
Toward Integration

RPC Under Fire

I n 1976, James E. White of the Stanford
Research Institute published details in RFC 707
about what would come to be called the

remote procedure call (RPC).1 He described his
“procedure call model” as a way of making the
networked environment seem completely familiar
to application developers, rather than exposing
the network directly to them and thus presenting
them with a development model so different that
they would be scared away from writing distrib-
uted programs. Bruce Jay Nelson and Andrew D.
Birrell of the Xerox Palo Alto Research Center
published their seminal paper on implementing
RPC in 1984.2 Their work provided the corner-
stone for the many RPC-based distributed systems
that would follow, including Apollo’s Network
Computing System (NCS), Sun RPC, the Open
Software Foundation (OSF) Distributed Comput-
ing Environment (DCE), and various object-
oriented offspring such as Corba, Microsoft COM,
and Java Remote Method Invocation (RMI).

Although many successful distributed systems
have been built using RPC, we’ve known for a
while that it’s imperfect, even fundamentally
flawed, because it ignores the all-too-real possibil-
ity of partial failures by attempting to make the
network appear to be just another part of the local
environment. A partial failure occurs in a distrib-
uted system when a remote application or the net-
work itself fails, thereby introducing the need for
applications to handle error conditions that simply
can’t arise with local procedure calls. Lately, how-
ever, RPC seems to be taking even more heat than
usual, mainly because of continuing advances in
Web services and XML-based messaging.

RPC Confusion
First, I want to clear up some confusion that’s
become a pet peeve of mine: many people
incorrectly equate RPC with synchronous

request–response messaging. Although RPC
requires such messaging capabilities to emulate the
call–return semantics of local procedure calls, the
inverse is not true; synchronous request–response
messaging doesn’t automatically imply the use of
RPC. After all, an application can perform syn-
chronous messaging by calling low-level general
functions such as send and recv, instead of call-
ing stubs representing specific remote procedures.
Request–response is a network-level message
exchange pattern, whereas RPC is an application-
level abstraction intended, as White explained in
RFC 707, to hide the network.

Equating RPC with synchronous messaging
means the latter wrongly suffers the same criti-
cisms as RPC. Asynchronous and synchronous
messaging each have their places in distributed
systems, and neither can completely replace the
other. In human communications, for example, we
use both asynchronous (email, voice mail, and
such) and synchronous messaging (face-to-face
conversations and instant messages, for example)
every day. If we need information before taking
the next step in our daily tasks — performing a
Google search, purchasing something online, and
so on — we usually choose synchronous messag-
ing. For similar reasons, distributed applications
require both synchronous and asynchronous com-
munications as well.

Although RPC is sometimes criticized for its
synchronous nature, it generally comes under fire
for mixing application-level with message-level
issues. This commingling has several knock-on
detrimental side effects. What seems like a good,
simple idea on the surface — hiding networks and
messages behind a more familiar application-
development idiom — often causes far more harm
than good. Worse still is that it’s harm that, even
30 years later, we’re still learning about — usual-
ly, the hard way.

IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society SEPTEMBER • OCTOBER 2005 93

Steve Vinoski • IONA Technologies

Critiquing JAX-RPC
In May 2005, Steve Loughran and
Edmund Smith of Hewlett-Packard
Laboratories published a report that
provides a detailed look at the Java
API for XML-based RPC (JAX-RPC)
and explains why they believe it is
fundamentally flawed. The principal
problem they describe is the fact that
JAX-RPC “relies upon a perfect two-
way mapping between XML data and
native language objects.” They devote
much of their report to pointing out

why such a mapping is impossible to
achieve. In fact, they refer to the
mapping as an “object/XML (O/X)
mapping” to relate it to the database
object/relational (O/R) mapping prob-
lem, which is so difficult that decades
of work have achieved no highly sat-
isfactory approach. The authors fear
that an O/X mapping is comparable in
difficulty to the O/R mapping problem,
thus implying a concern that our
industry could spend years trying to
perfect an O/X mapping that simply
can’t be realized.

