
Toward Integration

84 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

Serendipitous Reuse

Steve Vinoski • Verivue

A ccording to the dictionary on my Macbook
Pro, the word serendipity means “the oc-
currence and development of events by

chance in a happy or beneficial way.” The dic-
tionary entry also explains that the term comes
from an old fairy tale, “The Three Princes of Ser-
endip,” in which the title characters repeatedly
make pleasant discoveries of things for which
they’re not specifically looking. It’s probably
safe to say that we’ve all experienced serendip-
ity at one time or another and, like the three
princes, gladly welcome it whenever it comes
our way.

In October 2007, I read a blog entry by Stu
Charlton of BEA Systems (www.stucharlton.
com/blog/archives/000165.html) in which he
used the term serendipity to describe a style of
integration and reuse that the Web encourag-
es. He contrasted this with the “planned” style,
which is the approach that enterprise architects
typically prefer for reuse and integration.

A few weeks later, I serendipitously met Stu
at the QCon 2007 Conference in San Francisco.
I mentioned that I thoroughly appreciated how
he had used the term in his blog. To me, this
single word speaks volumes about the nature
of the Web and why it’s become such an indis-
pensable tool within our daily lives. For exam-
ple, serendipity is the best explanation for Web
mashups, in which the capabilities of unrelated
Web sites are combined to create new sites that
provide benefits beyond those that the original
developers had intended or even considered. Stu
explained that he’d borrowed the term from Roy
Fielding of Day Software, who also happens to
be the coauthor of the HTTP 1.0 and 1.1 specifi-
cations and the creator of the Representational
State Transfer (REST) architectural style. In
searching the Web for the terms “Fielding” and

“serendipity,” I found several references to the
following quote:

Engineer for serendipity.� —Roy Fielding

Some might find this quote puzzling, given
that by definition, we can’t plan for serendipity.
If we’re wise, we never assume that serendipity
will come along just in time whenever we need
it. So is it really possible, as Fielding suggests,
to make a given situation more amenable to ser-
endipity? Is it feasible to arrange the primary
elements of an area such as enterprise integra-
tion in a way that encourages the development
of beneficial applications that the enterprise ar-
chitects never dreamed of?

Inhibiting Serendipity
Before examining how we might nurture seren-
dipity, let’s explore how we often unwittingly
hinder it. It turns out that software develop-
ment and integration practices that are widely
viewed as advantageous to the enterprise can
actually inhibit integration and reuse — not
only of the serendipitous kind but even of the
planned kind.

Enterprise architects tend to favor practices
and approaches based on a service-oriented ar-
chitecture (SOA). Many approaches to connect-
ing software systems, including but not limited
to Corba, many Java-based integration systems,
and .NET, generally follow the best practices
of SOA. For example, each promotes the use of
specialized interfaces or contracts for describing
the systems and services being connected. Ser-
vice contracts define the operations that services
furnish for client applications to invoke. These
contracts also define the data types that the ser-
vices expect as input and return as results.

JANUARY/FEBRUARY 2008� 85

Serendipitous Reuse

Examples of languages that al-
low for the definition of specialized
interfaces include the Web Services
Description Language (WSDL) and
the Corba Interface Definition Lan-
guage (IDL). Yet, regular program-
ming languages such as Java and
C# increasingly perform double duty
as contract-definition languages as
more developers attach special meta-
data, in the form of extra language
declarations called annotations, to
normal interfaces and classes. These
annotations can help tools generate
the glue needed to plug objects of
these types into service messaging
and distribution platforms.

The overall goal with service
contracts is to make the coupling be-
tween callers and services clear and
unambiguous. The SOA community
widely accepts that service contracts
help separate interface from imple-
mentation. Another assumed ben-
efit is that contracts let developers
implement callers and services in
separate languages, but this isn’t al-
ways true, especially given the rate
at which programming languages
are replacing traditional interface
definition languages. Using a regu-
lar programming language to de-
fine supposedly abstract interfaces
greatly increases the chances that
language-specific constructs will
leak into the contract.

The benefits of contracts might
seem obvious, but specialized service
contracts and interfaces also have
downsides. One negative aspect is
that each specialized interface effec-
tively represents a specialized proto-
col between a caller and a service.
To invoke a service, a caller must
incorporate details of each specific
operation defined in the service’s
contract. In other words, the spe-
cialized interface forces each calling
application to include custom code
specific to the operations it wants to
call. Calling applications must also
be cognizant of each contract’s “im-
plied workflow,” which is the order

in which the service’s operations
were designed to be invoked.

