it automatically from a broker. Complex
interaction models, on the other hand, often arise in
distributed object systems, in which stateful objects
rely on clients to properly manipulate their state
through sequences of method invocations.

Web services are still evolving, and so the
industry is far from reaching consensus on what
interaction models best suit them. Some vendors
are attempting to push existing middleware sys-
tem models, such as Corba and Enterprise Jav-
aBeans (EJB), directly into Web services, but as I
described last issue, this approach is fraught with
problems. One of the worst is that it causes inap-
propriate details (about protocols, type systems,
interaction models, and so on) to show through the
Web services level from the underlying systems,
destroying the service encapsulation and isolation
that Web services are supposed to provide.

Still, it is difficult to say what the best interac-
tion models would be for Web services — mainly
because the World Wide Web Consortium (W3C) is
still developing the architecture.2 Architectural style
profoundly influences interaction models because
the elements of a given middleware’s architecture
ultimately determine what developers can use it for.
Several high-level interaction models are possible
given today’s Web services architecture and capa-
bilities, but there is one architectural style that is
gaining popularity for use with Web services
because of its affinity with the Web.

Remote Procedure Calls
“When all you have is a hammer, everything looks
like a nail.” This particular bit of wisdom can
unfortunately be applied to numerous cases with-
in our industry — now including RPC for Web ser-
vices. Many people involved in Web services
today have only the RPC hammer in their tool-
boxes, and they seem unable or unwilling to con-
sider other possibilities.

It might seem obvious to apply RPC approaches
to using Web services to integrate existing busi-
ness logic implemented in RPC- or method-based
middleware with another flavor of middleware. In
practice, however, higher-level integration efforts
typically follow different patterns than the lower
levels they’re integrating. RPC-based approaches
usually result in a tight coupling between caller
and service, which might be right at a low level but
completely wrong for an upper-level integration.

A high-level integration might supply a service
for handling purchase order documents, for exam-
ple, making use of a credit card authorization ser-
vice at a lower level. A developer would naturally
use RPC to design and implement the authorization
service because there is no choice after invoking the
service but to wait for a reply before continuing
with order processing. Given that purchases can
sometimes take days or even weeks to process, using
RPC to design and implement the overall purchasing
service would be questionable, because RPCs do not
support such long-running activities very well.

In general, Web services are best for high-level
integration in which performance issues are not crit-
ical. Performance is almost always a factor in efforts
that use proprietary messaging middleware, J2EE,
or Corba, and implementers have put countless per-
son-years of effort into meeting these demands and
making such systems as fast as possible. Such sys-
tems are thus effective for tight integrations and

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2002 91

Interaction Models

performance-critical applications — sit-
uations in which Web services simply
cannot compete. In other words, there
is no point reinventing these successful
middleware wheels with Web services
just because it’s the latest technology
fad. Rather, Web services are best for
integrations that combine several high-
performance applications, written using
these already successful approaches,
into new or improved coarse-grained
business processes.

Web Services
and Messaging
Messaging-based systems are general-
ly more loosely coupled than RPC-
based systems. Given the integration
levels for which Web services are best
suited, messaging fits well into the
Web services picture.

Considering the example application
again, we see that the overall purchas-
ing system should be message-based:
The buyer would initiate a purchase by
sending a message containing a pur-
chase order document. As the service
processed the purchase order, it could
send status messages back to the buyer
for tracking purposes. Once it complet-
ed the order, the service could again
notify the buyer with an “order com-
pleted” message containing shipping
details. RPC would be inappropriate for
the purchasing system because it
would couple the buyer and service too
tightly, both in terms of technology
(you’d need the same RPC-oriented or
method-oriented middleware on both
ends) and in terms of interaction (if
either side became unavailable, the
other side could be unnecessarily
blocked from further processing).

Because they are document-orient-
ed, messaging systems fit well with
Web services, which manipulate XML
documents.3 Messaging-based systems
essentially let data travel from one ser-
vice to another, allowing each to
process the data as necessary without
tightly coupling the services. The fact
that each service generally expects
data input in a particular format to be
able to produce the desired output sug-
gests that upstream services must pro-

duce the exact data expected down-
stream. This is not necessary in prac-
tice, however, because data can be
transformed between services into the
appropriate format — especially with
XML data, which is easy to transform
via tools such as XML Style Language
Transformations (XSLT).

