
Toward Integration

90 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

Concurrency with Erlang

I n the last issue, guest columnist Rachid Guer-
raoui of EPFL discussed the difficulties of
developing multithreaded systems for today’s

(and tomorrow’s) multicore CPUs, and he present-
ed the notion of “free objects,” an extension of
object-oriented (OO) programming, as a possible
solution. Virtually everyone who has written a
multithreaded library or application has had to
deal with the mysterious program behavior and
hard-to-find bugs that come with the territory.
Despite a great deal of research and practice
applied over the years in the hope of making
things easier for developers, writing a concurrent
application remains a difficult task for all but the
elite developers Guerraoui identified as “concur-
rency aristocrats.” It’s not an exaggeration to say
that writing correct multithreaded programs is
beyond many programmers’ technical abilities.

One of the primary reasons concurrency is so
hard is that popular imperative programming lan-
guages such as Java and C++ essentially require
state to be shared among threads. In such lan-
guages, program pathways provide access for
reading and writing thread-independent state vari-
ables. With multiple threads running on multiple
CPUs, more than one pathway can be active simul-
taneously, and without the appropriate safeguards
in place, the threads can read partial values and
overwrite each other’s data, resulting in bogus val-
ues and application instability.

Programmers writing multithreaded applica-
tions in languages like Java and C++ spend much
of their time determining what state is shared
among threads and how best to protect its integri-
ty within the running application. Finding all the
shared state isn’t always easy. Assuming the pro-
grammer can even find it, he or she must then pos-
sess the skills, experience, and patience necessary
to determine the best way to serialize access to it.
Adding to the difficulty is the locking granularity

used to protect shared state. If locking is too
coarse-grained, the application tends toward sin-
gle-threading, because only one thread at a time
can obtain the lock that predictably surrounds a
large portion of the code. Such applications make
poor use of multicore CPUs and tend to be slow. If
locking is too fine-grained, on the other hand, the
chances for deadlock increase greatly as different
threads are increasingly likely to obtain locks in
different orders. Getting it right takes time: fine
tuning what state needs protection, and at what
granularity, sometimes requires months of devel-
opment time. Idioms, patterns, and frameworks
can help out partially, but they introduce restric-
tions and trade-offs of their own. Ultimately, all it
takes is one developer overlooking one small piece
of shared state to cause a large system to crash in
production — usually at the worst possible time for
the most important customer.

One way to avoid the problems with shared state
is to simply avoid it, but that’s impractical in a lan-
guage like C++ or Java. Doing so requires a combi-
nation of libraries or frameworks such as those based
on actor models and message passing, as Guerraoui
described. It also requires significant programmer
discipline because the programming languages
themselves can’t do anything to help developers
completely circumvent shared state. Rather than
using the programming language as intended, the
developer is forced to write in what’s at best a one-
off dialect or worse, a whole new one-off language,
using the special idioms and frameworks designed
to help avoid sharing state among threads.

A better way to avoid shared state is to switch
to a programming language specifically designed
to do exactly that. Erlang is one such language.

What Is Erlang?
Erlang is getting a fair bit of attention these days
because of widespread concerns around how to

Steve Vinoski • Verivue

Editor : Steve Vinoski • v inosk i@ieee .org

best utilize multicore CPUs. Although
many now hearing of it for the first
time think Erlang is a new language,
it’s actually been around for more
than two decades. Erlang started life
in the telecommunications industry at
Ericsson, where its developers sought
to create a language for building
telecommunications switches. They
required their language to help them
build highly concurrent, fault-toler-
ant, highly available, and distributed
services that supported live upgrades
and ran with virtually zero downtime.
In 1998, after years of development
and honing to meet these stringent
requirements, Erlang became open
source software. You can get it at
www.erlang.org.

My own attraction to Erlang arose
from my continual research into what
it takes to develop reliable and practi-
cal distributed computing and middle-
ware-integration systems. I first heard
about it nearly two years ago, and the
more I looked into it, the more I found
that Erlang provided canned solutions
for vexing problems I’d spent a lot of
time on over the years. For example,
it’s difficult to use traditional lan-
guages like C, C++, or Java on top of
Unix, Linux, or Windows to write dis-
tributed systems and middleware that
support concurrency, replication, load
balancing, and automatic failover. In
fact, it’s so hard that even if you’ve
done it before, you can still very easi-
ly get it wrong. Consequently, when
building a new system, most develop-
ers tend to focus first on the nonrepli-
cated, nonreliable version, seriously
considering the really hard failover
and load-balancing parts only after
they get that working.