The more specific the service in-
terface, the less likely it is to be re-
used, serendipitously or otherwise,
because the likelihood that an inter-
face will fit what a client application
requires shrinks as the interface’s
specificity increases. Highly special
ized interfaces inhibit general reuse
because only purpose-built clients
can invoke them. Should require-
ments change — and they will — mo
difying such highly specialized
services and clients to fulfill the new
requirements can be costly because
of the high degree of coupling be-
tween them.

Typical SOA platforms also in-
hibit serendipitous reuse. They often
include vendor-specific services and
extensions designed to make cus-
tomer applications easier to develop,
or provide features that go beyond
the relevant industry standards. But
however well intentioned, such ex-
tensions and add-ons often end up
forcing all participating applications
— clients and services, alike — to use
the same underlying platform or risk
interoperability problems. This situ-
ation leads to the dreaded “vendor
lock-in.”

The problems don’t end there.
Platforms can inhibit reuse even if
they avoid extensions and stick only
to industry standards because the
standards themselves also subscribe
to the school of interface specializa-
tion, such that every different aspect
of distributed system interaction re-
quires a specific interface. Standards
end up publishing special interfaces
for a wide variety of areas, such as

different message exchange
patterns;
registering and finding services
and their metadata;
configuration, management, trans
actions, and security services;
and
business process orchestration
and workflow.

Given that market pressures force
vendors to support as many relevant
standards as possible, service plat-
forms can wind up bloated and over-
ly complicated. Even if they never
use all the platform features, cus-
tomer applications still pay for the
underlying platform complexity.

Much of the weight and complex-
ity of service interface specializa-
tion and platform implementations
stem from the Remote Procedure
Call (RPC) ancestry of these systems
and approaches. RPC is intended to
let programmers use familiar proce-
dure, function, and object method
invocation approaches to invoke re-
mote services. Although researchers
and developers long ago discredited
local/remote transparency, which is
the trick of pretending that a distrib-
uted invocation is the same as a lo-
cal one, today’s SOA platforms often
tend to promote distributed system
development centered on program-
ming languages and integrated de-
velopment environment (IDE) tools.
This development style forces idioms
and patterns that are appropriate
only for local applications — es-
pecially the idiom of crafting spe-
cialized interfaces for each service
— to be unwittingly projected onto
the distributed systems domain. The

•

•

•

•

The benefits of contracts might seem obvious,
but specialized service contracts and interfaces
also have downsides.

Toward Integration

86 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

layers of complexity required to
maintain the resulting leaky illusion
of local/remote transparency are
reminiscent of the convoluted equa-
tions that pre-Copernican astrono-
mers used to explain how the Sun
and other planets revolved around
the Earth.

Reuse Begets Reuse
If the proliferation of specialized
interfaces inhibits reuse, reducing
interface differentiation should in-
crease it. Software frameworks are a
prime example of this phenomenon
because extending a framework nor-
mally requires developers to provide
implementations that conform to ex-
isting framework interfaces rather
than inventing their own. Develop-
ers achieve reuse both by extend-
ing the framework to the particular
problem they’re trying to solve and
by making their specialized imple-
mentations available through the
framework to other users.

When it comes to software inte-
gration and service architectures,
one alternative to specialized ser-
vice interfaces is the uniform inter-
face — one of the REST architectural
style’s constraints, defined to help
induce desired architectural prop-
erties. Systems that conform to the
uniform interface constraint gain
several advantages:1

System resources adhere to the
same semantics for each opera-
tion in the uniform interface,
thus simplifying client applica-
tions by eliminating the need for
custom code to support special-
ized interface semantics.
Developing resources means de-
signing your implementation to
fulfill the uniform interface and
its expected semantics, essential-
ly eliminating the development
phase required for designing sep-
arate interfaces for each resource,
with their specialized semantics
and implied workflow.

•

•

Error handling is typically a
source of significant variance
between interfaces as interface
designers individually cook up
their own data structures and ex-
ceptions for reporting problems.
Under the uniform interface con-
straint, however, error handling
also gains uniformity.
Intermediation becomes highly
practical because intermediar-
ies can understand the uniform
interface semantics just as well
as resources and clients can. For
example, a uniform interface can
specify which calls are idempo-
tent (that is, can be called repeat-
edly without side effects) and
which aren’t. Resources can in-
clude cache control information
in responses to idempotent opera-
tions, so that developers can eas-
ily insert caches between a client
and the resources it uses without
breaking the client or needing to
specialize the caches for the in-
voked resources. Along the same
lines, introducing monitoring in-
termediaries makes watching
over client–resource interactions
almost trivial.
Without the presence of numer-
ous specialized interfaces, over-
all system simplicity increases,
which typically decreases the
number of defects.
Interface versioning issues are
significantly reduced, though not
entirely eliminated.
The overall system becomes much
more extensible.