One fundamental problem they
point out is the sheer difficulty of
mapping between XML and Java. XML
Schema and Java simply aren’t inter-
changeable, and so not all schema fea-
tures map cleanly to Java. The authors
provide an example of a straightfor-
ward schema type used to represent a
postal code that, when mapped to
Java, becomes a plain Java string,
thereby eliminating the characteristics
that made it suitable for postal codes
in the first place. They also point out
that not all XML names can be
mapped to Java names.

Another fundamental problem
that Loughran and Smith raise is that
JAX-RPC’s fault-handling approach
directly exposes Java faults to other
distributed Web services. The prob-
lem, of course, is that there’s no
guarantee that the application on the
other end of the wire uses JAX-RPC
or is even written in Java. This is an
example of a specification feature
that was originally intended to make
users’ lives easier but ends up mak-
ing them harder in the long run —

especially if their applications actu-
ally succeed and become legacy
applications that are used in large-
scale settings involving imple-
mentation technologies other than
JAX-RPC and Java.

The authors also raise some gen-
eral RPC concerns, such as coupling
and latency. RPC often works well in
close-knit systems in which network
latencies and the likelihood of net-
work glitches are both low. However,
as latencies approach those experi-
enced when sending multimegabyte
attachments over the Internet, the
RPC model starts to fall apart because
of lengthy application blocking
times, which can make applications
unresponsive while they wait for RPC
calls to return. In addition, an appli-
cation might need to attempt numer-
ous RPC retries because of the
increased potential for network fail-
ures. With respect to coupling, the
authors remind us that one of the pri-
mary ideas behind SOAP was to
enable loose coupling in distributed
systems by avoiding the need for the
same heavyweight infrastructure on

both ends of the wire. JAX-RPC, they
say, simply overlooks this benefit and
returns us to requiring the same code
in both sender and receiver.

Loughran and Smith refer to the
JAX-RPC model of defining distrib-
uted interfaces as the contract-last
model because service contracts are
derived from Java classes. They con-
trast this with the contract-first model
in which service interfaces are defined
first, typically with WSDL, and are
then implemented using Java, C#,
Python, or whatever approach the
implementer chooses. The latter is
clearly the more desirable avenue as it
avoids leaking implementation details
through service interfaces,4 yet it’s
often ignored because the contract-last
approach trades off design and main-
tenance for easier service development.
The authors also state their belief that
the complexity of WSDL and XML
Schema, combined with the fact that
both differ significantly from today’s
popular programming languages, is
what drives developers toward
contract-last approaches.

The authors provide a brief look at
JAX-RPC version 2.0, now renamed
JAX for Web services (JAX-WS;
www.jcp.org/en/jsr/detail?id=224). It
does provide access to raw XML mes-
sages, but it still pushes fundamental-
ly flawed Java RPC constructs as the
best way to develop XML-based dis-
tributed applications. Loughran and
Smith conclude with a description of
Alpine, the SOAP stack they’re build-
ing in an attempt to avoid the many
problems their paper raises.

I’ve covered only a small part of
the issues that Loughran and Smith
explain, so I urge everyone building
Java-based Web services to read the
paper to learn all the details. Even if
you’re currently stuck using JAX-RPC
and have no immediate plans to
explore alternative approaches, you’ll
almost certainly learn about issues that
you should try to avoid to keep your
Web services applications from being
too brittle.

94 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

The principal problem they describe is the
fact that JAX-RPC ‘relies upon a perfect
two-way mapping between XML data and
native language objects.’

RPC Under Fire

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 95

Radical Alternatives
Loughran and Smith aren’t alone in
their criticisms of JAX-RPC. For
example, Richard Monson-Haefel,
senior analyst for the Burton Group
and author of several highly regarded
Java books, proclaimed in his weblog
that “JAX-RPC is bad, bad, bad!”
(http://rmh.blogs.com/weblog/2005/
06/jaxrpc_is_bad_b.html). He refer-
ences the Loughran and Smith paper
and congratulates them for so clearly
explaining many of the problems
with JAX-RPC, but he also admon-
ishes them for basing their ideas for
Alpine on ideas similar to those
embodied in the SOAP with Attach-
ments API for Java (SAAJ) underpin-
nings of JAX-RPC. Monson-Haefel
instead suggests that a more XML-
centric approach is required, such as
the result of Microsoft’s current work
on the C� (pronounced “C-omega”)
programming language,5 which is an
extension of C#.