The more I looked into Erlang, the
more I realized that, along with its Open
Telecom Platform (OTP) libraries, it
already included proven solutions for
the hard areas of building reliable dis-
tributed concurrent software. After all,
Erlang/OTP is what powers the Ericsson
AXD301 ATM switch, which reported-

ly has an uptime of 99.9999999 percent
(that’s nine nines). Unfortunately, the
more I learned about Erlang, the more I
also had that sinking feeling about how
much time I’d spent over the years
trying to (re)invent the wheels that
Erlang/OTP already provides.

Joe Armstrong, the language’s
principle inventor, just published a
new book, entitled Programming
Erlang,1 which I believe is a game
changer. It’s accessible enough for the
average developer, and yet it covers
virtually every difficult problem you’ll
encounter when trying to develop dis-
tributed applications that exhibit high

concurrency, fault tolerance, and reli-
ability. It’s both a beginner’s guide to
Erlang and an advanced bible for those
interested in developing systems that
can run with essentially no downtime.

Programming in Erlang
As Armstrong explains, Erlang is a
functional language that wholly em-
braces the “shared nothing” concept —
for example, unlike in Java or C++, its
“variables” can’t be changed once
they’re bound to a value. In Erlang, the
= operator supports pattern matching
rather than traditional assignment. If
the value on the right of the = match-
es the value on the left, then the state-
ment succeeds. When an unbound
variable appears on the left, Erlang sets
its value to match what’s on the right,
thus making the assignment succeed.
If the variable appears thereafter on
the left of the = operator, the statement
succeeds only if the right-hand side
has the same value.

What’s so important about sin-
gle-assignment variables? Because
Erlang variables are immutable, they
don’t need concurrency protection.
The book also explains how single-
assignment variables help with pro-
gram correctness: if a variable has an
incorrect value, there’s only one place
you need to look in your code to find
out why.

Avoiding shared variables allows
for higher degrees of program paral-
lelization, assuming threads aren’t
too heavyweight. Erlang “processes,”
which are essentially user-space
threads rather than Unix processes or

kernel threads, communicate only via
message passing. Because of concur-
rency’s central role, Erlang’s process-
es are very lightweight and cheap to
create. For example, on my 2.33-GHz
Intel Core 2 Duo MacBook Pro with 2
Gbytes of RAM, Erlang launches 1
million processes in 0.51 second. Con-
trast that with C++: on the same sys-
tem, I can create only 7,044 threads
in 1.3 seconds using the pthreads
library, after which the system returns
an error indicating a lack of re-
sources. Java 5 can create more
threads than C++, but it's just as slow;
it takes 48.6 seconds to create and
join 250,000 threads, and runs out of
resources after creating 431,430
threads in 83.3 seconds.

As far as the language itself goes,
Erlang is similar to other functional
languages in that it encourages list
processing and tail recursion. Consid-
er, for example, a simple function that
raises a number to a power (Erlang

SEPTEMBER • OCTOBER 2007 91

Concurrency with Erlang

Erlang ‘processes,’ which are essentially
user-space threads rather than Unix
processes or kernel threads, communicate
only via message passing.

92 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

already provides this, but we’ll write
our own just as an example):

-module(pow).
-export([pow/2]).

pow(_,0) -> 1;
pow(N, M) -> N * pow(N, M-1).

Here, we define a module named pow,
which contains a function named
pow/2 (Erlang function names
include their arity, or number of
arguments). First, consider the final
line in the example; it defines
pow(N,M) recursively. Its recursion is
broken by the definition of pow just
above it, where the second argument
is 0. Here we see Erlang’s pattern
matching at work: when we pass any
number for N and M � 0, we invoke
the recursive function, but when M is
0, we know that raising a number to
the 0th power always returns 1,
which is just what the pow(_,0) ver-
sion does. The underscore used in
place of N indicates that we don't use
its value in the calculation. Finally,
the second line of this example sim-
ply exports the pow/2 function for
use outside the pow module.

Let’s try this function in the inter-

active Erlang shell:

1> c(pow).
2> pow:pow(2,3).
8
3> pow:pow(4,5).
1024

The first line compiles the pow module
(the 1> out front is the shell prompt).
The second and third lines invoke
pow:pow (which has the form mod-
ule:function) to calculate 23 and 45,
respectively.

Now let’s bring concurrency into
the picture. Rather than calculate the
result recursively, let’s do it with
processes, message passing, and list
processing. The example in Figure 1 is
admittedly contrived, but I’ll use it
anyway because it manages to cram
some important concepts into just a
few lines of code.