Given that numerous messaging
solutions already exist, it is fair to ask
whether Web services just reinvent the
messaging wheel. Fortunately, there are
real differences between existing sys-
tems and Web services. One significant
example is that Web services are being
defined through open standards. Exist-
ing messaging systems tend to be pro-
prietary, requiring that sender and
receiver both install the same middle-
ware from the same vendor to properly
communicate. This approach inhibits

scalability and ignores the reality that
enterprise networks are inherently het-
erogeneous, especially at the middle-
ware level. Basing Web services on open
standards greatly reduces such issues by
allowing for interoperability between
different suppliers’ implementations.

Using Web services for higher-level
integration works naturally with mes-
saging. Not only does a high-level Web
service integrate and encapsulate
lower-level, more tightly coupled tech-
nologies into coarse-grained business
processes, but it does so while provid-
ing loosely coupled access to the over-
all encapsulated service. Such a Web
service might take in an XML docu-
ment from a message, for example, and
extract data fields from the document
to feed into the underlying services it
encapsulates. Alternatively, it might
produce a new XML document by
invoking the lower-level services,
using their outputs to populate fields in
the document. Web services like these
serve as orchestrators or aggregators
because they combine multiple lower-

level services into single higher-level
offerings at new levels of abstraction.
In the process, they eliminate the
impedance mismatch between business
and technology layers, and between
loosely and tightly coupled layers.

Interface Complexity
Messaging systems typically provide
simple fixed interfaces based on queu-
ing or hub-and-spoke abstractions,
whereas RPC-oriented systems (such as
distributed object systems) usually
exhibit highly complex and varied
interfaces. This complexity is not acci-
dental: Reflecting their evolution from
statically typed programming lan-
guage systems, RPC-based systems
explicitly promote the development of
specific and separate interfaces for
each object or service. Interfaces

developed for such systems tend to be
fine-grained, in part to capture and
publish the interfaces’ associated
semantics, and in part to enhance per-
formance and flexibility.

An interface establishes the “proto-
col” used to communicate with the
object or service that implements it. In
this context, I do not mean network pro-
tocol, but rather the “conversation” or
sequence of method invocations the
caller must perform to properly interact
with the object or service. Each different
interface effectively establishes a proto-
col with its own nuances and semantics.

As a system scales, it becomes
increasingly difficult to keep track of
each interface’s semantics. As I
described last time, that gives rise to
the need for the discovery portion of
the service-oriented architectures.
Unfortunately, because discovery ser-
vices cannot convey semantics, they
can’t teach a random application what
it needs to know — the protocol it must
understand — to properly communi-
cate and interact with a service that it

Without Rest, the name “Web services” is a
misnomer, as tunneling Soap through HTTP
is hardly Web-friendly.

92 JULY • AUGUST 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

initially knows nothing about.
As the number of different inter-

faces in a system rises, the number of
possible interface protocol interactions
increases by the square of the number
of interfaces deployed: O(n2). Interface
versioning that occurs as a side effect
of system evolution also contributes to
the overall complexity. Many (includ-
ing me) believe that this complexity
factor has been the primary inhibitor
for expanding interface-oriented sys-
tems such as Corba and EJB to an
Internet scale. If Web services systems
are to scale beyond the limits of tradi-
tional middleware, they need to avoid
both the interface interaction com-
plexity problems of RPC-oriented sys-
tems, and the proprietary nature of
messaging-based systems.

Web Services at Rest
Fortunately, we already know how to
avoid the interface complexity problem
— using the same solution that allows
you to interact with any Web site by
providing a browser with the HTTP URI,
even though you’ve never visited the
site before. It’s essentially what makes
the World Wide Web work.

Though it is often mistaken for a
transport protocol, HTTP is really an
application protocol.4 Those seeking to
exploit HTTP’s ubiquity — to transport
Soap over it, for instance — tend to focus
on its ability to transport other protocols,
an act commonly called “tunneling.” In
reality, the fact that HTTP is an applica-
tion protocol means that it is much more
than just a transporter of bytes.