One of C�’s main purposes is to
avoid the impedance mismatch inher-
ent in the O/X mapping. The language
combines ideas from the relational,
object, and XML worlds into its type
system and aims to ensure that its type
system aligns well with XML Schema’s.
For example, C� supports streams,
which are ordered collections of zero or
more items that serve to support other
C� constructs. The language also pro-
vides anonymous structs, which have
no explicit type names, can have mul-
tiple fields with the same name, and can
be assigned to other anonymous structs
that have the same field types in the
same order. Asking for a named field
from an anonymous struct containing
multiple fields by that name returns all
the fields of that name as a stream. The
anonymous struct feature lets C� accu-
rately model certain forms of XML ele-
ments that would be impossible to
model in a Java class, for example.

C� also supports query operators —
one form using XPath-based operators
and the other using SQL-based opera-
tors. The latter seem fairly powerful,

given that they can be checked at
compile time and provide support for
projection, joins, filtering, and other
useful data manipulations.

It’s difficult to tell, however,
whether C� is really a step in the
right direction. I haven’t actually
used the language, but my own
research into it leads me to believe
that it’s too complicated, in part
because of its C language heritage —
C� reuses operators such as * and .
(dot) in various contexts that seem
hard to keep track of. As we know
from C++, layering one language
over another (in this case, C� over
C#) often results in difficulties where
the underlying language shows
through, particularly for those who
learned the underlying language first.
On the other hand, C++ remains
immensely popular despite its com-
plexity, so C�’s utility for overcom-
ing the impedance mismatch between
XML and programming languages
might outweigh its complexity. C�
isn’t the only project trying to
address this problem, so even if it
fails to catch on, perhaps some other
novel programming language will
show us the way. Time will tell.

A re you stuck with RPC and the O/X
impedance mismatch unless you’re

willing to go out on the bleeding edge
and use alternative languages such as
C�? Not entirely. Between those two
extremes, we have approaches such as
the aforementioned JAX-WS, with its
access to raw XML messages, which at
least offers developers the choice of
bypassing the O/X layer by using Dis-
patch and Provider APIs that allow
direct access to messages and message
payloads. Other work also continues in
related areas. For example, Axis2
(http://ws.apache.org/axis2/rest-ws.
html) includes new features that let
developers use it in a manner promul-
gated by advocates of the REpre-
sentational State Transfer (REST)
architectural style (see http://en.wiki

pedia.org/wiki/Representational_State
_Transfer). One way that REST differs
from RPC is that it works with a fixed
set of verbs, such as the HTTP verbs
GET and POST, whereas RPC promotes
specialized verbs for each interface,
such as a special getBalance verb for
a bank-account interface. Not sur-
prisingly, this difference tends to
result in REST applications having
much more of a message focus than
RPC applications.

Although the REST vs. RPC debate
has raged for several years now, it is
perhaps telling that Axis2 and other
Web services development kits are now
explicitly including support for REST
in addition to continuing to support
RPC. Are the days of RPC, with its
code-generated stubs and less-than-
perfect programming language map-
pings, truly numbered?

References

1. J.E. White, High-level Framework for Net-

work-based Resource Sharing, RFC 707, Jan.

1976; www.ietf.org/rfc/rfc707.txt.

2. A.D. Birrell and B.J. Nelson, “Implementing

Remote Procedure Calls,” ACM Trans. Com-

puter Systems, vol. 2, no. 1, Feb. 1984, pp.

39–59.

3. S. Loughran and E. Smith, Rethinking the

Java SOAP Stack, tech. report HPL-2005-83,

Hewlett-Packard Bristol Laboratories, May

2005; www.hpl.hp.com/techreports/2005/

HPL-2005-83.html.

4. S. Vinoski, “Web Service Interaction Mod-

els, Part 1: Current Practice,” IEEE Internet

Computing, May/June 2002, pp. 89–91.

5. D. Obasanjo, “Introducing Comega,”

XML.com, 12 Jan. 2005; www.xml.com/

pub/a/2005/01/12/comega.html.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for more than 17

years. Vinoski is coauthor of Advanced

Corba Programming with C++ (Addison-

Wesley Longman, 1999), and he has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