Here, the pow function operates by
first spawning one process for each
power to be raised, plus one. For exam-
ple, if we wanted to raise 2 to the 3rd
power, we’d get 4 processes. The
spawning of the processes takes place
in the pow_spawn(Pid,M) function, via
a list comprehension that comprises a
call to spawn as the head of the list and

a recursive call to pow_spawn as the tail
of the list, thus building a list of process
IDs for spawned processes. To let those
processes communicate with us, we
give each the process ID of our initial
process, represented in the code by
self(). The processes simply wait to
receive a message, and when they do,
all but the last one created simply turn
around and send the same messages to
the process ID passed to them — our
initial process. The last process, which
is required in order to break the recur-
sion in the pow_spawn(Pid,M) func-
tion, always sends the value 1 back to
the initial process.

After spawning our processes, we
use lists:map (provided by Erlang) to
send each of them the value N, which
is to be raised to the power M. The
processes send us back a total of M
values of N and one value equal to 1,
all of which we store in a list. We then
call lists:foldl (also provided by
Erlang) to walk the list and multiply all
the entries together into Total to get
our answer.

This code shows several interesting
features of Erlang:

• In just a few lines, Erlang supports
the creation and coordination of
multiple processes and their results.

• As with all functional languages,
Erlang functions are first-class
objects that can be passed as argu-
ments, bound to variables, and
returned from other functions. The
spawn statements use anonymous
functions to instruct each spawned
process on what to do.

• A process can receive messages
from other processes by simply call-
ing receive. This function can also
do pattern matching, so that multi-
ple receive statements can cover
all the message forms your process
expects to receive. In fact, given the
right arguments, receive can ef-
fectively parse message headers by
matching expected values to what’s
actually received in various fields.

Figure 1. Erlang concurrency. Implementing the pow/2 function using multiple
Erlang processes and message passing eliminates the need for traditional error-
prone multithreading constructs.

-module(pow).
-export([pow/2]).

pow(N, M) ->
Pids = pow_spawn(self(),M),
Vals = lists:map(fun(P) -> P ! N end, Pids),
lists:foldl(

fun(_,Total) -> receive X -> X*Total end end,
1, Vals).

pow_spawn(Pid,0) ->
[spawn(fun() -> receive _ -> Pid ! 1 end end)];

pow_spawn(Pid,M) ->
[spawn(fun() -> receive X -> Pid ! X end end)
| pow_spawn(Pid,M-1)].

This form of matching can easily
handle bit fields normally relegat-
ed to C++ or C.

• To send a message to another
process, we just need to specify the
target process ID, followed by !
and the message to send; Erlang
does the rest. This works regardless
of whether the process is running
locally or on another machine
across the network. Creating such a
process simply requires calling a
different form of the spawn func-
tion, which takes the target node
name as the first argument.

• Locks, condition variables, and
other traditional multithreading
constructs simply aren't necessary
in any of this code.

On the same MacBook Pro described
earlier, the original recursive code
takes 4.45 msecs to calculate 502000,
whereas this contrived approach per-
forms the same calculation in 16.84
ms. Considering that the calculation
results in a number consisting of 3,398
digits, and that the latter approach
spawns 2,001 processes, sends a mes-
sage to and receives a response from

each, and then walks the list of
returned values to calculate the result,
this performance disparity is complete-
ly reasonable. In fact, it's also far
smaller than most developers would
expect. Even more surprising is that as
the exponent value increases, the con-
trived multiprocess approach's per-
formance starts to achieve parity with
that of the recursive version, eventu-
ally exceeding it when the exponent
gets large enough — about 50 to the
11,500th power on my MacBook Pro.

H ave you ever devised what you
thought was a good solution to a

really difficult problem, only to find
that the answer would’ve been almost
trivial with a different tool or ap-
proach? As Guerraoui pointed out last
time, many developers are comfortable
with OO programming. I’d like to
advise such developers not to let
Erlang’s functional nature scare you
away, but I know that many will ignore
me rather than use a system that’s pur-
pose-built for developing robust, reli-
able, and highly concurrent programs.
Instead, they’ll continue to plod along

trying to solve their problems with the
same low-level approaches that have
already proven many times over to be
highly error-prone.

This column barely scratches the
surface of Erlang. What I’ve shown in
this limited space is that Erlang con-
currency is extremely straightforward
and inexpensive. Next time, I’ll cover
more of the language, focusing on the
OTP libraries and their features that
enable the development of software
systems with virtually zero downtime.
Meanwhile, do yourself a favor and
get a copy of Programming Erlang.
Even if you never write a single line of
production Erlang code, reading and
understanding this excellent book and
the language it describes will make
you a better developer.

Reference

1. J. Armstrong, Programming Erlang: Soft-

ware for a Concurrent World, Pragmatic

Bookshelf, 2007.

Steve Vinoski is a member of the technical staff

at Verivue in Westford, MA. He is a senior

member of the IEEE and a member of the

ACM. Contact him at vinoski@ieee.org.

SEPTEMBER • OCTOBER 2007 93

Concurrency with Erlang

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