HTTP provides application-level
semantics via its “verbs:” GET, POST,
PUT, and DELETE. These verbs form a
generic application interface that can
be applied in practice to a broad range
of distributed applications despite the
fact that it was originally designed for
hypermedia systems. Because of HTTP’s
application-level semantics, tunneling
other protocols over or through it is an
abuse of the protocol if the tunneling
does not respect those semantics. For
example, failure to conform to HTTP
application semantics can break inter-
mediaries that serve as proxies or

caches, as they usually perform their
functions based on the standard seman-
tics associated with the HTTP verbs in
the messages flowing through them.

In his doctoral dissertation, Roy
Fielding coined the term “representa-
tional state transfer” (Rest) to describe
the Web’s architectural style.5 Rest uses
standardized interfaces to promote
stateless interactions by transferring
representations of resources, rather than
operating directly on those resources.
There is far more to Rest than I can
describe here, so please refer to Roy’s
dissertation and the RestWiki site (inter-
net.conveyor.com/RESTwiki/moin.cgi/
FrontPage) for more details, and see
Paul Prescod’s convincing case study
that applies Rest principles to improve
the Google search engine Web service.6

As it relates to this column, however,
the key point about Rest is that its inter-
action models — the very ones that
govern traditional Web interactions —
are wholly suitable for Web services as
well. Web services are identifiable via
URIs, and regardless of the wide variety
of abstractions they might collectively
represent, they can all be implemented
using the same generic interface that
HTTP’s verbs provide. Without Rest, the
name “Web services” is a misnomer, as
tunneling Soap through HTTP is hardly
Web-friendly. (“Internet services” might
be a more accurate, though less mar-
keting-friendly, name for such a tun-
neling system.)

Given that one of W3C’s goals is to
create standards that are consistent
with the existing Web architecture, it
is not surprising that Rest is garnering
attention in the Web services stan-
dardization efforts. Until recently, the
Soap specification required all mes-
sages sent via the Soap-over-HTTP
binding to be tunneled through HTTP
POST, regardless of whether those
messages obeyed POST semantics. As
of this writing, however, the W3C
XML protocol working group is look-
ing at supporting HTTP GET in Soap
1.2 to make Soap fit better with the
Web architecture. The relationship
between Rest and Web services is also
under discussion within W3C’s tech-

nical architecture group (TAG) and
Web services architecture working
group. Rest is clearly influencing the
Web services architecture, and it
stands to play an important role in
determining the interaction models
the industry will eventually adopt for
Web services.

Add Rest to Your Toolbox
Because I am a longtime RPC advo-
cate, associates are often surprised
when I promote Rest. From what I’ve
learned about it to date, I know that
it neatly solves some of the complex-
ity and scaling issues faced by RPC-
based distributed systems. I suggest
those with backgrounds similar to
mine take the time to seriously study
Rest and learn how it works. The fact
that the Web — the largest and most
successful distributed system in exis-
tence — is built on Rest principles
should be enough to convince even
the most stalwart advocates of other
interaction models that Rest holds
significant promise for putting the
“Web” back into Web services, and
aligning their interaction models with
existing Web architecture.

References
1. S. Vinoski, “Web Services Interaction Mod-

els — Part 1: Current Practice,” IEEE Inter-
net Computing, vol. 6, no. 3, May/June
2002, pp. 89-91.

2. D. Austin, A. Barbir, and S. Garg, “Web Ser-
vices Architecture Requirements,” W3C
working draft, Apr. 2002.

3. E. Newcomer, Understanding Web services:
XML, WSDL, SOAP, and UDDI, Addison-
Wesley, Boston, Mass., May 2002.

4. R. Fielding et al., “Hypertext Transfer Pro-
tocol — HTTP/1.1,” Internet Engineering
Task Force RFC 2616, June 1999; available
at www.ietf.org/rfc/rfc2616.txt.

5. R.T. Fielding, Architectural Styles and the
Design of Network-Based Software Architec-
tures, doctoral dissertation, Dept. of Comput-
er Science, Univ. of California, Irvine, 2000.

6. P. Prescod, “Google’s Gaffe,” O’Reilly &
Assoc., Apr. 2002; available at www.
xml.com/pub/a/2002/04/24/google.html.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He currently serves as IONA’s rep-

resentative to the W3C Web Services

Architecture working group.