The primary trade-off of the uniform
interface constraint is a possible de-
crease in efficiency for some clients
due primarily to having to deal with
more general data formats. However,
this seems well worth it, given the
overall gains the constraint yields in
simplicity, visibility into system in-
teractions, and extensibility.

It’s important to note, though,
that “uniform” doesn’t mean “as ge-

•

•

•

•

•

neric as possible.” We could easily
abuse the notion and create a com-
pletely generic interface consisting
of a single operation:

BagOfBytes
processThis(BagOfBytes);

The problem is that such a generic
operation is necessarily semanti-
cally weak, which means that clients
can have no expectations regarding
what it might do. Clients have to
assume it isn’t idempotent and that
its results aren’t cacheable. Visibil-
ity via intermediation also becomes
impractical. Idempotency, caching,
visibility, and other properties can
be critical to system performance
and scalability. They’re so valuable
that it’s practically unthinkable to
develop distributed systems without
considering them. Moreover, this
interface’s lack of semantics makes
reusing it just as difficult as reusing
a specialized interface.

The Web is a REST-based system,
and its uniform interface consists of
HTTP’s verbs — primarily GET, PUT,
POST, and DELETE. Together, they
represent a fine balance between
generality and specificity, between
arbitrary openness and iron-fisted
control. They’re broadly applicable,
but they also help uphold specific
Web architectural properties. Rather
than being chosen by accident, these
verbs represent the judicious applica-
tion of constraints to induce desired
architectural properties, as Fielding
details in his thesis.1

Control
Enterprise architecture is primarily
about control. Architects put rules in
place hoping to achieve application
consistency across the enterprise,
increase the chances for reuse, and
cut costs. Unfortunately, as I’ve men-
tioned, allowing the proliferation
of ad hoc interfaces creates a losing
battle for the architect trying to gain
buy-in for such rules. Many such

JANUARY/FEBRUARY 2008� 87

Serendipitous Reuse

architects are SOA enthusiasts who
intentionally ignore REST and its el-
ements, constraints, properties, and
relationships. Ironically, if applied
properly, REST could yield the very
consistency and reuse they seek.

Following REST would also re-
duce the need to continuously rein
in those enterprise developers who
don’t necessarily see the same value
in the rules the architect wants to
enforce. Perhaps most unfortunate,
though, is the fact that few enter-
prise architects realize that they’re
quite unlikely — even as talented as
they might be — to devise something
as well-balanced, broadly applicable,
and inherently powerful as REST;
whatever they come up with will al-
most certainly come up short in var-
ious technical areas. This, in turn,
makes their quest for control and
buy-in that much more difficult.

The Web is, in effect, an expan-
sive application framework. If you
implement your resources to obey

its uniform interface and other con-
straints and plug those resource
implementations into the Web
framework, they’ll be fairly consis-
tent as well as instantly usable by a
wide variety of clients. This applies
not only to the World Wide Web but
also to intranets and enterprise webs
as well. If your resources conform
to the broadly agreed Web interface,
chances are quite good that unex-
pected clients will serendipitously
reuse them in unforeseen ways.

I t’s highly ironic that many enter-
prise architects seek to impose cen-

tralized control over their distributed
organizations. In many cases, such
centralization is a sure recipe for
failure. A proven framework based
on a well-constrained architectural
style like REST allows for decentral-
ized development that, because of
the architectural constraints, still
yields consistency. The Web itself is

proof that this form of “control with-
out controlling”2 works. In the long
run, this approach is far more likely
to achieve what architects seek than
trying to enforce collections of ad
hoc governance rules.

Reuse the Web and you thereby
increase the chances that what you
put there will be reused. Roy Field-
ing is right: you can engineer for
serendipity.�

References
R.T. Fielding, Architectural Styles and the

Design of Network-Based Software Ar-

chitectures, doctoral dissertation, Dept.

of Computer Science, Univ. of California,

Irvine, 2000.

P.M. Senge, The Fifth Discipline: The Art

& Practice of the Learning Organization,

Currency, 1994.

Steve Vinoski is a member of the technical

staff at Verivue. He’s also a senior mem-

ber of the IEEE and a member of the ACM.

You can reach him at vinoski@ieee.org.

1.

2.

